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Abstract

In this paper we propose three simple, but significant improve-
ments to the OoCS (Out-of-Core Simplification) algorithm of Lind-
strom [20] which increase the quality of approximations and extend
the applicability of the algorithm to an even larger class of compute
systems.

The original OoCS algorithm has memory complexity that de-
pends on the size of the output mesh, but no dependency on the size
of the input mesh. That is, it can be used to simplify meshes of
arbitrarily large size, but the complexity of the output mesh is lim-
ited by the amount of memory available. Our first contribution is
a version of OoCS that removes the dependency of having enough
memory to hold (even) the simplified mesh. With our new algo-
rithm, the whole process is made essentially independent of the
available memory on the host computer. Our new technique uses
disk instead of main memory, but it is carefully designed to avoid
costly random accesses.

Our two other contributions improve the quality of the approxi-
mations generated by OoCS. We propose a scheme for preserving
surface boundaries which does not use connectivity information,
and a scheme for constraining the position of the “representative
vertex” of a grid cell to an optimal position inside the cell.

CR Categories: E.5 [Files]: Sorting; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Surface and ob-
ject representations.

Keywords: polygonal surface simplification, large data, out-of-
core algorithms, external sorting, quadric error metrics.

1 INTRODUCTION

In recent years there has been a rapid increase in the raw size of
polygonal datasets. Several technological trends are contributing to
this effect, such as the development of high-resolution 3D scanners,
and the need to visualize ASCI-size (Accelerated Strategic Com-
puting Initiative) datasets. A useful paradigm for visualizing large
datasets is to generate levels of detail. Over the last decade, there
has been substantial research in designing algorithms for generat-
ing level-of-detail approximations of triangle meshes. In this paper,
our focus is on algorithms which have low memory complexity.

A simplification algorithm receives an input mesh of complexity
n, and outputs a mesh of complexitym (wherem< n). Often, the
user sets the target size of the output, and the algorithm attempts
to minimize the overall error of the approximation. One impor-
tant aspect of the design of a surface simplification algorithm is its
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memory usage. In general, different algorithms have different main
memory dependencies onn andm. For different applications, it is
useful to have algorithms which are memory efficient with respect
to n or m (but ideally both). The memory dependency onn affects
the usefulness of a given algorithm in the sense that it limits the size
of models that can be simplified.

In general the memory requirement of a given algorithm grows
with both m andn (for exceptions, see e.g. [29, 30]). The depen-
dency onm has direct implications on the maximum accuracy of
the approximation. As an example, an efficient terrain simplifica-
tion algorithm is presented in [13], whose memory complexity is
analyzed to be 3n+192m bytes, wheren andm are the number of
vertices in the input and output, respectively. In order to generate
a high-quality approximation with one eighth of the input points,
i.e.,m= 1

8n, one would need to have 27n bytes of memory, or nine
times as much as the size of the input. Often, the memory com-
plexity is much higher on bothn andm (e.g., [21] uses 160n bytes
for general surface simplification), and generating approximations
of large datasets is usually quite hard.

The OoCS algorithm proposed by Lindstrom [20] is a big step
forward in that it has no dependency onn, thus allowing for simpli-
fication of extremely large datasets. One contribution of our work
is to remove the main memory dependency onm from OoCS, thus
allowing for an arbitrarily accurate approximation of an arbitrarily
large dataset. Our new algorithm, OoCSx, usesconstant memory,
no matter how large the dataset or approximation error.

