
Edge Transformations for Improving Mesh
Quality of Marching Cubes

Carlos A. Dietrich, Carlos E. Scheidegger, John Schreiner, João L.D. Comba,

Luciana P. Nedel, and Cláudio T. Silva, Member, IEEE

Abstract—Marching Cubes is a popular choice for isosurface extraction from regular grids due to its simplicity, robustness, and

efficiency. One of the key shortcomings of this approach is the quality of the resulting meshes, which tend to have many poorly shaped

and degenerate triangles. This issue is often addressed through postprocessing operations such as smoothing. As we demonstrate in

experiments with several data sets, while these improve the mesh, they do not remove all degeneracies and incur an increased and

unbounded error between the resulting mesh and the original isosurface. Rather than modifying the resulting mesh, we propose a

method to modify the grid on which Marching Cubes operates. This modification greatly increases the quality of the extracted mesh. In

our experiments, our method did not create a single degenerate triangle, unlike any other method we experimented with. Our method

incurs minimal computational overhead, requiring at most twice the execution time of the original Marching Cubes algorithm in our

experiments. Most importantly, it can be readily integrated in existing Marching Cubes implementations and is orthogonal to many

Marching Cubes enhancements (particularly, performance enhancements such as out-of-core and acceleration structures).

Index Terms—Meshing, marching cubes.

Ç

1 INTRODUCTION

ISOSURFACES are ubiquitous in visualization [14], where
they are often the main computational component of

important processing pipelines and are heavily used in
practice. Some visualization applications require the ability
to render an isosurface, and this can be done by first
converting this implicit surface into a triangle mesh and
then rendering it. Other applications, however, operate on
the resulting mesh, such as finite-element method simula-
tions, tetrahedral mesh generation, and inverse problems.
These applications require meshes of good quality, which
are often dictated by the quality of its worst triangle [30],
regardless of any other triangle in the mesh.

The classic approach to compute isosurfaces is to apply the
Marching Cubes (MC) algorithm [22] or one of its variants,
such as [5] and [11]. Although robust and simple to
implement, these generate surfaces that require additional
processing steps to improve triangle quality and mesh size.
All of these algorithms are cell based: they work by iteratively
examining each cell of the grid on which the scalar function f
is defined and by producing a triangulation for each cell

separately. These triangulations are created in such a way that
when they are connected together, they produce a watertight
manifold mesh [25]. The simplicity of these methods allows
robust and efficient algorithms, which have been expanded
and extended in significant ways [2], [7], [20], [36]. Among
these techniques are optimization strategies that are orders of
magnitude faster than the original algorithm and can work on
data of arbitrarily large sizes. However, they still produce
low-quality triangles.

In this paper, we address the issue of improving the
quality of the worst triangle generated by MC. Fig. 1
illustrates a comparison of MC against several other
strategies, showing triangle quality, as well as the histo-
gram of triangle qualities and Hausdorff distances between
the mesh generated by each approach and the original MC
mesh (as measured by Metro [8]). The red line in the
histograms shows the quality of the worst triangle. In
essence, that is the measure we are interested in, since it
often dictates the quality of the simulations performed on
the mesh [30].

We show in this paper a novel method to improve the
quality of the triangle mesh generated by MC, by modifying
the MC sampling grid in a very simple and intuitive way.
We call our method Marching Cubes using Edge Transfor-
mations (Macet). Macet generates a mesh with identical
connectivity to the MC mesh, which is very close to the MC
mesh as measured by Hausdorff distance. Most impor-
tantly, it consistently generates meshes whose worst
triangles are well above the current state-of-the art
techniques. Macet is simple to implement and very fast.
Although we have no lower bound proof for the triangle
quality in the general case, we provide extensive experi-
mental evidence and a fully open-source implementation.

MC often generates bad triangles because the regular
sampling structure of the grid leads to intersections being

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008 1

. C.A. Dietrich, J.L.D. Comba, and L.P. Nedel are with the Universidade
Federal do Rio Grande do Sul, Instituto de Informática, Av. Bento
Gonçalves, 9500 - Campus do Vale - Bloco IV, Bairro Agronomia - Porto
Alegre - RS -Brasil, CEP 91501-970 Caixa Postal: 15064.
E-mail: {cadietrich, comba, nedel}@inf.ufrgs.br.

. C. Scheidegger is with the University of Utah, 1120 S. 1300 E., Salt Lake
City, UT 84105. E-mail: cscheid@sci.utah.edu.

. J. Schreiner and C.T. Silva are with the School of Computing, University of
Utah, 50 S. Central Campus Dr. RM 3190, Salt Lake City, UT 84112.
E-mail: {jmschrei, csilva}@sci.utah.edu.

Manuscript received 28 June 2007; revised 14 Nov. 2007; accepted 12 Mar.
2008; published online 7 Apr. 2008.
Recommended for acceptance by M. Chen.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number
TVCG-2007-06-0078.
Digital Object Identifier no. 10.1109/TVCG.2008.60.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

computed at inconvenient locations on a subset of the active
edges (often close to one of the endpoints of the active
edge). By allowing active edges to be repositioned (i.e.,
moving their endpoints) to more adequate locations, we
improve the quality of the triangles that use the intersec-
tions generated. Although the initial sampling grid of the
MC is modified, we provide conditions that preserve the
topology of the mesh. Our algorithm is easy to understand
and implement. It keeps most of the MC structure intact,
being implemented as a new stage between the detection of
active edges and the intersection calculation. Given this,
most of the suggested MC optimizations (like Span Space
[29]) in the literature still apply. The main contributions
introduced in this paper are given as follows:

. A novel approach for understanding the triangle
quality distribution of meshes generated by MC.
This work motivated the ideas behind the edge
transformations that are shown to eliminate the bad
triangles generated by MC.

