
Image-Space Visibility Ordering
for Cell Projection Volume Rendering

of Unstructured Data
Richard Cook, Nelson Max, Member, IEEE Computer Society,

Cláudio T. Silva, Member, IEEE, and Peter L. Williams, Member, IEEE Computer Society

Abstract—Projection methods for volume rendering unstructured data work by projecting, in visibility order, the polyhedral cells of the

mesh onto the image plane, and incrementally compositing each cell’s color and opacity into the final image. Normally, such methods

require an algorithm to determine a visibility order of the cells. The Meshed Polyhedra Visibility Order (MPVO) algorithm can provide

such an order for convex meshes by considering the implications of local ordering relations between cells sharing a common face.

However, in nonconvex meshes, one must also consider ordering relations along viewing rays which cross empty space between cells.

In order to include these relations, the algorithm described in this paper, the scanning exact meshed polyhedra visibility ordering

(SXMPVO) algorithm, scan-converts the exterior faces of the mesh and saves the ray-face intersections in an A-Buffer data structure

which is then used for retrieving the extra ordering relations. The image which SXMPVO produces is the same as would be produced

by ordering the cells exactly, even though SXMPVO does not compute an exact visibility ordering. This is because the image resolution

used for computing the visibility ordering relations is the same as that which is used for the actual volume rendering and we choose our

A-Buffer rays at the same sample points that are used to establish a polygon’s pixel coverage during hardware scan conversion. Thus,

the algorithm is image-space correct. The SXMPVO algorithm has several desirable features; among them are speed, simplicity of

implementation, and no extra (i.e., with respect to MPVO) preprocessing.

Index Terms—Volume rendering, visibility ordering, unstructured mesh.

�

1 INTRODUCTION

IN this paper, we study the problem of cell sorting for
volume rendering unstructured volumetric data. In

volume rendering, the 3D scalar field to be visualized is
modeled as a cloud-like material which both attenuates
light along the viewing ray and adds light into it [14]. To
create an image, the effects of the material must be
integrated along the viewing ray through each pixel. This
requires a separate integral for the contribution along the
ray segment inside each cell. See Fig. 1. If the order of these
segments is known, these contributions can be accumulated
using front-to-back or back-to-front compositing.

Instead of separately computing and sorting the seg-
ments along each ray, it is potentially more efficient to
compute a global visibility sort of the cells and use cell
projection to find the contribution of all ray segments in a
cell. Then, each cell is considered only once and we can use
efficient software or hardware scan conversion and compo-
siting methods.

Thus, volume rendering a set of cells has two phases.
One, which we refer to as the rendering phase, has to do with
the sampling and integration of the cells, i.e., computing, for

each ray, the intersection segments generated and their

potential contribution to the screen. The other, which we

call the sorting phase, is the sorting of the different cell

contributions so that they can be composited in the correct

order (see Fig. 2). Our paper deals with the sorting phase of

unstructured volume rendering. (Exceptional situations

where sorting is not needed include maximum intensity

projection and X-ray-like projections that accumulate only

total opacity, the color of the entire volume being the same.)

In the parallel volume rendering system described in [1],

the rendering phase is done in parallel using graphics

hardware; however, the sorting phase needs to be done in

serial, in software, and, so, sorting can be a bottleneck.
When amesh is rectilinear, generating a visibility order of

its cells is relatively straightforward. However, most of the

data sets we work with are generated by finite element

method simulations and these solution sets are usually

defined on curvilinear or unstructured meshes, often with

different element (cell) types in the same mesh. When the

mesh is unstructured, computing a visibility ordering of the

cells is a nontrivial problem. The problem is further

compounded because finite element meshes may be dis-

connected, be nonconvex, or have cells with nonplanar faces.
One way to deal with general meshes is to resample

them into rectilinear meshes, for which more straightfor-

ward sorting and volume rendering methods exist, several

of which, e.g., 3D texture mapping, are currently done in

hardware. But, resampling can blur the data, miss certain

features, and/or greatly increase the size of the data set.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004 1

. R. Cook, N. Max, and P.L. Williams are with the Lawtence Livermore
National Laboratory, 7000 East Ave., Livermore, CA 94550.
E-mail: rcook@llnl.gov.