One might argue that the ability to produce simplified models
that are still too large to represent in-core is of little practical value,
since the main reason for simplifying the model in the first place
is to reduce its complexity to something more manageable. How-
ever, we see several important uses of our new algorithm. First, in
many situations it is not known beforehand how much RAM will be
available on the client machine on which the simplified mesh is to
be used, as is generally the case with multi-level-of-detail datasets
provided through data repositories. Second, OoCS does not pro-
vide a mechanism for specifying the exact sizem of the simplified
model, and trial and error may be necessary to find a grid resolution
that leads to a detailed simplification that, along with the auxiliary
data structures used in OoCS, fits in-core. Our memory insensitive
algorithm, on the other hand, is able to finish and output a simpli-
fied model regardless of the grid resolution. Third, many applica-
tions demand a strict error bound, in which case trading memory for
mesh accuracy is not a practical option. As we shall see, even when
an explicit error bound is not given, the mesh may be so geometri-
cally complex that the most detailed simplification to fit in-core is of
unacceptable visual quality. Finally, our work nicely complements
the recent trend of developing efficient out-of-core scientific visu-
alization techniques (see, e.g., [7, 11, 32]). With tools like these in
hand, further out-of-core processing of a simplified mesh becomes
practical.

Our new technique uses disk instead of main memory. In fact,
OoCSx generally needs more disk space than OoCS needs main
memory. On the other hand, disk is often much cheaper and more
readily available than random access memory. The naive use of disk
has the potential for considerable slowdown (as in the case of oper-
ating system paging). Our algorithm is carefully designed to avoid



random accesses, thus achieving simplification speeds which, al-
though slower than OoCS, are still quite practical. Our experiments
show that OoCSx is typically between two to five times slower than
OoCS, while using constant main memory. However, when insuf-
ficient main memory is available for OoCS to store the simplified
model, OoCSx runs faster. Of course, for large enough models,
OoCS is not able to finish at all.

Because OoCS does not make use of connectivity information, it
has no way of detecting whether an edge is a boundary edge or not.
As a consequence, boundaries are generally poorly preserved by
OoCS. We propose a technique for preserving boundaries that does
not use any connectivity information. Finally, we sketch a tech-
nique for enforcing maximum errors, which constrains the optimal
cluster representative to lie inside its grid cell while minimizing the
approximation error.

2 RELATED WORK

Polygonal simplification has been a hot topic of research over the
last decade, with a vast number of published algorithms. Many of
the early simplification algorithms were designed to handle modest
size datasets of a few tens of thousands of triangles. Recent im-
provements in scanning and storage technology, however, have lead
to datasets as large as billions of triangles [19, 23]. As a result, a
number of methods, particularly for out-of-core visualization, have
been proposed for coping with models that are too large to fit in
main memory, e.g. [3,5–8,17,24,28,31,32].

Rossignac and Borrel proposed one of the earliest simplification
algorithms [26]. Their algorithm partitions space into cube-like
cells from a uniform rectilinear grid, and replaces all mesh vertices
within a grid cell by a single representative vertex. While simple
and fast, their method produces rather low quality meshes, in part
due to the simple vertex positioning scheme used in their original
algorithm. Lindstrom’s OoCS algorithm [20] is also based on ver-
tex clustering on a uniform grid, but has a lower time and memory
complexity, and uses a quadric error metric to improve the mesh
quality. This method was recently extended by Shaffer and Gar-
land [27], who make two passes over the input mesh. During the
first pass, the surface is analyzed and an adaptive (instead of uni-
form) partitioning of space is made. Using this approach, a larger
number of irregular grid cells (and thus samples) can be allocated to
the more detailed portions of the surface. However, their algorithm
requires more RAM than OoCS in order to maintain a BSP-tree and
additional quadric information in-core.

Bernardini et al. describe a radically different approach to out-
of-core simplification [4]. Their method splits the model up into
separate patches that are small enough to be simplified individually
in-core using a conventional simplification algorithm. Special care
has to be taken along the patch boundaries. A similar technique
was proposed by Hoppe for creating hierarchical levels of detail for
height fields [15], which was later generalized by Prince to arbitrary
meshes [25]. While conceptually simple, the time and space over-
head of partitioning the model and later stitching it together adds to
an already expensive in-core simplification process, rendering such
a method less suitable for simplifying very large meshes.