. A revised MC algorithm called Macet that combines
edge transformations to generate an output mesh
with the same connectivity and small error (as
measured by Metro) to MC and also with improved
quality of its worst triangle.

. A detailed experimental study comparing the
triangle quality of existing techniques.

In Section 2, we present a discussion on related
techniques proposed to solve several issues raised in this
work. Then, in Section 3, we study the issues related to the
mesh quality generated by MC. This leads us to revisit the

inner computation in those techniques and to propose an
alternative scheme, described in Section 4. The latter part of
this paper presents our experimental results, discussion,
and future work.

2 RELATED WORK

Isosurface polygonization methods are efficient tools for
extraction and visualization of isosurfaces since the pio-
neering work in the early 1980s [1], [6], [15]. Methods based
on surface tracking place seed sampling points on the
isosurface and perform an iterative refinement search for
optimal positions or generation of new seeds. Examples
include pseudo-physical algorithms [10], [37] and advan-
cing front (afront) algorithms [28]. Spatial decomposition
methods, described first by Herman and Udupa [15], rely
on the assumption that inside a smaller cell of a grid we
could assume that the underlying scalar function is locally
linear [35], and thus, the isosurface can be represented by a
plane. Using this simple assumption, Lorensen and Cline
[22] proposed the MC algorithm, which is arguably the
most important isosurface polygonization algorithm due to
its simplicity, efficiency, and robustness.

However, MC is also known for the poor quality of the
resulting triangle mesh. Several strategies for measuring
triangle quality are discussed in [26]. The metric most
commonly used for measuring a single triangle quality is
the radii ratio: the ratio between the triangle’s incircle and
circumcircle. The radii ratio is a fair metric: every degen-
erate triangle has a radii ratio of zero. It penalizes both
small and large angles, which makes it suitable as a “first-

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 1. Improving mesh quality in MC. From top to bottom, left to right: Visible human data set, mesh generated by the classic MC (base mesh used in
the comparisons), and results obtained with a postprocessing using Decimation to 90 percent, Laplacian smoothing, Dual Contouring, afront, and our
modified Marching Cubes using Edge Transformations (Macet). Quality is color-coded on a per-vertex basis, defined from the minimum radii ratio of
all incident triangles, and color-coded from 0 (degenerate triangle) to 1 (equilateral triangle). Triangle quality and Metro histograms show the quality
of the worst mesh triangles (indicated by the red line) and the forward distance between the mesh generated by MC in each alternative, respectively.
We are interested in the quality of the worst triangle (and not on the overall histogram shape), and thus, each histogram is scaled to emphasize the
histogram bin resulting from the worst triangle of the mesh. Even though smoothing methods greatly improve the overall quality of the mesh, they still
generate a considerable amount of badly shaped triangles. Macet, on the other hand, did not produce a single degenerate triangle during our
experiments.

order” metric: although some applications might not have
problems with small or large angles, a fair metric will favor
meshes that are suitable across many application domains.
For measuring the quality of meshes, Shewchuk [30] states
that the quality of the worst triangle gives a better estimate
of mesh quality than other aggregate metrics, such as
average or median quality.

In order to overcome such shortcomings of MC, several
extensions are discussed in the literature [3], [4], [5], [16], [21],
[23], [24], [33], [34], [35]. To obtain a high-quality triangle
mesh from MC, postprocessing steps are typically applied
directly to the triangle mesh [10]. For instance, one might
apply a standard smoothing algorithm such as Laplacian
Smoothing (LS) to improve the triangle qualities or a
decimation procedure to remove degenerate triangles. Ob-
serve in Fig. 1 that although LS improves the quality, it also
moves the surface away from the original MC mesh (as can be
seen on the Hausdorff error histogram). QEM-based decima-
tion [12] is more faithful to the original mesh but fails to
remove many degenerate triangles. Several other polygoni-
zation methods have been proposed to generate better quality
meshes [9], [10], [13], [28]. These techniques often take a more
global approach that try to optimize vertex sampling over the
complete isosurface. For instance, the recently developed
afront algorithm of Schreiner et al. [28] works by first creating
an initial seed point on the isosurface and iteratively growing
the triangulation over the entire isosurface, while guarantee-
ing a global grading constraint over most triangles. It can
produce very high quality adaptive triangle meshes, albeit at
a computational cost that is much higher than MC.
Additionally, the algorithm itself is more involved, leading
to a higher complexity of the implementation, and still prone
to generating a few degenerate triangles (Fig. 1). Dual
methods such as Dual Contouring (DC) [16] modify the
sampling grid and produce better meshes than MC (as can be
seen in Fig. 1). The purpose of DC, however, is to generate
adaptive meshes while preserving the sharp features of the
isosurface, instead of high-quality meshes. Although the
quality of the resultant mesh is visually impressive, many
degenerate triangles are still generated. The DC method was
later improved by Schaefer et al. [27], which propose an
extension that constructs adaptive manifold surfaces.
Although a manifold mesh is better suited for subsequent
mesh smoothing methods, their extension produces meshes
with the same quality of DC meshes.

