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Abstract

Tetrahedral meshes are widely used in scientific computing for representing three-dimensional scalar, vector, and
tensor fields. The size and complexity of some of these meshes can limit the performance of many visualization
algorithms, making it hard to achieve interactive visualization. The use of simplified models is one way to enable
the real-time exploration of these datasets. In this paper, we propose a novel technique for simplifying large un-
structured meshes. Most current techniques simplify the geometry of the mesh using edge collapses. Our technique
simplifies an underlying scalar field directly by segmenting the original scalar field into two pieces: the boundary
of the original domain and the interior samples of the scalar field. We then simplify each piece separately, taking
into account proper error bounds. Finally, we combine the simplified domain boundary and scalar field into a
complete, simplified mesh that can be visualized with standard unstructured-data visualization tools. Our tech-
nique is much faster than edge-collapse-based simplification approaches. Furthermore, it is particularly suitable
for aggressive simplification. Experiments show that isosurfaces and volume renderings of meshes produced by
our technique have few noticeable visual artifacts.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling - surface and object representations, geometric algorithms

Keywords: mesh simplification, unstructured meshes, level-of-detail, point sampling

1. Introduction

In scientific computing, it is common to represent a scalar
function f: D C R? — Ras sampled data by defining it over
a domain D, which is represented as a tetrahedral mesh. For
visualization purposes, many choose to define the function f
as linear inside each tetrahedron of the mesh. In this case, the
function is completely defined by assigning values at each
vertex v;(x,y,z), and is piecewise linear over the whole do-
main. It is important to distinguish the domain D from the
scalar field f. The purpose of visualization techniques, such
as isosurface generation [LC87] and direct volume render-
ing [MHCO90] is to study intrinsic properties of the scalar
field f. The time and space complexity of these techniques
are heavily dependent on the size and shape of the domain
D. For large datasets, it is not possible to achieve interactive
visualization. In these cases, it is often useful to generate a
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reduced-resolution scalar field f: D C R? — R, such that
the new scalar field f approximates f in some natural way,
ie., |f — f] <&, and the new domain D is smaller than D.

There are many possible ways to compute f from f.
Recently, many techniques have been proposed that sim-
plify tetrahedral meshes by the use of edge (1-simplex) and
tetrahedron (3-simplex) collapses (see, e.g., [CM02, NEO4,
THIJW98]) on the domain D. These techniques are similar to
triangle-based simplification techniques [Hop96, GH97] and
use connectivity information to incrementally cull simplices
¢; from the domain. (i.e., when a 1-simplex is collapsed,
several 2- and 3-simplices become degenerate and can be
removed from the tetrahedralization). Most techniques or-
der the collapses using some type of error criteria, stopping
when the size of the domain |D| reaches a user-defined tar-
get number of simplices 7 (i.e., the simplification stops once
|D| < n) or when the function f reaches a maximum user-
defined error bound €.
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Figure 1: Graphical representation of our simplification pipeline. Our technique separates the original scalar field (shown on the left) into
two pieces: the boundary of the original domain and the interior samples of the scalar field. We then simplify each piece separately, according
to a target number of boundary edges, and a local error bound on the interior samples. Finally, we combine the simplified domain boundary
and scalar field into a complete, simplified mesh (shown on the right) by computing a conforming Delaunay tetrahedralization.

With surfaces embedded in three-dimensions, it is natu-
ral to try to maintain the shape of the overall mesh during
simplification. For scalar fields, the overall geometry of the
domain D is not as important. The domain is used to repre-
sent the subset of R* where the scalar field f is defined. For
this reason, we only need to maintain the shape and topology
of the boundary surface dD. In our work, instead of slowly
building D from D using a series of collapses, we build B, the
boundary of D, by simplifying dD, while completely ignor-
ing the connectivity of the interior. For the interior, we use a
point-sampling approach to build the 0-simplices V = {v;}
that are used to define the final domain of f. Then we use a
(re)tetrahedralization approach to create the simplicial com-
plex D by combining B and the set V.

To summarize, our technique works directly on the un-
derlying scalar field. This is done by segmenting the origi-
nal scalar field into two pieces: the boundary of the original
domain and the interior samples of the scalar field. We sim-
plify each piece separately, taking into account proper error
bounds. Finally, we combine the simplified domain bound-
ary and scalar field into a complete simplified mesh.