El-Sana and Chiang [10] propose an external-memory algorithm
to support view-dependent simplification of datasets that do not fit
in main memory. Similar to [4,15,25], they segment the model into
sub-meshes that can be simplified independently and later merged
in a preprocessing phase. The segmentation and stitching are made
simple by ensuring that edges are collapsed in edge-length order,
and guaranteeing that sub-mesh boundary edges are longer than
interior edges. During run-time, only the portions of the view-
dependence tree that are necessary to render the given level of detail
are kept in main memory.

3 OUT-OF-CORE SIMPLIFICATION

In order to describe our new simplification algorithm, we will first
provide a brief review of OoCS. For full details see [20]. The input
to the algorithm is a set of triangles, stored as triplets of vertex coor-
dinates in a file, and the resolution of a three-dimensional grid. (See
the appendix for a disk-based technique on how to transform from
indexed meshes to thisdereferencedformat.) The algorithm, which
is loosely based on the clustering algorithm by Rossignac and Bor-
rel [26], computes for each cluster grid location a representative
vertex. (A set of vertices constitute a “cluster” if they all lie inside
the same grid cell.) The position of the representative vertex is cho-
sen so as to minimize thequadric error[14] measured with respect
to the triangles in the cluster. For each trianglet = (xt
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wheren̄t is a 4-vector made up of the area-weighted normal oft and
the scalar triple product of its three vertices.1 Qt is then distributed
to the clusters associated with each oft ’s three vertices by adding
Qt to their quadric matrices.

After summing up all per-triangle quadric matrices in a cluster,
we obtain a quadric matrixQS that contains shape information for
the piece of surface passing through the grid cell:

QS = ∑
t

Qt =
(

A
−bT

−b
c

)
(3)

Using this decomposition ofQS, the 3×3 linear systemAx = b is
solved for the “optimal” representative vertex positionx that min-
imizes the quadric error. That is,x is the position that minimizes
the sum of squared volumes of the tetrahedra formed byx and the
triangles in the cell. When clustering vertices together, the majority
of triangles degenerate into edges or points and can be discarded,
thereby reducing the complexity of the model.

3.1 OoCSx

The main idea of our modification of the OoCS algorithm is to elim-
inate the list of occupied clusters which OoCS allocates in main
memory and uses for keeping track of their quadrics. Instead of
directly computing quadrics, OoCSx computesn̄t for the current
trianglet and outputs this information to a file, three times for each
of the three vertices, together with the information for what grid cell
the vertex belongs to. At the same time, we also output another file
which contains the non-degenerate triangles (those triangles that
have vertices in three different clusters) represented as indices to
the grid cells. Then, we externally sort the file containing the vec-
torsn̄t using the grid locations as the primary key. After this, all the
information related to one grid cell is placed contiguously in the
file. By scanning it, it is possible to compute the quadrics and the
optimum location of the representative vertex for a particular grid
cell. After the vertices in the simplified mesh have been computed,
we are left with the task of associating the grid cell references in
the triangle file with vertex representatives. This step is described
in more detail below.

Here are the steps of OoCSx in detail:

(1) Read triangles, compute quadric information for later use.
For each trianglet = (xt

1,x
t
2,x

t
3) in the input mesh, we com-

pute n̄t (Equation 2). Note that we do not compute any

1In this paper,̄a denotes a 4-vector, andâ is a unit-length 3-vector.



quadric matrices at this point. For each vertexxt
i of t, we

also determine the grid locationG(xt
i ) (as an integer ID) that

the vertex will be mapped to. As triangles are read, we output
this information to two files:

– A “plane equation” file, which contains 3 entries for
each triangle, one for each vertex. Each entry is of the
form: 〈G(xt

i ), n̄t〉. Using 32-bit integers to representG
and 32-bit floats for̄nt , this file takes 20 bytes of disk
per entry.

– A “triangle cluster” file, which contains records of
the form 〈G(xt

1),G(xt
2),G(xt

3)〉. Each record takes
12 bytes, and is written only whenG(xt

1) 6= G(xt
2) 6=

G(xt
3).