Following recent work [3], [16], [34], we show that the
triangle quality can be significantly improved by modifying
the grid before the mesh generation. We start from the
observation that MC cells generate well-shaped triangles in

many, but not all, of the possible intersections with a planar
isosurface. Modifying a cell to produce good triangles
would then result in a high-quality mesh that accurately
reproduces the isosurface, reducing the need of postproces-
sing steps.

Unlike our approach, the Warping Cubes approach of
Tzeng [34] allows topological changes in the mesh but
requires user parameters to decide which triangles should
be removed. Volume Warping [3] also deforms the grid
where isosurfaces are extracted, but the goal there is to
increase sampling in a specific user-defined region, instead
of improvements in mesh quality. Recently, Labelle and
Shewchuk have proposed a related algorithm to generate
tetrahedral meshes that warps a different lattice, the body-
centered cubic (BCC) [18]. The approach used in that paper
to prove bounds in the dihedral angles might be fruitful to
prove bounds in our case.

3 STUDYING THE MESH QUALITY OF MARCHING

CUBES

In this section, we show that MC generates bad triangles
only in some particular configurations. This basic insight
leads to the transformations we propose later. Our analysis
is centered on a simple scenario—computing all possible
intersections of a planar isosurface against a single grid cell
centered at the origin. Observe in Fig. 2 some examples of
such intersections, with each intersection color-coded using
the radii-ratio triangle quality as done in Fig. 1.

One way to analyze all plane orientations intersecting a
cell is to uniquely associate each of them with a single point
p in the embedding space. For each plane H, we associate it
with point p on the plane that is closest to the origin of the
grid cell. We denote this association by HðpÞ. Given HðpÞ,
we reconstruct the function f at the cell vertices as the
signed distance to HðpÞ. After defining the value of the
function f at each vertex, we run MC on the cell to extract
the set of triangles T ðpÞ representing the isosurface (Fig. 3).
Finally, we compute the average quality of these triangles to
create a single scalar quality value for the isosurface
parameterized by point p.

We use this mapping from point p to plane HðpÞ, to the
set of triangles T ðpÞ, and finally to the quality to define a
scalar field QðpÞ over IRn. This scalar field can then be
visualized to get an estimate on the triangle qualities
generated by MC (Fig. 4 shows two slices of Q). A clear
structure can be seen in the visualization of the quality field
Q. The best triangles are created with points p near the

DIETRICH ET AL.: EDGE TRANSFORMATIONS FOR IMPROVING MESH QUALITY OF MARCHING CUBES 3

Fig. 2. Several possible plane orientations colored by triangle quality.

Fig. 3. A point p is associated with an isosurface orientation given by
HðpÞ that passes through p and has normal p=jpj. This plane is used to
create the function f by setting the value of f at the vertices of the cell to
be the signed distance fromHðpÞ. The marching method can then be run
on the cell to produce a set of triangles T ðpÞ.

corners of the cell, where the plane cuts off the corner with a
nearly equilateral triangle (Fig. 2a). These high-quality
triangles make up the majority of triangles that are
generated, as can be seen in Fig. 4. We observe that the
worst quality triangles are generated with points p from the
center of the cell out toward the edge centers (Fig. 2b).
These points correspond to isosurfaces that are nearly
parallel to some of the edges of the cell. This pattern of poor
quality triangles is independent of cell shape, being
observed with cubes, tetrahedra, and octahedra. This is
the key insight: cell edges nearly parallel to the isosurface are
correlated with poor triangles in MC. Our modification to MC
directly addresses this issue.

4 MARCHING CUBES USING EDGE

TRANSFORMATIONS

From now on, we focus our discussion only on MC, since
extensions to other cell types are straightforward. MC is
conceptually a simple algorithm designed to process an
implicit function, defined over a 3D grid, and given by its
samples fði; j; kÞ. It operates by marching over the cubes
implicitly defined by the 3D sampling grid, looking at each
cell of eight vertices independently, and computing small
patches of the overall isosurface by considering the
intersection of the function f with a cell.

One way to see how MC operates on a given 3D grid cell
is to consider its eight vertices v1; v2; . . . ; v8, and how their
scalar values fðv1Þ; fðv2Þ; . . . ; fðv8Þ compare to the desired
isovalue �. For simplicity of presentation, it is convenient to
work with the function f�ðxÞ ¼ fðxÞ � �. Clearly, if all
f�ðviÞ share the same sign, the isosurface does not intersect
the cell (using trilinear reconstruction). Not taking into
account symmetries, there are 28 possible configurations. A
lookup table of template topologies for these configurations
can be created in such a way that the triangles from each
cell are joined into a conforming mesh.

For each configuration, the set of active edges, i.e., edges
where the function f� has different signs at the endpoints,
independently determines both the geometry and topology
of the mesh. The topology is determined by the configura-
tion of active edges for each cell. The geometry is
determined by the location of the isovalue along each
active edge. This independence leaves room to change the
geometry of the mesh while keeping the topology intact.

Our modification to MC explores this independence.
Some edge transformations do not change the underlying
topology: they only change the geometry of the isosurface.