. C.T. Silva is with the School of Computing, Scientific Computing and
Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 84112.
E-mail: csilva@cs.utah.edu.

Manuscript received 9 Sept. 2003; accepted 29 Jan. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0078-0903.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Here, we only discuss methods that keep the original
unstructured mesh.

The remainder of this paper is organized as follows: In
Section 2, we provide some definitions and then, in
Section 3, we discuss related work. In Section 4, we describe
our scanning exact meshed polyhedra visibility ordering
(SXMPVO) algorithm. In Section 5, we present a detailed
analysis of the performance of the SXMPVO algorithm,
including extensive timing results. Finally, in Section 6, we
discuss future work and give our conclusions.

2 PRELIMINARY DEFINITIONS

To provide a formal basis, we start with a few definitions,
some slightly modified from [27]. The viewpoint vp is some
point in three-dimensional space representing the viewer or
camera position. The occludes relation is defined as follows:
Let c1 and c2 be two distinct cells of a mesh S and intðc1Þ
and intðc2Þ be the interiors of c1 and c2. Relative to
viewpoint vp, c2 occludes c1 if there is a half-line hl starting
at vp and points p1 in hl \ intðc1Þ and p2 in hl \ intðc2Þ so
that p2 lies between vp and p1 on hl. A visibility ordering can
be defined in the following way: For a given viewpoint, if
cell a occludes cell b, then cell a must come after b in the
visibility ordering. Note that, if the viewpoint remains fixed
and a subset of the cells of interest is selected, the visibility
ordering restricted to this subset is still valid and does not
need to be recomputed. Projecting and compositing the cells
of a mesh in visibility order (back-to-front order) results in a
correct volume rendering of the image.

We also define the behind relation <vp such that c1 <vp c2
if and only if c2 occludes c1. Note that the set of behind
relationships for pairs of cells in the mesh represents only a
partial ordering of the cells, so many correct visibility
orderings may exist consistent with this partial order. A
visibility cycle is a sequence a <vp b <vp � � � <vp c <vp a of
cells of S. We say S is acyclic if, for every viewpoint, no
visibility cycles exist.

If a face f of some cell in S is not shared by any other cell
in S, then f is an exterior face. An exterior cell has at least one
exterior face. The union of all exterior faces of S constitutes
the boundary of S. A face that is not an exterior face is an
interior face, also referred to as a shared face. If the boundary
of S is also the boundary of the convex hull of S, then S is
called a convex mesh; otherwise, it is called a nonconvex
mesh. Two meshes are disconnected if they do not share any

faces. (Two or more meshes that are disconnected are often
referred to as a single mesh with disconnected components.) A
segment of a ray between a point on an exterior face of a
mesh where the ray leaves the mesh and another such point
where the ray reenters a mesh we call a ray-gap. We refer to
a mesh that has cells of different types, e.g., tetrahedra,
hexahedra, prisms, and pyramids, as a zoo mesh.

For sorting nonconvex meshes, we need to consider
visibility relations among exterior faces and this involves
their orientation, defined as follows: We use the term front
faces or front-facing to refer to cell faces whose outward
normals have a positive component in the direction of the
viewpoint, for perspective projections, or a negative dot
product with the view direction, for orthogonal projection.
Similarly, back-facing faces are those whose normals point
away from the viewpoint or agree with the view direction.

3 RELATED WORK

In this section, we start with a discussion of several different
techniques for implementing the rendering phase of cell
projection volume rendering, including the one used for
this paper. Next, in Section 3.2, we cover the MPVO
algorithm since our algorithm and some other algorithms
discussed later are based on it. Then, in Section 3.3, we
cover other sorting methods, some of which are integrated
with rendering.