(2) Sort “plane equation” file using G as the sort key. This
step is performed using an external sort algorithm, which is
discussed below.

(3) Compute quadrics and output optimal vertices. In order to
find the representative vertex for a given cluster, we need to
sum up all the quadrics that contribute to its position. Because
the “plane equation” file has been sorted on cluster IDs (i.e.,
G ), all the vectors̄nt that contribute to a given grid cell are
together in the file. That is, in a single scan, we can sum all
the n̄t n̄T

t into a quadric matrixQS, which is used to compute
the representative vertex position.2

As we find the representative vertexx for a given grid cellG ,
we output 16-byte records〈G(x),x〉. Note that we get this file
already in “sorted” order for free.

(4) Replace cluster IDs in triangle file with corresponding ver-
tices. At this point, the file with the representative vertices and
the “triangle cluster” file hold the complete simplified mesh.
A more useful format for this data is to “dereference” the tri-
angle cluster file and create a file which lists the vertices of
each triangle. This can be done in three passes, one for each of
the three fieldsG(xt

i ). In each pass, the triangle file is sorted
on the current vertex field. After each sort, the cluster IDs
are scanned and replaced with entries from the representative
vertex file, which is read sequentially, in tandem. Many appli-
cations prefer an indexed mesh representation, for which one
would replace the cluster IDs with vertex indices.

Time and Space Complexity

The memory usage of the OoCSx algorithm we have described does
not depend on the size of the input dataset. The algorithm just needs
to have enough memory to hold the data structures for one triangle
and perform the other calculations for computing the quadrics and
optimal vertices. In fact, we use slightly more memory in our exter-
nal sort implementation, which by default uses four megabytes of
memory. Overall, on a PC running Linux, the code never uses more
than five megabytes of memory (eight megabytes on IRIX due to
larger executables) regardless of the size of the input dataset or the
level of approximation desired.

The time complexity of OoCS isO(n), since it only performs
a single scan over the mesh file and keeps all the information re-
garding the quadrics in main memory. Because of the need to sort
several files, OoCSx has time complexityO(nlogn).

2Although our input and output files use single-precision floating point
numbers, we perform the in-memory computations in double precision. 32-
bit floats do not provide enough precision for the computations done for
very large models like the St. Matthew statue and fluid isosurface.

External Sorting

At the center of OoCSx are a series of external sorts. External sort
algorithms are very important for the design and implementation
of I/O-efficient algorithms (see [1, 16]). There are several issues
in implementing external memory algorithms, and these issues can
greatly affect the overall performance of a system. In general trying
to mimic the interface of the Cqsort routine, although often pur-
sued, does not seem the most efficient implementation technique. In
our experience with different external sorts [2,12,18], the most ef-
ficient implementation uses a combination of radix and merge sort,
for which the keys are compared lexicographically. A particularly
efficient external sort isrsort written by John Linderman at AT&T
Research [18]. We usersort for the results presented in this pa-
per. Luckily, it is relatively easy to generate keys which can be
compared lexicographically (see the man page forfixcut, also from
Linderman). In OoCSx, we only need integer keys. For these, we
simply have to write them in big-endian format.

3.2 Quality Improvements

Surface Boundary Preservation

Because OoCS does not make use of connectivity information, it
has no way of detecting whether an edge is a boundary edge or
not. Consequently, surface boundaries are not well preserved by
the method. We propose a variation on the technique used by Gar-
land and Heckbert [14], which makes use of planes parallel to the
boundary edges and orthogonal to their incident triangles.