In particular, consider an active edge ðv; wÞ of the regular
sampling grid illustrated in the left side of Fig. 5. If we
move each of its endpoints continuously, with the con-
straint that f�ðvÞ and f�ðwÞ do not change signs, this edge
will remain active (two different strategies are shown in
Fig. 5). For each active edge, then, we create a “detached”
edge ðv0; w0Þ, which allows shared endpoints to move
independently. We will move the detached edges to
improve their intersection points with the isosurface. To
guarantee that the geometry of the isosurface stays valid
(i.e., the mesh remains oriented, does not self-intersect, and
is consistent with the initial topology), we need two
conditions on the transformations:

. An active edge must keep only one intersection with
the isosurface throughout the motion of its end-
points. Since each active edge is shared by several
cells, we must enforce that each intersection compu-
tation, which is done independently by MC, gen-
erates the same intersection point. This is trivially
done in MC since this computation is performed
only once for each active edge.

. The intersection induced by the detached edge
ðv0; w0Þ with the isosurface must not result in triangle
flips.

Now, with these conditions in place, we can return to our
goal of improving triangle shape. In Section 3, we traced the
poor triangle quality to those triangles created when the
active edges of a cell are nearly parallel to the isosurface. Here,
we will use this observation, together with the necessary
conditions discussed above to transform detached versions of
the active edges of a cell to make them orthogonal to the
isosurface. Below, we show two possible methods for
achieving this, followed by an algorithm proposal that
combines both approaches.

4.1 Gradient Transformation

The intuition behind our first method is based on moving the
vertices of the cell along the direction rf away from the
isosurface. Since rf is orthogonal to the isosurface at points
near the isosurface, this will increase the distance between the
endpoints, but will not significantly move them tangentially.
This results in edges that are more perpendicular to the
isosurface and, thus, produce higher quality triangles.

Given an active edge ðv; wÞ, we first generate a detached
edge ðv0; w0Þ. Each vertex of the detached edge will be

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 4. Two slices of the quality field. Worst quality is obtained when

points are closer to the center of the edges.

Fig. 5. Standard MC is depicted on (a). We propose two methods for
improving the shapes of the elements by transforming the active edges.
In (b), we move the edge endpoints along rf, and on (c), we move the
endpoints parallel to the isosurface. The intersection between the edge
and the isosurface is recomputed after the edge transformation, which
guarantees that the resulting mesh adheres to the isosurface defined by
the interpolant. Both methods improve the quality of the resulting mesh.

moved independently. Each vertex is moved away from the

surface in the direction of the gradient, until one of the two

previously described conditions is violated. To avoid long

computations, we limit the displacement to half of the

original edge length. In other words, we choose a vertex p0

that maximizes � in

p0 ¼ pþ � ~rfðpÞ;

where ~rf denotes the direction of the gradient but pointing

away from the isosurface.
The weighting factor rfðp0Þ;rfðpÞh i is used to limit

displacement and to guarantee that edge endpoints will not

cross the isosurface. As the vertices move, we need to

update the induced intersection points. Fig. 7 shows three

steps while applying a gradient transform on a spherical

isosurface. Even for small displacements, the triangle

quality is significantly better. Complete results are shown

in Section 5.

4.2 Tangential Transformation

The other way to make the active edges more perpendicular

to the isosurface is to move the endpoints orthogonally to

rf . This method for transforming edges works by moving

the edge endpoints parallel to the isosurface. This tangential

transform allows tracking of complex isosurface behavior

by moving the vertices of active edges in such way that they

become nearly perpendicular to the isosurface.
The main step of this transform consists in calculating,

for each edge vertex, a vertex track, tangent to the isosurface

and aligned to the edge. We will optimize the vertex

positions along the tracks so that the active edges become

more orthogonal to the isosurface.
More formally, a vertex track is defined as the projection

of the active edge on the isosurface, displaced to start at

each edge vertex. If the isosurface is planar, the track is a

line segment whose direction is given by

dðvÞ ¼ ðI � r̂fðpÞr̂fðpÞT Þðv� wÞ
dðwÞ ¼ ðI � r̂fðpÞr̂fðpÞT Þðw� vÞ;

where v and w are the active edge vertices, and I � vvT is

the matrix that projects a vector onto the orthogonal

complement of v. In our implementation, we simplify the

track by using a set of line segments that approximates the

track. The vertex positions are, then, the one that maximizes

rfðtÞ; v0 � w0h i, where

v0 ¼ vþ �dðvÞ
w0 ¼wþ �dðwÞ

and t is the intersection of the edge ðv0; w0Þ and the
isosurface. If the gradients were all constant, it is easy to
show that the optimal vertex position would be with
� ¼ 0:5. In practice, the gradients are not constant, so this
might not be true. For the curved case, then, we find the
midpoint of a piecewise linear approximation of the track.
Fig. 6 illustrates the transformation, while Fig. 8 shows
three steps while applying a tangential transform on a
spherical isosurface.