3.1 Rendering Phase Techniques

There are a number of different techniques for implement-
ing the rendering phase of unstructured volume rendering.
We now mention the techniques which rely on a visibility
ordering of the cells of the mesh. Tetrahedra [21], hexahedra
[19], [25], and more general cells [1] can all be converted
into polygons, triangle strips, or triangle fans for hardware
rasterization and fragment processing. Various hardware
techniques can then speed up or enhance the integration,
along the ray segment for each pixel in the cell’s projection.
As described in Williams et al. [28], our current rendering
system integrates piecewise linear transfer functions, using
a 2D texture map, parameterized by opacity and thickness
to get the correct exponential per pixel for the opacity. It

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

Fig. 1. Computing the volume rendering integral for a pixel requires the

ray-tetrahedron intersection segments in sorted order.
Fig. 2. A back-to-front ordering of the cells of a mesh. Note that a
visibility ordering can be somewhat unintuitive. For instance, note that
cell 3 comes before cell 4 in a correct visibility ordering, although the
centroid of cell 4 is farther from the viewer than the centroid of cell 3.
This same error could occur if the sort was based on the power distance.
This is the reason that simple schemes, such as power distance sorts or
centroid-based sorts, may fail from certain viewpoints or viewing
directions.

computes the integral for the color in software at the
vertices and at the intersections of projected edges. It
interpolates the color in hardware across the polygons
bounded by the projected edges and computes these
polygons in software for arbitrary polyhedral cells.

Röttger et al. [18] use a 3D texture map, parameterized by
front scalar value, back scalar value, and thickness, to look up
the volume rendering integral for an arbitrary transfer
function, which may include isosurface effects. Wylie et al.
[31] show how vertex programs on the nVidia GeForce4 can
be used to project an untransformed tetrahedron into a
triangle fan by sending the four tetrahedron vertices, plus a
fifth phantom vertex for the “thick” vertex at the center of the
triangle fan, through the graphics pipeline. Weiler et al. [24]
scan-convert, inhardware, just the front facesof a tetrahedron
and find the distance to the ray exit point by linearly
interpolating the distances to the back faces and take the
minimum using a texture map. Since all these hardware
techniquesdependonapreviouslydeterminedvisibility sort,
our sorting method can make them more efficient.

3.2 The Meshed Polyhedra Visibility Ordering
(MPVO) Algorithm

One way to compute a visibility ordering of the cells of a
convex mesh is to partially order the cells based on
adjacency information and the orientation of faces and do
a search through the resulting directed graph to determine a
correct visibility ordering (see Fig. 3). The MPVO sorting
algorithm described by Williams [27] does this. A similar
algorithm was also published by Max et al. [15]. Since
MPVO is the basis of our new algorithm, we describe its
workings here in some detail.

The MPVO algorithm consists of two phases. Phase I is
the creation of a partial ordering of the cells by marking
each interior (shared) face f with an arrow a such that, if
cell c1 and cell c2 share f and c1 <vp c2, then a points from
c1 to c2. We say a is an outbound arrow for c1. The arrow
direction is calculated using the plane equation for the face
and the coordinates of the viewpoint, for perspective views,
or a vector along the direction of projection, for orthogonal
views. The set of arrows across faces can be thought of as
the directed edges of a directed adjacency graph, where the
nodes of the graph correspond to the cells of the mesh. This
graph defines a partial ordering of the cells based on the
relationships of cells to their neighbors across shared faces.

When a depth-first search (DFS) is used for Phase II, as
described below, sink cells, cells with no outbound arrows
across interior faces, are identified during the traversal of
cells which sets the arrows. The sink cells so identified are
put on a sink cell list. In addition, each cell is marked with a
visited flag set to false.

Once a partial ordering is determined, Phase II of the
MPVO algorithm consists of a topological sort of the
directed graph to yield a total ordering, that is, an ordering
sequence for the cells so that c1 comes before c2 in the
sequence whenever there is an edge in the graph for the
relation c1 <vp c2. The total ordering will be generated as
long as there are no visibility cycles; otherwise, an error is
detected (see below). That total ordering is a correct
visibility ordering, provided the mesh and cells are convex,
by the following argument: If cell a occludes cell b in a
convex mesh, the ray segment between a and b lies inside
the mesh and passes without ray-gaps through a sequence
of intervening cells c1; c2; � � � ; cn. The arrows across the
shared faces between a and c1, and c1 and c2, � � � , and cn and
b will add the relations b <vp cn; cn <vp cn�1; � � � ; c1 <vp a to
the directed graph. Since the total ordering produced by the
topological sort respects each of these relationships, cell b
must come before cell a.