Edge-collapse-based approaches work well but they are
intrinsically limited in speed by their top-down approach.
For example, to simplify a mesh to 10% of its original num-
ber of edges, it is necessary to collapse 90% of the original
edges. Our method is much faster in this case because it uses
point sampling instead of edge collapses.

Our new algorithm builds on our previous work
[FMSWO00]. Although based on related ideas, our previous
method was quite rudimentary, and was meant to be used
primarily for low-quality renderings. In particular, it did not
provide error bounds on either the interior or boundary of
the simplified mesh.

The remainder of this paper is organized as follows. We
summarize related work in Section 2. In Section 3, we de-
scribe the details of our simplification algorithm. Section 4

presents our experimental results. In Section 5, we discuss
different trade-offs of our approach. Finally, in Section 6,
we provide final remarks and directions for future work.

2. Related work
2.1. Triangle mesh simplification

Most existing triangle mesh simplification algorithms use
edge collapses. Garland and Heckbert [GH97] introduced
the quadric error metric which can be used to optimize the
position of the vertices resulting from edge collapses such
that the surface is locally preserved. Their method uses iter-
ative contractions on vertex pairs and calculates the error ap-
proximations using quadric matrices. This metric measures
the squared (geometric and field) distances from points to
hyperplanes spanned by triangles. The boundaries are pre-
served using a similar metric on the boundary edges and by
weighting boundary and interior errors appropriately. The
quadric error of collapsing an edge to a single point is ex-
pressed as the sum of squared distances to all accumulated
incident hyperplanes, and can be encoded efficiently for n-
D vertices as a symmetric n X n matrix A, an n-vector b,
and a scalar c¢. Lindstrom and Turk [LT98] used a differ-
ent formulation of the volume-preservation error metric, and
added a constraint on the shape of the triangles. Their al-
gorithm is implemented by the GNU Triangulated Surface
(GTS) [Pop03] open-source library.

A different approach was taken by Cohen et al. with Sim-
plification Envelopes [CVM*96], which guarantees a maxi-
mum distance between the simplified surface and the origi-
nal. However, edge-collapse codes are faster.

2.2. Edge-collapse-based tetrahedra mesh simplification

Edge-collapse algorithms employ various edge-cost func-
tions, which may be different functions for boundary edges
and interior edges. In their most recent work Garland and
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Figure 2: Comparison with [FMSWO00]: The result of Farias et al.
for the SPX dataset is shown on the left; observe the damaged
boundary. The result of the algorithm proposed in this paper is
shown on the right.

Zhou [GZ05] present an iterative edge contraction for sim-
plicial complex of any dimension. They propose a general-
ized error metric using tangent vectors instead of perpen-
dicular normals [GH97]. They add a boundary penalty fac-
tor to preserve the geometry of the boundary. Their system
is very general, and it supports the simplification of data of
any topological type, including non-manifold complexes and
mixed complexes.

The tetrahedral mesh simplification of Natarajan and
Edelsbrunner [NEO4] is based on edge contractions with
the modified quadratic error metric of Garland and Heck-
bert [GH97]. The quadratic cost function preserves the den-
sity map, improves the mesh quality in terms of angles, and
preserves the global topological type of the mesh.

Trotts et al. [THIW98] extend the technique of Gieng
et al. [GHJ"98] for the simplification of triangle meshes
to tetrahedral meshes. They collapse a given tetrahedron
by successively collapsing three of its edges. Their tech-
nique attempts to preserve the boundary of the tetrahedral
mesh by using boundary constraints. In their followup work,
Trotts et al. [THJ99] improve upon their previous methods
by avoiding the topological problems created from collaps-
ing a tetrahedron. Their strategy is to use only one edge col-
lapse instead of a sequence of three edge collapses.

Gelder et al. [GVW99] evaluate the effect of decimation
by comparing two data-based error metrics: a mass metric
and a density metric.

Staadt and Gross [SG98] extend Hoppe’s work [Hop96]
for progressive tetrahedralization. They discuss intersec-
tions, inversions, and degenerations of tetrahedra for a robust
edge-collapse implementation. They redefine the cost func-
tion by considering the volume preservation and gradient.