4.3 Combining Edge Transformations

Although gradient and tangential transforms are based on
different approaches to make edges nearly perpendicular to
the isosurface, they generate the same transformed edge if
and only if the conditions we impose for the transforma-
tions to operate (discussed in the previous section) are
satisfied. However, due to practical difficulties in moving
points inside the scalar field, we have found that conditions
are not simultaneously satisfied for both transformations,
and therefore, each transformation tends to improve the
overall triangle quality in different situations. That is, in
areas where the gradient transform does not significantly
change the triangle quality, the tangential transform may
exhibit a large improvement, and vice versa. This observa-
tion suggested to us that combining the transformations
would further improve the overall triangle quality when
compared to MC.

We use an iterative approach for combining edge
transformations. Since both transformations only alter
vertex positions, while keeping intact the mesh topology,
we can choose which of the two positions produces a better
average quality for the triangles connected to that vertex.
Since the choice for a particular vertex might affect its

DIETRICH ET AL.: EDGE TRANSFORMATIONS FOR IMPROVING MESH QUALITY OF MARCHING CUBES 5

Fig. 6. Edge track computation. A track for a vertex is defined by the

projection of the edge to be orthogonal to rf. The displacement added

to the vertex is half of the track, and the intersection with the isosurface

is recomputed.

Fig. 7. Three steps of the gradient transform on active edges (blue

lines). The procedure iteratively moves endpoints along gradient vectors

(dotted red lines), improving the underlying mesh.

Fig. 8. Three steps of the tangential transform applied to the active

edges (blue lines). The procedure iteratively moves the active edge

endpoints tangentially to the isosurface (dotted red lines), effectively

improving the underlying triangle mesh (gray lines).

neighbors, this process might require several iterations. For
all of our tests, we proceed with this iterative selection
without explicitly building the mesh until the overall mesh
quality stabilizes (often less than four steps in all our
experiments). The results we obtain show that the output
mesh has improved quality over each individual mesh
produced by using a single edge transformation.

4.4 Implementation Details

The implementation of edge transformations requires only
minor changes to MC. The transformations are performed
after finding active edges, as an intermediate stage before
the intersection calculation. However, there are important
issues related to each transform parameters and the way the
interpolator is used. MC assumes a linear interpolation
along sampling edges of the grid. Even though this is a hard
constraint that might lead to topological inconsistencies in
the polygonization, it is also a reasonable assumption for
fine sampling granularities. This assumption is no longer
valid when we move edge endpoints freely inside the
volume, because small movements of a grid vertex will
result in nonlinear variations of the scalar field along its
incident grid edges (even if we prevent active edges from
changing their state upon vertex movements). Therefore,
we need a more robust intersection calculation procedure to
track the intersection of the edge against the isosurface. We
use standard bisection-based root finding procedures,
which do not assume linearity along the edge.

The vertex track used in the edge transformations also
demands the continuity of the gradient field (C1 continuity).
Since the trilinear interpolation often used with MC is not
differentiable at the cell boundaries, there may be unpre-
dictable results. In this work, we use a cubic spline

interpolation to reconstruct the derivatives of the scalar
field. We also use the corresponding cubic spline to
reconstruct the scalar field itself at the sampling grid
vertices. This means there might be more than one root in
active edges. However, since the topology has already been
determined by the lookup into the MC tables and the
intersection calculation returns only one vertex, this pre-
sents no practical problems.

The combination of edge transforms is implemented by
keeping two buffers with vertex locations, one for the
gradient transforms and another for the tangential trans-
forms. After the transformations have been performed, we
use a greedy algorithm to pick which of the two vertices
should be used in the final improved version. The vertex
pairs are processed one at a time, and the previously
computed vertices are used as soon as they are available, in
an iterative fashion. We stop the iterative procedure when
the mesh quality (the quality of the worst triangle) is no
longer improved (maximized) or the number of iterations is
greater than the maximum number of iterations allowed. In
our experiments, this final pass has small overhead when
compared to the full surface extraction.

5 RESULTS

The techniques described in Section 4 have been imple-
mented in C++. Tables 1 and 2 show a summary of our
experimental results. All the timings reported were
obtained on a Pentium 4 3.0-GHz PC with 2-Gbyte RAM.
The edge transforms require additional accesses to the
scalar field, in order to determine the vertex displacement.
As the data set complexity increases (high curvature or
sharp features), the constraints force the vertex movement
to happen in smaller steps, which increase the processing
time. Notice, however, that the overhead for Macet
decreases as the data set size increases, and that for bigger
data sets this overhead is at most a factor of two.

Fig. 11 shows the forward Hausdorff distance results
produced by Metro, which measure the accuracy of the
mesh in relation to the original MC mesh. Although QEM-
based decimation produces a mesh very close to MC, it
creates more degenerate triangles, as can be seen in Table 1.
Fig. 12 shows visual comparisons and triangle quality
histograms for the same data. In particular, we highlight a
zoomed version of the complete histogram to allow a better
evaluation on the distribution of degenerate triangles. Since
Fig. 4 provided the motivation for the development of edge
transformations, it is important to check the quality of our
triangulations under that metric. Fig. 9 shows two slices of
the quality field after applying Macet, with a clear reduction
of degenerate triangles. Similar improvement is also present
in real data sets, as can be seen in Table 1.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE 1
Results Comparing Several Isosurface Extraction Methods: MC,
MC Followed by LS, MC Followed by Decimation, DC, the afront

Method of Schreiner et al. [28], and Our Method (Macet)

Higher radii ratios indicate higher quality meshes. The Metro results
show the Hausdorff distance of each mesh to the mesh generated by the
original MC.