Phase II, the topological sort, can be accomplished by a
DFS of the directed graph as follows: A cell is removed from
the sink cell list and the algorithm RECURSIVE-DFS is
performed on that cell. This is done until there are no more
cells on the sink cell list. For the purpose of the DFS
algorithm, a cell c is defined to be an eligible neighbor of cell a
if there is an arrow from c to a. RECURSIVE-DFS is defined
as follows:

RECURSIVE-DFS(currentCell).First, set currentCell’svisited
and cycle detection flags to true. Then, call RECURSIVE-
DFS with each eligible neighbor of currentCell that is not
visited. (If an eligible neighbor is found whose visited flag
and cycle detection flag are both set to true, output a
visibility cycle warning and exit.) When there are no
remaining eligible neighbors, output currentCell for rendering,
and set its cycle detection flag to false.

The MPVO sorting algorithm is both fast and accurate: It
runs in linear time with low computational overhead and
uses linear space for its data structures. It also can detect
visibility cycles; if there is a visibility cycle, then no visibility
ordering is possible unless one or more of the offending cells
is subdivided [16]. However, many data sets are defined on
nonconvex and/or disconnectedmeshes. In such cases, there
may be cells that cannot be related by any transitive chain of
behind relationships across shared faces and yet which may
occlude each other, so an ordering based purely on such
relationships is not possible. See Fig. 4.

3.3 Other Sorting Methods

In [27], Williams described the MPVONC heuristic which he
developed to extend the MPVO algorithm to nonconvex
meshes. TheMPVONCheuristic sorts exterior cells that have
exterior front-facing faces by decreasing the distance of the
cell’s centroid to the viewpoint. A depth first search is then
conducted from each such exterior cell, taken in sorted order,
to construct the total visibility ordering from the

COOK ET AL.: IMAGE-SPACE VISIBILITY ORDERING FOR CELL PROJECTION VOLUME RENDERING OF UNSTRUCTURED DATA 3

Fig. 3. In the top right, we show a set of cells in a convex mesh and their

MPVO arrows marked in red. In the bottom left, we show the resulting

directed graph. Cell B is a sink cell.

<vp relations. The sorting step effectively and easily
augments the MPVO partial ordering described above and,
when combined with a topological sort, usually generates a
correct visibility ordering andhas the advantage that it is very
fast. However, MPVONC may fail, for example, in certain
cases where one cell occludes another across a region where
ray-gaps are possible (see [22], [27] for examples) since it is
possible for the occluding cell to have a centroid which is
farther from the viewpoint than the centroid of the occluded
cell. Fig. 8b shows a volume rendered image with artifacts
from sorting errors due to this problem.

Our goal in the research for this paper was to find a
sorting algorithm for nonconvex meshes for use in volume
rendering that would result in a correct image without any
artifacts due to sorting errors and, further, to be able to
perform the sort in time comparable to that required for the
efficient MPVONC heuristic. As shown in Section 5.2, we
were successful in achieving our goal.

An early, exact, and more general method than
MPVONC was developed by Stein et al. [23], [28], but runs
in Oðn2Þ time for n cells, which is unacceptable for large
data sets. It is possible to reduce this algorithmic complexity
by noting that the extra relationships only occur when an
exterior face in the mesh occludes another exterior face.
Using this fact, Silva et al. [22] developed XMPVO, which
used ray shooting queries (see Fig. 5), at each edge
intersection and vertex of the projection complex, to
discover the exterior face relations and then performed a
topological sort, as in MPVO, on the visibility relations
found. They thus improved the runtime to Oðnþ b2Þ, where
b is the number of exterior faces. The XMPVO algorithm
relies on being able to compute a visibility ordering of the
exterior cells by first performing a sufficient set of ray
shooting queries. In XMPVO, the actual ray shooting
queries are performed in object-precision, where it is quite
hard to avoid performing redundant queries and it is also
quite expensive to compute queries. Part of the problem of
implementing XMPVO is the fact that it performs ray
shooting queries along the intersections of the projections of
the edges of cells. Robustly computing such intersections is
quite hard and possibly requires the use of exact arithmetic
packages (which slows things down considerably). In our
new algorithm, the scanning exact meshed polyhedra
visibility ordering (SXMPVO) algorithm, described in this
paper, we effectively shoot the query rays through the pixel
centers, using polygon scan conversion of the exterior faces,
and thereby add the exterior face relations only at the
precision necessary for the current image.