Chiang and Lu [CLO3] construct multiple levels of de-
tail of a tetrahedral volume, preserving the topology of all
isosurfaces. Their algorithm simplifies the tetrahedral mesh
in two phases. In the segmentation phase, it classifies each
vertex into critical and non-critical points and identifies
topologically-equivalent regions. In the simplification phase,
the algorithm uses edge-collapse operations in which each
topologically-equivalent region is simplified independently.
Notice that any change to the transfer function requires a
fresh run of the simplification algorithm.
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2.3. Other tetrahedra mesh simplification techniques

Chopra and Meyer [CM02] propose a fast algorithm for pro-
gressive simplification named TetFusion. The idea of this al-
gorithm is to use a tetrahedral collapse operation in which
one tetrahedron is collapsed onto its barycenter. In their
work, they preserve the boundary surface by keeping all the
tetrahedra on the boundary.

Farias et al. [FMSWO0O0] present an algorithm to improve
the speed of volume rendering for unstructured grids using
an approach similar to the one proposed in this paper. This
technique uses the following steps. First, a subset of the in-
terior points is generated. Second, the boundary is simplified
separately, leading to a collection of simplified points. From
the simplified boundary, a set of external ghost vertices is
generated. Then the geometry of the boundary is discarded
(unlike in our technique). The final pass is a Delaunay tetra-
hedralization of all the points, where any cell that contains
a ghost vertex is discarded. A key difference between this
algorithm and ours is that we preserve the boundary surface.
Because the geometry of the boundary is discarded, the al-
gorithm employed by Farias et al. could suffer from severe
boundary anomalies. (See Figure 2.)

2.4. Tetrahedral mesh generation

The most widely used tetrahedral meshing algorithms are
based on the Delaunay criterion [Owe98]. Delaunay triangu-
lations and Delaunay tetrahedralizations (DT) are very well
known and studied mesh entities (see, e.g., [Ede01, Chap-
ter 5]). A basic property that characterizes this geometric
structure is the fact that a tetrahedron belongs to the DT
of a point set if the circumsphere passing through the four
vertices is empty, meaning no other point within the tetra-
hedralization lies inside the circumsphere. Under some non-
degeneracy conditions (no 5 points co-spherical), this prop-
erty completely characterizes DTs and the DT is unique. Part
of the appeal of Delaunay tetrahedralizations is the relative
ease of computing the tetrahedralizations. As a well-studied
structure, often used in mesh generation, standard codes are
readily available that compute the DT. The practical need of
forcing certain faces to be part of the tetrahedralizations led
to the development of conforming Delaunay tetrahedraliza-
tions (CDT) [She99].

Given a set of faces {f;} that need to be included in a
DT, the idea behind conforming Delaunay tetrahedraliza-
tions is to add points to the original input set so that the
DT of the new point set (consisting of the original points
plus the newly added points) is such that each face f; can
be expressed as the union of a collection of faces of the
DT. The added points are called Steiner points. A challenge
in computing a conforming DT is minimizing the number
of Steiner points and avoiding the generation of very small
tetrahedra. While techniques for computing the traditional
DT of point sets are well known and reliable code exists,
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Figure 3: One slice of sampled points for £ighter LODs highlighting our adaptive sampling technique.

conforming DT algorithms are still in active development
[MMGO00, CSdVYO02]. The particular technique for adding
Steiner points affects the termination of the algorithm, and
also the quantity and quality of the added geometry.

Borouchaki et al. [BHSG95] introduced a robust mesh
generation algorithm that tetrahedralizes a set of points with
face constraints. This algorithm allows the user to specify a
bound on the shape of the tetrahedra, and may insert addi-
tional points inside the domain to meet the shape constraints
specified by the user. Their method is incremental. It takes
as input a boundary mesh and a set of interior points. It first
creates a DT based on the points of the boundary and the
interior samples. Then mesh transformations are applied to
try to make the boundary mesh conform to the input bound-
ary mesh. When these transformations fail, Steiner points
are inserted in the interior of the mesh. A solid implementa-
tion of this method (GHS-3D 3.1, described in [GHS91]) is
included with the CAMAL library [San04].