TABLE 2
Performance Results of MC Compared to Macet

Notice how the overhead decreases as the data set size increases.

6 APPLICATION: CDT FOR MESH GENERATION

One way to illustrate the importance of removing degen-

erate triangles is given below. tetgen is a suite of geometric

algorithms that allows computing a Constrained Delaunay

Tetrahedralization (CDT) from a piecewise linear complex

[31], [32]. Further processing of CDTs often require quality

bounds for the generated mesh. tetgen allows imposing

quality constraints to the CDT construction, such as a

minimum radius edge ratio, and such constraints are

enforced by adding Steiner points to the CDT. This process
is prone to numerical problems and very sensitive to the
triangle quality of the input mesh.

Table 3 shows tetgen results, setting minimum radius
edge ratio to be 4 (Silicium and Lobster) and 6 (Engine).
tetgen crashes using the MC mesh for the engine data set
but works for Macet. Note that to compensate for bad
quality triangles, tetgen generates many more Steiner points
for MC, which increases all output elements generated, as
well as processing time. Fig. 10 compares the tetgen CDT
generated for MC and Macet meshes.

7 CONCLUSIONS AND FUTURE WORK

In this work, we have presented edge transforms as a
simple and effective way to generate higher quality meshes.

DIETRICH ET AL.: EDGE TRANSFORMATIONS FOR IMPROVING MESH QUALITY OF MARCHING CUBES 7

Fig. 9. Visualization of two slices of the Macet quality field. Notice the

reduction (or extinction) of cases where bad-shaped triangles are

generated inside the cell. Compare the inset to Fig. 4.

TABLE 3
Comparison of the Tetrahedral Meshes that tetgen Creates
When Given Both MC and Macet Surface Meshes as Input

tetgen was not able to create a mesh when using the MC input for the
engine data set.

Fig. 10. Boundary of the CDT generated by tetgen for the (a) MC and (b)

Macet meshes. Note several degenerate tetrahedra in the MC mesh.

Fig. 11. Metro results: Histogram shows the forward distance between mesh generated by each approach and the original MC mesh. The error

histograms for afront show worse results than expected because afront triangulates a cubic spline surface, while MC uses trilinear interpolation. (a)

Data set. (b) Decimation. (c) Laplacian. (d) DC. (e) afront. (f) Macet.

We incorporated them into an existing MC implementation,

which we called Macet that has a relatively modest

performance penalty (especially when compared to non-

marching algorithms). Since we are able to produce better

results, there is much less of a dependence on postproces-

sing operations to improve the quality of the triangles.

Through detailed analysis and comparison against compet-

ing strategies, we show how Macet generates meshes that

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 12. Comparisons on enlarged sections of Bonsai (rows 1 and 2), Lobster (rows 3 and 4), and Silicium (rows 5 and 6). Color-coded visualization

shows that most methods improve the overall quality of triangles. The quality histogram shown below each screenshot shows how Macet

consistently reduces degenerate triangles—pay special attention to the zoomed version of the histogram, and compare to the minimum quality

results in Table 1. (a) Decimation. (b) Laplacian. (c) DC. (d) afront. (e) Macet.

improve the quality of degenerate triangles and are faithful

to the isosurface generated by MC (as measured by Metro).

We show how this improvement on quality generated by

our method is crucial for further mesh processing, such as

the generation of CDTs using tetgen.
For future work, we plan to extend this approach for

working with other variants of MC, in particular, variants

that provide topological guarantees, are able to keep sharp

corners, and adaptive versions of MC [17], [19]. In addition,

we want to investigate the effect of warping the cells and

active edges on the reconstructed surface on a theoretical

level and, in particular, try to provide formal theoretical

bounds on the quality of the triangles.

7.1 Reproducibility

We have made the techniques presented in this paper

publicly available, so that the reader can accurately assess

the validity of the experiments and algorithms. Every result

generated for this paper can be reproduced with open-source

software and publicly available data sets. Here is a link to the

source code with instructions: http://www.vistrails.org/

index.php/ImprovingMeshQualityOfMarchingCubes.

ACKNOWLEDGMENTS

The work of Carlos Dietrich is supported by a CAPES

scholarship. The works of João Comba and Luciana Nedel

are partially supported by CNPq Grants 478445/2004-0,

305947/2005-2, and 306099/2004-7. Carlos Scheidegger,

John Schreiner, and Cláudio Silva are partially funded by

the US National Science Foundation (NSF) (Grants CCF-

0401498, EIA-0323604, OISE-0405402, IIS-0513692, and CCF-

0528201), the Department of Energy, IBM Faculty Awards

(2005, 2006, and 2007), Sandia National Laboratories, and

Lawrence Livermore National Laboratory. Carlos Scheideg-

ger is also funded by an IBM PhD fellowship. All data sets

used in this work are available at http://www.volvis.org.

The authors would also like to thank the authors of Metro

and tetgen for making their code available as an open

source.

REFERENCES

[1] E. Artzy, G. Frieder, and G.T. Herman, “The Theory, Design,
Implementation and Evaluation of a Three-Dimensional Surface
Detection Algorithm,” Proc. ACM SIGGRAPH ’80, pp. 2-9, 1980.

[2] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Fast Isocontouring for
Improved Interactivity,” Proc. Symp. Volume Visualization (VolVis
’96), pp. 39-46, 1996.