The BSP-XMPVO algorithm of Comba et al. [6] further
improved the XMPVO results to Oðnþ bpÞ, where p is the
size of a small subset of the exterior cells, leading to an
order of magnitude improvement in sorting times over
XMPVO. This technique requires a view-independent
preprocessing which amounts to building a BSP tree of
the exterior faces. Building the BSP structure is a very slow
step for this algorithm, however. Also, the BSP tree appears
to add considerable processing overhead and seems
sluggish in some practical cases when the BSP tree becomes
deep and unbalanced. This sometimes leads to an OðbÞ time
cost for each of OðbÞ searches into the tree, thus giving the
algorithm an Oðb2Þ flavor.

Sort algorithms based on the “power distance” have been
described by Cignoni et al. [3], [4], [5] and Wittenbrink [29].
However, these are not guaranteed to produce an accurate
visibility ordering of the cells of the mesh unless the mesh is
a Delaunay triangulation and there is no way to tell in
advance whether any given non-Delaunay mesh will be
correctly sorted by this method. We would like to note that,
for certain meshes and viewpoints, these algorithms do
generate correct ordering, and are quite fast since the
computations involved have a very small constant and they
are straightforward to implement.

In our SXMPVO algorithm, we use an A-Buffer [2] to
sort, at each pixel, the exterior faces projecting onto it. As
described below, several other variants of the sort per pixel
idea have been presented, which instead sort all the faces
projecting onto a pixel, not just the exterior faces, as does
SXMPVO. These variants do the sort at render time, just
prior to the compositing, and they usually spend far greater
effort on the per-pixel sorting since, in most meshes, the
exterior faces are a small fraction of the total. However,
these variants have the advantage of handling visibility
cycles gracefully since, for convex nonoverlapping cells,
there is always a visibility sort for each pixel center even if
there is no global visibility sort of the cells. Kraus and Ertl
[12] also deal with visibility cycles in convex meshes, using
special hardware compositing methods to scan-convert
each cycle. Since they use the basic MPVO sorting algorithm
to detect and isolate the cycles, their method could be
extended to nonconvex meshes using our SXMPVO algo-
rithm. However, their method has rendering costs per cycle
which increase quadratically in the number of cells
involved in the cycle.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

Fig. 4. This figure depicts some missing relations when the MPVO

algorithm is applied to a nonconvex mesh.

Fig. 5. The XMPVO algorithm adds new relations to the MPVO relations

based on ray shooting queries at vertices (and, in 3D, at the

intersections of projected edges).

Wilhelms et al. [26] sort all the cell faces per pixel using
methods similar to those in scan line visible surface
algorithms, with y-buckets for the first scan line a face
crosses, an active list for the faces overlapping the current
scan line, x-buckets for the first pixel on the scan line a face
covers, and a z-sorted list of faces at the current pixel.
Because multiple overlapping meshes are handled, z values
must be updated and resorted (or at least the sort must be
rechecked for correctness) at each new pixel, taking partial
advantage of the coherence in x, but not in y. Since we scan
convert each exterior face as a whole, the SXMPVO
algorithm can take advantage of coherence in x and y.