3. Our simplification algorithm

In this work, we consider the tetrahedral mesh as a func-
tion f: D C R? - R. Therefore, we simplify the function
rather than the geometry of the tetrahedral mesh. We present
a multi-stage algorithm (see Figure 1). First, we separate the
interior points from the boundary. We simplify the boundary
using a modified surface-simplification algorithm that takes
into account the scalar field defined at the vertices. We sam-
ple the interior points using a k-d tree partition of the in-
terior points of the mesh and we remove the samples that
are outside the boundary, or closer than a certain minimum
distance to the boundary. Then, we reconstruct a simplified
tetrahedral mesh by using a conforming Delaunay tetrahe-
dralization (CDT) on the interior points while taking into
consideration the simplified boundary. At this point, we have
a mesh with no associated scalar values, which approximates
D in a subset and has a boundary surface which conforms to
the simplified boundary surface. The CDT introduces new
points for which we do not have scalar values in the origi-
nal mesh. Our final step is to compute values at these points
using the function f. These steps are further detailed below.

3.1. Sampling the interior points

Our goal is to build a simplification of the volumetric scalar
field in such a way that features (e.g., isosurfaces) of the
volume are well preserved. Since we know that a function

reconstructed from the simplified model is a linear interpo-
lation, we will not consider higher-order interpolation tech-
niques such as a radial basis function interpolation. Our ap-
proach is to sub-sample the input vertices using a space-
partitioning data structure, where the scalar values of each
node have a bounded variation. We build a hierarchy of the
scalar function using a k-d tree, grouping points with similar
scalar values together. The final level of detail is obtained
by sampling each leaf of the tree by the point with the value
closest to the mean scalar value of the cell. (See Figure 3.)

The method for splitting a node of the tree determines the
quality of the simplification of the interior, i.e. the error in
the reconstructed scalar function is a function of the num-
ber of sampled points. A node is split if the variation of the
values in the node is larger than a user-defined threshold. To
subdivide the nodes, we have to determine an axis and a po-
sition on this axis. To determine the axis among the three
possible, we find the points X, and X;;qx of minimum and
maximum scalar values, and we take the axis e; for which
the norm of the projection of the vector g = Xuax — Xpin 18
the greatest. This direction is the direction along which the
scalar value varies the most.

The problem is then to determine where to cut the bound-
ing box of the node along the chosen axis. Assuming that
the sampling of the subdivided nodes is perfect, the best po-
sition to cut is where the sum of the maximum variations of
the scalar values on both sides is minimal. We have tested
the exact computation using an exhaustive search over all of
the points in the node, but have decided to use a heuristic
that works well in practice. We cut the selected axis at the
middle of the vector g (defined above).

As shown in Figure 4, picking a single point in a subdi-
vided cell can introduce a significant error for large cells.
However, this usually does not introduce significant visual-
ization artifacts as demonstrated by our results.

3.2. Simplifying the boundary mesh

The boundary surface is defined by the faces of the tetrahe-
dral mesh that belong to a single tetrahedron. The algorithm
to compute the boundary is quite simple. We traverse all the
faces of the mesh. For each face, we order its vertices consis-
tently so that if two tetrahedra share a face, the two instances
of that faces have the same vertices in the same order. The
boundary surface is the set of faces that are inserted only

(© The Eurographics Association 2005.



Uesu, Bavoil et al. / Simplification of Unstructured Tetrahedral Meshes by Point Sampling

once, and the interior points are the vertices that do not be-
long to the boundary.

The boundary comprises the geometric and topological
aspects of the shape, therefore, we apply geometric con-
straints for the boundary simplification to preserve these
qualities. A boundary simplification algorithm should meet
the following criteria:

e preserve the shape of the object, that is, the Hausdorff dis-
tance between the simplified model and the input model
should be as small as possible,

e preserve the topology of the object (some of the most im-
portant features in tetrahedral volumes lie near holes and
cavities),

e preserve the behavior of the scalar function on the bound-
ary. Therefore, pure geometric simplification algorithms
like the Simplification Envelopes technique [CVM™*96],
which creates large triangles on flat surfaces, are not ap-
propriate.

In addition, the conforming Delaunay tetrahedralization
algorithm works better with well-shaped triangulations.
Skinny triangles make this process more time consuming
and less efficient because of the addition of Steiner points
on sharp corners [CSdVYO02]. Therefore, we also try to gen-
erate simplified boundary meshes with equilateral triangles.

Instead of developing a mesh simplication code from the
ground up, we decided to modify the coarsen program
provided by the GTS library [Pop03], which is based on
edge collapses. The potential edges to be collapsed are in-
serted into a priority queue. Each edge is associated with a
cost, which is computed by simulating the edge collapse and
estimating the quality of the result. The edge with the lowest
cost is collapsed until the target number of edges is reached.