[3] L. Balmelli, C.J. Morris, G. Taubin, and F. Bernardini, “Volume
Warping for Adaptive Isosurface Extraction,” Proc. IEEE Visuali-
zation (VIS ’02), pp. 467-474, 2002.

[4] H. Carr, T. Möller, and J. Snoeyink, “Artifacts Caused by
Simplicial Subdivision,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 2, pp. 231-242, Mar./Apr. 2006.

[5] H. Carr, T. Theussl, and T. Möller, “Isosurfaces on Optimal
Regular Samples,” Proc. Symp. Data Visualisation (VISSYM ’03),
pp. 39-48, 2003.

[6] L.-S. Chen, G.T. Herman, R.A. Reynolds, and J.K. Udupa, “Surface
Shading in the Cuberille Environment,” IEEE Computer Graphics
and Applications, vol. 5, no. 12, pp. 33-43, 1985.

[7] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, “Optimal
Isosurface Extraction from Irregular Volume Data,” Proc. Symp.
Volume Visualization (VolVis ’96), pp. 31-38, 1996.

[8] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring
Error on Simplified Surfaces,” Computer Graphics Forum, vol. 17,
no. 2, pp. 167-174, 1998.

[9] P. Crossno and E. Angel, “Isosurface Extraction Using Particle
Systems,” Proc. IEEE Visualization (VIS ’97), pp. 495-498, 1997.

[10] L.H. de Figueiredo, J. de Miranda Gomes, D. Terzopoulos, and L.
Velho, “Physically-Based Methods for Polygonization of Implicit
Surfaces,” Proc. Graphics Interface (GI ’92), pp. 250-257, 1992.

[11] A. Doi and A. Koide, “An Efficient Method of Triangulating
Equivalued Surfaces by Using Tetrahedral Cells,” IEICE Trans.
Comm. and Electronics Information Systems, vol. E74, no. 1, pp. 214-
224, Jan. 1991.

[12] M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. ACM SIGGRAPH ’97, pp. 209-216,
1997.

[13] M. Gavriliu, J. Carranza, D. Breen, and A. Barr, “Fast Extraction of
Adaptive Multiresolution Meshes with Guaranteed Properties
from Volumetric Data,” Proc. IEEE Visualization (VIS ’01), pp. 295-
302, 2001.

[14] The Visualization Handbook, C.D. Hansen and C.R. Johnson, eds.,
Academic Press, 2004.

[15] G.T. Herman and J.K. Udupa, “Display of 3D Digital Images:
Computational Foundations and Medical Applications,” IEEE
Computer Graphics and Applications, vol. 3, pp. 39-46, 1983.

[16] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual Contouring of
Hermite Data,” Proc. ACM SIGGRAPH ’02, pp. 339-346, 2002.

[17] L.P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel,
“Feature-Sensitive Surface Extraction from Volume Data,” Proc.
ACM SIGGRAPH ’01, pp. 57-66, 2001.

[18] F. Labelle and J. Shewchuk, “Isosurface Stuffing: Fast Tetrahedral
Meshes with Good Dihedral Angles,” ACM Trans. Graphics,
vol. 26, 2007.

[19] T. Lewiner, H. Lopes, A.W. Vieira, and G. Tavares, “Efficient
Implementation of Marching Cubes’ Cases with Topological
Guarantees,” J. Graphics Tools, vol. 8, no. 2, pp. 1-15, 2003.

[20] Y. Livnat and X. Tricoche, “Interactive Point-Based Isosurface
Extraction,” Proc. IEEE Visualization (VIS ’04), pp. 457-464, 2004.

[21] A. Lopes and K. Brodlie, “Improving the Robustness and
Accuracy of the Marching Cubes Algorithm for Isosurfacing,”
IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 1,
pp. 16-29, 2003.

[22] W. Lorensen and H. Cline, “Marching Cubes: A High-Resolution
3D Surface Construction Algorithm,” Proc. ACM SIGGRAPH ’87,
pp. 163-169, 1987.

[23] S.V. Matveyev, “Approximation of Isosurface in the Marching
Cube: Ambiguity Problem,” Proc. IEEE Visualization (VIS ’94),
pp. 288-292, 1994.

[24] G.M. Nielson, “Dual Marching Cubes,” Proc. IEEE Visualization
(VIS ’04), pp. 489-496, 2004.

[25] G.M. Nielson and B. Hamann, “The Asymptotic Decider:
Resolving the Ambiguity in Marching Cubes,” Proc. IEEE
Visualization (VIS ’91), pp. 83-91, 1991.

[26] P.P. Pebay and T.J. Baker, “A Comparison of Triangle Quality
Measures,” Proc. 10th Int’l Meshing Roundtable (IMR ’01), pp. 327-
340, 2001.

[27] S. Schaefer, T. Ju, and J. Warren, “Manifold Dual Contouring,”
IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 3,
pp. 610-619, May/June 2007.

[28] J. Schreiner, C. Scheidegger, and C.T. Silva, “High-Quality
Extraction of Isosurfaces from Regular and Irregular Grids,” IEEE
Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1205-
1212, Sept./Oct. 2006.

[29] H.-W. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson, “Isosurfa-
cing in Span Space with Utmost Efficiency (ISSUE),” Proc. IEEE
Visualization (VIS ’96), pp. 287-294, 1996.