Building on this idea, we can create an edge quadric. For each
half-edgee of each triangle, we compute a planēme that passes
through the two vertices ofe. The normal vectorme of this plane
is orthogonal to bothe and the normal of the face thate belongs to
(Figure 1). The distance of a point to this plane provides a mea-
sure of how close the point is to the associated edge. We are here
only concerned with distances parallel to the plane of the incident
face—the per-triangle quadrics from Equation 2 already penalize
deviations orthogonal to the face. Using these definitions, we dis-
tribute for each half-edgee= (xe

1,x
e
2) its plane equation̄me to the

clusters corresponding to its two vertices. After adding up all the
plane equations (4-vectors) in a cluster, we compute a quadric ma-
trix QB for the boundary as:

QB =
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∑
e

m̄e

)(
∑
e

m̄e

)T

(4)

m̄e =
(

me

− 1
2(xe

1 +xe
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)
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me = ‖ee‖(ee× n̂e) (6)

ee = xe
2−xe

1 (7)

Note that all edges, whether manifold or on the boundary, are
treated equally. What makes the algorithm sensitive to boundary
edges is that, when adding the implicit plane equationsm̄e, there
is no opposing half-edge from the neighboring triangle to cancel
m̄e. This is illustrated in Figure 1(b), where the plane equations
for two adjacent coplanar faces exactly cancel each other. For non-
coplanar faces, the plane equations will not totally cancel, but a
residual vector (the normal vector of a new plane) remains that pe-
nalizes positions away from the edge in the plane that bisects the
dihedral angle formed by the two triangles. The sharper an edge
is, the larger this penalty becomes. When used as part of an error
measure, this would tend to preserve sharp edges, which is often
desired. Based on this argument, non-manifold edges would also
tend to be preserved, which is likely desirable since they typically
form sharp creases in the mesh. Note that this scheme makes no use
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Figure 1: Illustration of the vectors used for surface boundary preservation. The boundary normalm is orthogonal to the face normaln̂ and the vectore along
the edgee. For manifold edges that share two coplanar faces, the boundary normals cancel. In the case of non-coplanar faces, the residual vectorm1 +m2 lies
in the plane that bisectse’s dihedral angle.

of connectivity information, yet implicitly accounts for the feature
edges in the mesh.

The final quadric for the cluster is computed as a linear combi-
nationλQS+(1−λ)QB of the surface quadric and the new bound-
ary quadric. Note that we have been careful to weight the bound-
ary quadric so as to ensure scale invariance and compatibility with
the area-squared weighted triangle quadrics. We have found that
weighting the quadrics equally (λ = 1

2) tends to give good results.

Constrained Optimization over Cell Boundaries

As discussed in [20], the minimum quadric error sometimes falls
outside the cluster’s grid cell. While rare, the minimum may be
arbitrarily far from the grid cell given the right conditions. Our pre-
vious approach to handling these degeneracies was to use one of
a number of ad hoc methods for clamping the vertex coordinates,
such as projecting the vertex onto the grid cell boundary. To ensure
that the vertex is contained in the grid cell, but also results in the
smallest possible quadric error, we perform a linearly constrained
optimization over the grid cell boundary whenever the global opti-
mum is outside it. Because the quadric functional is quadratic and
the grid cell constraints are linear, the solution to this optimization
problem can be found by solving a set of linear equations (cf. [22]).
This optimization problem is made particularly easy by the fact that
the linear constraints are all perpendicular to each other and parallel
to the coordinate axes, and can therefore generally be solved as a
2D or 1D problem.

4 EXPERIMENTAL RESULTS

Table 1 summarizes our experimental results. We used two ma-
chines for our experiments, most of which were performed on a
Linux PC with 512 MB of main memory and two 800 MHz Pen-
tium III processors. The simplification of the statue and fluid iso-
surface was performed on one processor of a SGI Onyx2 with forty-
eight 250 MHz R10000 processors and 15.5 GB of main memory.
On the SGI, we used one of its one-terabyte striped disks. Over-
all, OoCSx was between two to five times slower than OoCS, but
sometimes the speed difference was even smaller. In one case, for a
high-resolution simplification of the blade, OoCSx was faster than
OoCS. The reason for this is that OoCS ran out of memory, and
numerous page faults occurred. This happened while trying to sim-
plify the blade to one quarter of its initial size. The ratio in memory
usage of OoCS and disk usage of OoCSx varied widely, going from
a low of 6 to a high of 245! These variations are due to the de-
pendency onn, the size of the input model, in OoCSx, whereas the
memory usage of OoCS is proportional tom, the size of the output
model. For the external sort codersort used in our implementation,
we empirically determined the maximum disk usage of OoCSx to

model Tin Tout
RAM:disk (MB) time (h:m:s)