GTS implements the edge-collapse algorithm described
in [LT98]. As with other edge-collapse based simplification
algorithms, coarsen is characterized by the placement al-
gorithm of the new vertices resulting from a collapse, and
by the cost function f¢(e,v), where e is an edge and v is a
possible result of the collapse of e.

The position of a new vertex can be computed by using
the different methods as described in [LT98]: volume preser-
vation, boundary preservation, weighted average of volume
and boundary optimization, and triangle shape. Moreover,
GTS has code for a weighted average for volume and shape
optimization. In our work, we use the volume preservation
constraint, composed with the coupled volume and shape op-
timization. Finally, the shape optimization constraint is ap-
plied if necessary. The details follow.

The weight of the volume optimization is fixed to one, and
the weight of the shape optimization for an edge e, ws(e), is

ws(e) = A-L(e)*

where L(e) is the length of edge e, and A is a parameter
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Figure 4: An example of splitting a cell that only contains coplanar
points, with the x-axis as the splitting direction. The plain line is
the original scalar field, the dash line is the approximation from
sampling one point on each side of the split.

which we will refer to later as the shape optimization weight.
The purpose of A is to weight the shape optimization rela-
tive to the volumetric optimization when placing new ver-
tices. Increasing A tends to create triangles of better quality,
but with a larger geometric distance (Hausdorff) between the
simplified and original surfaces.

For the cost function we use:
fe(e,v) = fs(e,v)-L(e)

where fs(e,v) is the measure of the triangle shape quality
introduced by [LT98]. The scalar value of a new vertex re-
sulting from an edge collapse is computed by a linear inter-
polation of the two adjacent vertices.

2

3.3. Removing sample points

One consequence of boundary simplification is that points
which were inside the boundary of the original mesh may be
outside the boundary of the simplified mesh. These points
have to be removed from the set of sample points before re-
constructing a mesh. To do this efficiently, we build a k-d
tree of the triangles of the boundary mesh with a fixed max-
imum number of triangles per leaf. For each point, we find
the leaf which contains the point and compute the distance
to the nearest triangle in this leaf. Based on this distance, the
points that lie outside the boundary are discarded.

The CDT implementation that we are using only works
when interior points are far enough from the boundary, oth-
erwise the CDT fails to produce a mesh conforming to the
faces of the boundary. Therefore, we also need to discard
points that are closer to the boundary than a minimum dis-
tance defined as a percentage of the diameter of the bounding
box of the simplified boundary.

3.4. Tetrahedral mesh reconstruction

At this point, we have shown how to simplify the interior
points and the domain boundary. Now, we need to construct
a simplified, unstructured tetrahedral grid for further pro-
cessing and visualization of the model, which incorporates
the simplifed interior points and domain boundary.
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Since this problem is essentially equivalent to normal un-
structured tetrahedral mesh generation [Owe98], many op-
tions are available to accomplish this task. Ideally, our cho-
sen technique should preserve the boundary and generate as
few additional (i.e. Steiner) points to our sample points in the
domain, as possible. If any additional points are introduced
during this mesh generation phase, we will compute scalar
values for these points, as a post-processing step, using the
interpolation scheme described in the next section.

As discussed in Section 2.4, the most widely used tetra-
hedral meshing algorithms are based on Delaunay triangu-
lations. They are conceptually simple, and existing robust
codes are widely available. Also, incremental DT algorithms
are an efficient way of creating a DT by inserting points one-
at-a-time. We have thus decided to use a conforming DT as
our meshing scheme.

Our implementation uses the CDT implemented in GHS-
3D [BHSG95, GHS91] through the CAMAL interface
[San04], which is a robust and efficient implementation of
incremental DT, taking as input a boundary mesh and a set
of interior points. It first creates a DT based on the points
of the boundary and the interior samples. Then mesh trans-
formations are applied to try to make the boundary mesh
conform to the input boundary mesh. When these transfor-
mations fail, Steiner points are inserted in the interior of the
mesh. Since the Delaunay tetrahedralization of non-convex
objects is accomplished on the interior of the convex hull
of the domain points, it is possible for tetrahedra to be gen-
erated outside the boundary of the original domain. These
additional tetrahedra should be removed. This is performed
intrinsically within the GHS-3D mesh generator.