King et al. [11] describe tetrahedral primitives, as well as
tetrahedral strips and fans, to be rendered by the proposed
R-Buffer hardware of Wittenbrink [30]. The R-Buffer
implements a method similar to the software algorithm of
Mammen [13] to sort per pixel the transparent fragments in
front of the front-most opaque one. Current hardware
implementations of Mammen’s technique require multiple
passes through the polygons in the scene [7]. Instead,
Wittenbrink [30] proposes to scan-convert all polygons only
once and save the not yet composited or rejected fragments
in a large unordered recirculating fragment buffer on the
graphics card from which the multiple depth comparison
passes would be made. The R-Buffer hardware does not yet
exist and a software version does even more work than in
Wilhelms et al. [26] since the sorts are repeated from scratch
independently at each pixel, instead of incrementally
updating a sort from the previous pixel to the left.
Furthermore, R-Buffer and A-Buffer techniques require
substantial amounts of memory over what we need. In our
algorithm, the number of fragments we handle is roughly
proportional to the projected area, in pixels, of the
boundary of the mesh. This contrasts with these other
techniques that require memory proportional to the
projected area, in pixels, of all the faces in the mesh. We
believe that, if built, the R-Buffer will be useful in situations
where the Mammen algorithm is currently used, e.g., for
rendering glass helmets or windshields in games, but not
for volume rendering, for reasons explained in Appendix A.

The ZSWEEP algorithm of Farias et al. [8] is an example
of an A-Buffer technique that optimizes for sorting and
memory usage. Unfortunately, there appears to be no
simple way to map this algorithm into currently available
graphics hardware. We point the interested reader to [6],
[22], [28] for more complete surveys of previous work on
visibility sorting.

4 THE SXMPVO ALGORITHM

For a given viewpoint, the SXMPVO algorithm finds a
global ordering of the cells of an unstructured mesh which
produces the correct sort of the segments along the viewing
ray through each pixel. The boundary of the mesh may be
nonconvex and the mesh may have disconnected compo-
nents. One restriction of our algorithm is that the mesh
must be acyclic for a correct ordering to be found. If a cycle
exists, our algorithm can be used for reporting it.
Furthermore, the mesh may be a zoo mesh. The cells of
the mesh may even have nonplanar surfaces, provided the
edges do not have projections that cross each other (so-
called “bow tie” quadrilateral projections). In [16], the
authors show how to selectively subdivide cells into

tetrahedra to eliminate the problems caused by nonplanar
quadrilateral faces with “bow tie” projections.

Like XMPVO, our new method augments the ordering
relationships of MPVO by performing ray-shooting queries
among the exterior faces of the mesh. However, instead of
computing the extra relations with object-precision (i.e.,
correct for any ray), our new method performs the
necessary ray shooting queries with image-precision (i.e.,
along rays that pass through the centers of the pixels in a
specific view). Furthermore, instead of explicitly computing
ray shooting queries, SXMPVO scan-converts the exterior
faces, saving the ray-face intersections in an A-Buffer [2]
type of data structure that stores all the ordering relations
along each ray. The visibility ordering which SXMPVO
produces is correct if the image resolution used for the
volume rendering is the same as the one used for
computing the visibility ordering relations. The following
two sections describe the details of the algorithm.

4.1 Creating a Partial Ordering

The SXMPVO algorithm begins by marking all shared faces
with arrows exactly as is done in Phase I of the MPVO
algorithm, thus determining all behind relations, henceforth
just referred to as relations, arising from adjacent cells.
During this traversal of the cellswhen the arrows aremarked,
rather than putting the sink cells on a list, a sink cell flag in
each cell is set to either trueor false, as appropriate. In addition
to theMPVOdata structures, an exterior face list is created to
hold a record for each exterior face. This record contains a
pointer to the face and to the cell towhich the face belongs, the
face’s centroid, and a next pointer.

Then, the exterior faces are sorted by increasing distance
from the screen to the face’s centroid. An A-Buffer is created,
implemented as an array of pixel (PIX) lists, one per pixel in
the screen image.APIX list consists of a series of PIX list entry
records (PIX entries), as described below. The exterior faces
are then removed from their sorted queue one at a time and
their interiors are scan converted in 3D. (When using
OpenGL, this means sampling at pixel centers; see [20].) As
each pixel p of an exterior face f is enumerated by the scan
conversion, anewPIXentry is created containing thedistance
z from the screen to the point where the ray through p
intersects f , a pointer to f , and a next pointer for the PIX list.
The PIX entry is then inserted into the appropriate PIX list in
the A-Buffer in order of decreasing z. Since the exterior faces
are sorted by their centroids before starting the scan
conversion process, the vast majority of PIX entry insertions
are at or very near the beginning of the PIX list. Thus, an
efficient insertion sort can be used.