[30] J.R. Shewchuk, “What is a Good Linear Element? Interpolation,
Conditioning, and Quality Measures,” Proc. 11th Int’l Meshing
Roundtable (IMR ’02), pp. 115-126, 2002.

[31] H. Si, “On Refinement of Constrained Delaunay Tetrahedraliza-
tions,” Proc. 15th Int’l Meshing Roundtable (IMR ’06), pp. 509-528,
2006.

[32] H. Si and K. Gaertner, “Meshing Piecewise Linear Complexes by
Constrained Delaunay Tetrahedralizations,” Proc. 14th Int’l Mesh-
ing Roundtable (IMR ’05), pp. 147-163, 2005.

[33] G.M. Treece, R.W. Prager, and A.H. Gee, “Regularised Marching
Tetrahedra: Improved Iso-Surface Extraction,” Computers and
Graphics, vol. 23, pp. 583-598, 1999.

DIETRICH ET AL.: EDGE TRANSFORMATIONS FOR IMPROVING MESH QUALITY OF MARCHING CUBES 9

[34] L. Tzeng, “Warping Cubes: Better Triangles from Marching
Cubes,” Proc. 20th European Workshop Computational Geometry
(EWCG ’04), 2004.

[35] A. van Gelder and J. Wilhelms, “Topological Considerations in
Isosurface Generation,” ACM Trans. Graphics, vol. 13, no. 4,
pp. 337-375, 1994.

[36] J. Wilhelms and A.V. Gelder, “Octrees for Faster Isosurface
Generation,” ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, 1992.

[37] A.P. Witkin and P.S. Heckbert, “Using Particles to Sample and
Control Implicit Surfaces,” Proc. ACM SIGGRAPH ’94, pp. 269-277,
1994.

Carlos A. Dietrich received the BS degree in
computer science from the Federal University
of Santa Maria, Santa Maria, Brazil and the
MS degree in computer science from the
Federal University of Rio Grande do Sul,
Porto Alegre, Brazil. He is currently a fourth-
year PhD student working in the Computer
Graphics Group at the Federal University of
Rio Grande do Sul. His research interests
include graphics, visualization, and the use of

GPUs as general-purpose processors.

Carlos E. Scheidegger received the BSc
degree in computer science from the Federal
University of Rio Grande do Sul, Porto Alegre,
Brazil. He is a graduate student at the Scientific
Computing and Imaging Institute, University of
Utah. He is currently an IBM PhD student fellow.
His research interests include geometric proces-
sing, scientific visualization, and visualization
systems.

John Schreiner received the BS degree in
computer science and mathematics from the
University of Wisconsin-Madison, where his
undergraduate thesis was advised by Dr. Mi-
chael Gleicher. He is currently a PhD candidate
at the University of Utah, studying under Dr.
Cláudio Silva. His research interests include
meshing algorithms, geometry processing, and
scientific visualization.

João L.D. Comba received the BS degree in
computer science from the Federal University of
Rio Grande do Sul, Porto Alegre, Brazil, the MS
degree in computer science from the Federal
University of Rio de Janeiro, Rio de Janeiro, and
the PhD degree in computer science from
Stanford University. He is an associate profes-
sor of computer science at the Federal Uni-
versity of Rio Grande do Sul. His main research
interests are in graphics, visualization, spatial

data structures, and applied computational geometry. His current
projects include the development of algorithms for large-scale scientific
visualization, data structures for point-based modeling and rendering,
and general-purpose computing using graphics hardware. He is a
member of the ACM SIGGRAPH.

Luciana P. Nedel received the PhD degree in
computer science from the Swiss Federal
Institute of Technology (EPFL), Lausanne,
Switzerland, under the supervision of Prof.
Daniel Thalmann. She is with the Federal
University of Rio Grande do Sul (UFRGS),
where she has been an assistant professor
since 2002 and does research in the Computer
Graphics Group, Informatics Institute. Her main
interests include interactive visualization, virtual

humans, computer animation, path planning, tiled displays, and
nonconventional interaction techniques and devices. In these fields,
she published more than 60 scientific articles in journals, conference
proceedings, and edited books.

Cláudio T. Silva received the BS degree in
mathematics from the Federal University of
Ceara, Fortaleza, Brazil, in 1990 and the PhD
degree in computer science from the State
University of New York at Stony Brook in 1996.
He is an associate professor of computer
science and a faculty member of the Scientific
Computing and Imaging (SCI) Institute, Univer-
sity of Utah. Before joining the University of Utah
in 2003, he worked in industry (IBM and AT&T),

government (Sandia and LLNL), and academia (Stony Brook and OGI).
He coauthored more than 100 technical papers and eight US patents,
primarily in visualization, geometric computing, and related areas. He is
an active member of the visualization, graphics, and geometric
computing research communities, having served on more than
50 program committees. He is a coeditor of the Visualization Corner
of the IEEE Computing in Science and Engineering. Previously, he was
on the editorial board of the IEEE Transactions on Visualization and
Computer Graphics. He was a paper cochair for the IEEE Visualization
Conference in 2005 and 2006. He received IBM Faculty Awards in 2005,
2006, and 2007 and a Best Paper Award at the IEEE Visualization 2007.
He is a member of the ACM, the Eurographics, and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