3.5. Field reconstruction

We now have a mesh that conforms to the interior samples
and to the boundary mesh, we need to set scalar values at
each vertex of the mesh. All the original points have scalar
values. However, for the Steiner points, we need to compute
a value from the function of the original field. The value at
a Steiner point p is computed by a linear interpolation of the
scalar values at the vertices of the tetrahedron of the original
mesh in which it was picked, using barycentric coordinates.

To find the value of p on the original mesh, it is first neces-
sary to find a tetrahedron that contains p in this mesh. To do
this efficiently, we build a k-d tree of the original mesh such
that if p is in a tetrahedron, then this tetrahedron is in the
cell of the k-d tree containing p. We use a fixed maximum
number of tetrahedra per leaf to build the tree.

Then, to get the value of the scalar field, we find the cell
containing p and for every tetrahedron ¢ of this cell, we
check if p is inside ¢ by computing the signed distances to
the oriented planes defined by the faces. These planes are
oriented using the fourth vertex of each tetrahedron.

3.6. Summary

Our multi-stage simplification algorithm consists of the fol-
lowing steps: (1) separate the interior points from the bound-
ary; (2) interior point simplification; (3) boundary mesh sim-
plification; (4) unstructured mesh reconstruction; (5) recon-
struction of scalar field on Steiner vertices. It is possible to
implement our technique in different ways, but depending on
the underlying algorithms used for steps (2), (3), and (4), fur-
ther steps might be necessary. In fact, our earlier implemen-
tation of the algorithm, described in [UBFS04], was more
involved, slower, and less reliable, due to a less robust mesh
reconstruction in step (4).

Our algorithm has a set of parameters that roughly corre-
sponds to the different steps. We need an error bound for the
point sampling p; the target number of edges for the surface
simplification &; the shape optimization weight for the sur-
face simplification; and minimum distance between sample
points and the simplified boundary.

In theory, the only parameters required from the user are
p and o. It is possible to eliminate the other parameters by
making improvements to our underlying algorithms used for
steps (2) and (4), and by automating the choice of maximi-
mum leaf size in the k-d tree to optimize for efficiency and/or
memory consumption.

4. Results

We have implemented the algorithms described in Section 3
in C++. For surface simplification, we use the one available
in GTS [Pop03].

The mesh reconstruction algorithm is performed using
CAMAL 2.0.2, which in turn utilizes the GHS-3D 3.1 tetra-
hedral mesh generator. The CAMAL interface takes as input
a list of boundary faces and interior nodes. The output is a
tetrahedral mesh conforming to the original boundary, with
all elements lying interior to the boundary. It does not main-
tain the scalar field, but we use the fact that the indices of
the input and output vertices match to avoid performing an
expensive matching phase.

To extract the boundary surface and the interior ver-
tices, we use the class Indexed_tetra_set provided by
the GTB library [CBF*04]. Our implementation of point-
triangle distance needed in the closest triangle computation
(Section 3.3) is based on code adapted from the Eberly’s
Wild Magic library [Ebe04]. Despite using multiple pack-
ages to implement our algorithm, everything is integrated
and easy to use. In particular, it is possible to reuse the sim-
plification of the original boundary mesh to quickly generate
low-resolution levels of detail of an input mesh.

In order to assess the speed and quality of our technique,
we ran a large number of tests using diverse datasets. We
briefly summarize some of our results below. In testing, we
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utilized a Pentium 4 at 3.20 GHz with 2 GB of RAM and
1 MB of CPU cache to generate our results.

Comparison with an edge-collapse-based technique. We
compare our technique to the implementation of Garland and
Zhou [GZ05] described in [VCL*05]. As shown by Table 1,
our method is considerably faster than their technique for
aggressive simplifications. Besides, low-resolution simplifi-
cations keep the features of the original dataset as demon-
strated by Figures 6 and 9. Using histograms, shown in Fig-
ure 5, we can see that our technique preserves the global
structure of the scalar field. The RMS errors of our tech-
nique are worse than those for the [GZ05] technique. Fig-
ure 7 shows the relative impact of a larger RMS error in our
technique compared to Garland and Zhou’s method [GZ05].

The delta dataset has some degenerate edges on its
boundary. This led us to implement an optional edge-cleanup
step between the boundary extraction and the boundary sim-
plification steps. The delta has been the only dataset that
we needed to use this extra step.