OoCS OoCSx OoCS OoCSx

dragon 871,306
47,236 4:0 5: 150 6 13

113,058 9:0 5: 152 7 14
244,568 21:0 5: 153 9 17

buddha 1,087,716
62,346 5:0 5: 187 7 16

204,766 20:0 5: 191 10 19

blade 28,246,208
507,104 49:0 5: 4,850 2:46 13:14

1,968,172 160:0 5: 4,899 3:11 14:30
7,327,888 859:0 5: 4,993 19:14 17:04

statue 372,963,401
3,012,996 261:0 8:64,004 44:22 2:37:24

21,506,180 3,407:0 8:64,256 51:23 2:49:30

fluid 467,614,855
6,823,739 588:0 8:80,334 55:56 3:11:48

26,086,125 3,427:0 8:80,510 1:08:48 3:23:42
94,054,242 - 8:81,345 - 4:19:09

Table 1: Run-time performance of OoCS and OoCSx. The results reported
for the dragon, buddha, and blade were computed on a Linux PC. The statue
and fluid models were simplified on a SGI Onyx2. Even on the 15.5 GB
SGI, not enough RAM was available for OoCS to produce the finest level
of detail of the fluid dataset.

be 172Tin +12Tout bytes.3 These results indicate thatrsort requires
roughly twice the input size of additional storage. If necessary,
there are techniques for lowering the disk overhead of OoCSx. For
instance, it would be possible to perform multiple sorts, instead of
a single one, and accumulate phases if disk space is at a premium.

Figure 4 shows the effect of using edge quadrics in the simpli-
fication of the boundary (shown in red) of the bunny. From this
figure, it is evident that the boundaries have been preserved with
better visual accuracy. This subjective result is also supported nu-
merically by Figure 2, which shows the maximum (Hausdorff) and
root mean square (RMS) distances between closest points on the
boundaries for several levels of detail of the bunny. These error
measures were evaluated symmetrically by considering all points
on the boundaries of both the original and the simplified model.
Clearly, the use of boundary quadrics greatly reduced the bound-
ary errors. In addition, we found that the use of boundary quadrics
did not negatively impact the errors measured over the surface in-
teriors. Instead, using boundary quadrics reduced both boundary
and surface errors for models with boundaries, and did not result in
a measurable increase in surface error for models without bound-
aries.

Figure 3 is an isosurface of a time slice from a large-scale
turbulent-mixing fluid dynamics simulation, consisting of 2,048×
2,048× 1,920 voxels at 27,000 time steps [23]. This surface is
challenging to simplify due to its highly complex topology and
wispy geometry. Table 1 lists the performance data for simplifying
the entire isosurface. To avoid too much clutter in the images pre-
sented here, we also extracted a small piece (one third of a percent)
of the volume and simplified it independently (Figure 6). As can be

3This usage is for the intermediate files only, and does not include the
space needed for the input and output files.
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Figure 2: Maximum and root mean square boundary error for bunny model,
simplified with and without boundary quadrics.

seen in Figure 6(e), there is significant loss in topological structure
and geometric detail as the triangle count drops to a few million.
A simplification of a complex dataset like this requires more tri-
angles than can be stored in RAM on most computers, and must
be simplified using a memory insensitive method such as OoCSx.
Notice also the improved boundaries in Figure 6(d) over the model
simplified without boundary quadrics (Figure 6(b)).