Our technique has another advantage, which is that it does
not have to check for volume flips. The volume flip check
of Garland and Zhou’s [GZ05] is unstable when checking
skinny tetrahedra with volume almost equal to zero. There-
fore, [VCL*05] cannot reduce the delta dataset to 6%. In
order to reach this value, we needed to disable the volume-
flip checks, which introduced visible artifacts, see Figure 8.

Analysis of the pipeline. As shown in Table 2, we can sim-
plify the £ighter dataset, which has over 1.4 million tetra-
hedra, to about 12% of the original number of tetrahedra in
about 36s, using a maximum of 400 MB. We also notice that
the complexity of the CDT increases with the number of in-
terior point samples. In addition, we see that more than half
of the sampled vertices are discarded because they are ei-
ther outside the simplified boundary, or closer than the spec-
ified uniform minimum distance. The CDT step adds Steiner
points to be able to conform to the boundary faces, which
are the difference between the selected samples and the fi-
nal vertices in Table 2. We set the minimum distances to the
boundary surface to 1% of the diameter of the bounding box
of the simplified boundary mesh. For datasets such as the
fighter dataset which have a large density of points close
to the surface, this can imply discarding about 70% of sam-
ple points but it apparently does not affect the quality of the
simplifications.

Field error estimation. To estimate the field error in Ta-
ble 1 of our results, we use a similar approach of Cignoni
et al. [CCM™00]. However, we do not only sample error at
vertices but we also take a uniform number of samples in-
side each tetrahedron. Another difference is that we ignore
the samples that are outside the original boundary. Given a
reference tetrahedral mesh M| and a simplified version of
it M,, we sample the domain of M, at the vertices of M.
At each sampled point (x,y,z), an error value e(x,y,z) =
|M1(x,y,2) — M(x,y,2)| is computed.
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Dataset (LOD) Edge collapses Our technique

Time RMS Time RMS

fighter (6%) 72.09s  0.26% 26.74s  0.55%
fighter (22%) 62.06s 0.11% 32.46s 0.37%
fighter (48%) 46.33s 0.03% 3843s 0.29%

£117 (14%) 6.49s  0.15% 398  0.79%
bluntfin (9%) 6.28s  0.52% 371s  1.86%
delta (4%) 3337s  1.69% 20.53s 2.12%

Table 1: Comparison of the simplification time of a fast edge-
collapse implementation of Garland and Zhou’s approach [GZ05]
with the overall time of our approach, for the fighter (1.4M tets),
delta (IM tets), £117 (240K tets), and blunt fin (187K tets).
The times do not include reading and writing to files, nor build-
ing face connectivities. The levels of detail (LOD) are percentages
of the original number of tetrahedra. The edge-collapse code uses
Cholesky’s method with substituted solution for singular matrices to
solve linear systems. Both implementations were tested on the same
Pentium 4 computer at 3.2 Ghz. The RMS error is the Root-Mean-
Square error relative to the range of scalar values.

Figure 5: Histograms of the scalar values of LODs of the
fighter dataset. 1.4M tets (100%); 669K (48%); 90K tets (6%).
The white graph is linearly scaled histogram, the gray graph is log-
scaled histogram, and the horizontal lines are the decades on the
log scale.

Contrary to Cignoni’s approach [CCM™*00], when a sam-
ple taken in the domain of M| is outside of the domain of
M,, we ignore that point, since the associated value is unde-
fined in M». In practice, this usually leads to ignore less than
10% of the samples.

5. Discussion

Our main motivation in doing this work is to search for an
accurate simplification technique that is faster than existing
edge-collapse-based methods. From the results presented in
this paper, it appears that the quality of a point-sampling
approach like the one outlined here can be quite competi-
tive with the quality of the previous techniques, while our
technique is substantially cheaper to compute. In a nutshell,
the main advantage of our approach is the overall improved
speed for aggressive simplifications. Still, there are many
nice features of other techniques that our current technique
does not possess. In particular, we do not have fine con-
trol of topological features, such as the work of Chiang and
Lu [CLO3]. One way to potentially address this shortcoming
of our technique is to explore domain segmentation along
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user-defined features, and to take these extra “surfaces” into
consideration when performing the sampling and the recon-
struction of the final mesh.

The use of a conforming Delaunay tetrahedralization pro-
vides a powerful method allowing us to preserve the bound-
ary of the domain, and greatly simplifies the implementation
of our technique. However, it should be noted that there is
an interplay between the quality of the simplified surface and
the time to generate the final CDT. The shape of the triangles
greatly affects the number of added Steiner points, which in
turn causes it to take longer to compute the CDT, or to return
an error. There is work to be done to develop a better surface
simplification technique fitting our needs. Part of the prob-
lem is that surface simplification codes are developed with
a goal toward maintaining visual acuity instead of true geo-
metric and topological quality and strict error bounds. Also,
currently-available simplification codes do not allow us to
take into account the scalar field defined at vertices, forc-
ing us into using indirect parameters (e.g., number of edges)
when trying to achieve a given scalar field error bound.

6. Conclusions and future work

In this paper we introduced a new technique for simpli-
fying large unstructured meshes. It is an example of the
emerging impact of point-based techniques on visualiza-
tion [LM99, CPJ04]. The basic idea is to focus on the scalar
field, and to simplify its domain and sample points sepa-
rately, taking into account proper error bounds in each case.
The simplified scalar field is computed as a piecewise linear
extension of the simplified sampled data inside the simpli-
fied domain. One of the nice features of our technique is
that it builds on existing techniques for which robust solu-
tions (and libraries) are available. Given these libraries, our
algorithm is relatively simple to implement. Our experimen-
tal results show the effectiveness of our technique both in
terms of simplification quality and speed. In particular, our
technique is faster than existing edge-collapse simplification
codes for aggressive simplifications.

There are many avenues for future work. An interesting
one is the development of a geometry and topology accurate
surface simplification technique. Current techniques some-
times generate non-manifold triangulation with bad trian-
gles. We are also interested in developing an out-of-core ver-
sion of our approach in order to simplify extremely large
datasets. Finally, we are very interested in exploring better
feature-aware sampling techniques, including the possibility
of preserving major topological features of the scalar field.
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Dataset fighter delta delta £117
Parameters:

Boundary LOD 10% 5% 5% 10%
(% of edges)

Clustering 1% 1% 10% 0.5%
(% of range)

Level of detail:

Num. of original 1.4M 1.0M 1.0M 0.24M
tetrahedra

Percentage of the 12% 17% 4% 14%
original tets

Vertices:

Original vertices 215K 191K 191K 44K
Selected samples 18K 26K 4K 5K
Final vertices 32K 29K 7K 6K
Steiner points 82% 9% 56% 18%
Memory:

Total size (MB) 399 277 265 72
Times: (seconds)
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Extr. boundary 0.64 1.98 2.09 0.07
Simp. boundary 16.59 7.55 7.60 2.00
Sampling points 0.65 0.37 0.23 0.10
Rem. samples 1.33 0.72 0.58 0.60
CDT 2.05 28.66 3.63 0.95
Steiner scalar 7.11 8.63 12.94 0.53
field

Other 0.52 0.69 0.72 0.06
Total (real) 36.03s 53.10s 32.43s 5.53s

Table 2: Times of the steps of the simplification pipeline. For all the
datasets, we use a shape optimization weight of 0.1 (Section 3.2),
and a minimum distance to boundary of 1% of the diameter of the
bounding box of the simplified boundary (Section 3.3). We use a
maximum of 200 triangles per leaf for the boundary k-d tree used
to remove sample points, and a maximum of 500 tetrahedra per leaf
for the k-d tree used to compute scalar values of Steiner points. The
times were taken on a Linux 2.4.20 system with empty disk cache.
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Figure 6: First row: Isosurface of LODs of the fighter
dataset. (1) 1.4M tets (100%), (2) 90K tets (6%). Second
row: Isosurface of LODs of the delta dataset. (3) IM tets
(100%); (4) 59K tets (6%).

(H 2)

Figure 7: Volume rendering of the fighter dataset re-
duced to 6%. (1) with our technique; (2) with Garland and
Zhou's method.

() 2)

Figure 8: Volume rendering of the delta dataset reduced
to 6%. (1) with our technique; (2) with Garland and Zhou’s
method without volume-flip checks.
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Figure 9: First row: Volume rendering of the fighter
dataset. (1) 1.4M tets (100%), (2) 90K tets (6%); Second
row: Volume rendering of the blunt fin dataset. (3)
187K tets (100%), (4) 18K tets (10%); Third row: Volume
rendering of the £117 dataset. (5) 240K tets (100%), (6)
7K tets (3%). Fourth row: Volume rendering of the delta
dataset. (7) IM tets (100%), (8) 59K tets (6%).