Finally, we evaluated the effect of performing constrained opti-
mization over the cell boundary in those cases where the optimal
vertex position lies outside the cell. We compared this approach
to (1) leaving the vertex outside the cell, and (2) projecting it onto
the cell boundary. In all cases, the constrained optimization per-
formed as well or better than the other two approaches, both in
terms of maximum and RMS error. Figure 5 shows an example
where constrained optimization resulted in nearly a factor of six re-
duction in the maximum error over leaving the vertices unclamped.
Notice how the artifacts near the lower jaw, ears, and hind leg are
eliminated by clamping and optimizing the vertices, leaving a more
visually pleasing model.

5 CONCLUSIONS

In this paper, we proposed improvements to the out-of-core sim-
plification (OoCS) technique [20]. First, we described OoCSx, a
memory insensitive variation of OoCS. The key feature of OoCSx
is its ability to efficiently simplify arbitrarily large datasets using
a constant amount of main memory. OoCSx uses a disk-based
technique for storing information about the simplified mesh and ar-
ranging it in a cache-coherent manner. We also discussed an ef-
ficient implementation of OoCSx and compared its performance
with OoCS. Second, we proposed a technique for preserving sur-
face boundaries without making use of connectivity information.
Our approach is to compute and minimize an edge-based quadric
error for all edges of the mesh, regardless of their topological type.
We showed that this technique can dramatically improve the shape
of boundary curves, with little or no loss in geometric quality over
the remaining surface. Finally, we proposed using a linearly con-
strained optimization over grid cell boundaries to compute vertex
positions whenever the global optimum is outside the grid cell.

One shortcoming of the current approach is that the overall sim-
plification has constant feature size. Similar to [27], it would be in-
teresting to extend OoCSx to simplify the mesh adaptively. Taking
this one step further, we will investigate how to adapt our out-of-
core algorithms to perform dynamic view-dependent refinement of
the mesh for interactive visualization. Another drawback of OoCSx
is that it requires significant amounts of disk space. The per-triangle
quadric information stored on disk constitutes a large portion of

Figure 3: 470 million triangle isosurface of entire fluid dynamics dataset.

the overall space requirements. We believe that careful encoding
of these 4-vectors, using normal quantization [9] and per-grid-cell
coordinate representations, will allow this information to be repre-
sented using as little as 32 bits per vector. Finally, many datasets
come with surface attributes such as scalar field values, normal and
curvature information, and color. We hope to extend our simplifi-
cation code to take into account and preserve such information.
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Appendix: Dereferencing Indexed Meshes

The file format we assume in our algorithm is different from the in-
dexed mesh formats commonly used for main memory techniques.
In main memory, it is common to store a list of vertex coordinates
(x,y,z), and a list of triangles, represented by three integers that re-
fer to the vertices of the given triangle. Before such datasets can be
used in our algorithm, they need to be “normalized”, a process that
dereferences the pointers to vertices. This process is thoroughly
explained in [7]. For completeness, we briefly explain how to nor-
malize such a file withV vertices andT triangles. In an initial
pass, we create two (binary) files, one with the list of vertices, and
another with the list of triangles. Next, in three passes, we deref-
erence each index in the triangle file, and replace it with the actual
position for the vertex. In order to do this efficiently, we first (ex-
ternally) sort the triangle file on the index we intend to dereference.
This takes timeO(T logT) using an (external memory) mergesort.
Then, we perform a synchronous scan of both the vertex and the
(sorted) triangle file, reading one record at a time, and appropri-
ately outputting the deferenced value for the vertex. Note that this
can be done efficiently in timeO(V +T) because all the vertex ref-
erences are sorted. When we are done with all three passes, the
triangle file will containT records with the “value” (not reference)
of each of its three vertices.
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Figure 6: Small subset of isosurface of turbulent-mixing fluid dynamics simulation. The triangle counts correspond to simplifications of the entire dataset.