When all exterior faces have been rasterized, the PIX list
for every screen pixel contains, in order of decreasing z, all
the exterior faces that are intersected by a viewing ray
through that pixel. Except for the first and last entries on a
PIX list, consecutive entries alternate between referring to a
front-facing face of a cell and a back-facing face of another
cell. The first face in a PIX list is a back-facing face where
the ray from the viewpoint exits the mesh for the last time;
hence, there is no matching front-facing face behind it and it
is discarded. (If the viewpoint is outside the mesh, the PIX
lists have an even number of entries, so the last entry on the
PIX list, the face through which the ray enters the mesh for
the first time, is also not used.) Now, between each front-
facing/back-facing face pair on the PIX list, there is a ray-

COOK ET AL.: IMAGE-SPACE VISIBILITY ORDERING FOR CELL PROJECTION VOLUME RENDERING OF UNSTRUCTURED DATA 5

gap. We say that the two cells whose faces make up this pair
are pseudoneighbors (PNs). The PN cell that contributes the
back-facing face is called the occluding PN, the other cell of
the pair is called the occluded PN. The desired relations
between exterior cells are given by these PN pairs. We refer
to these new relations as the PN relations. See the diagram in
Fig. 6 where PN relations are shown by arrows similar to
those used in the MPVO algorithm. The arrows point from
the occluded PN to the occluding PN. The PN relations
together with the regular MPVO relations are sufficient to
generate an exact image space visibility ordering for
volume rendering.

Every cell has aPN list pointer, initially set toNULL.When
aDFS is used to enumerate the ordering (see Section 4.2), each
PN relation is stored as an entry in a PN listmaintained by the
occluding PN. A PN list entry (PN entry) contains the cell
number of the occluded cell and a next pointer. Thus, the PN
list for a cell contains all the exterior cells that it occludes, its
dependencies. So, in Fig. 6, cell d is an occluding PN and its PN
list contains cells c and a.

We now return to the details of the SXMPVO algorithm.
After completing the PIX lists, the algorithm continues by
traversingeachPIX list in theA-Buffer. For eachpairof entries
onaPIX list, aPNentry is added to thePN list of theoccluding
PN and the sink cell flag of the occluded PN is set to false (the
definitionof a sink cell is nowexpanded, fromthatdefined for

MPVO, tobea cell that hasnooutboundarrowsand that isnot
an occludedPN).Duplicate entries are not allowed in PN lists
as such entries would cause unnecessary searching later (see
Section 5.1). If the PN relation is not already recorded in the
appropriate PN list, it is added to the head of the list.
Checkingwhether thePNrelation is already recorded in aPN
list may require scanning the entire list. However, it is highly
likely that, if the entry is already in the PN list, it will be
located at or very near the head of the PN list due to the
coherence of the scanning process. To further encourage this
“found at the head” behavior, whenever an entry is found in
the list, that entry is moved to the head of the list if it is not
already there. In thisway, if this entry is encountered again in
anotherPIX list,which ishighly likelydue to coherence, itwill
be found immediately. The combination of coherence and
moving entries to the head of the list leads to a nearly
constant-time search forduplicates.At theendof thisprocess,
all the relations necessary to generate an exact image space
visibility ordering for volume rendering are recorded.

4.2 Creating a Total Ordering

TheSXMPVOalgorithmnowcompletes byexecutingPhase II
of the MPVO algorithm as described in Section 3.2, with two
modifications. First, all cells are traversed to find the sink
cells, those cells whose sink cell flag is still set. Second,
occluded neighbors of a cell c (i.e., the cells on the PN list of

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

Fig. 6. Diagram of an A-Buffer on a 2D slice across a scan line through an unstructured mesh with disconnected components. The z distance for the
PIX entry for face d3 on the PIX list for pixel F is shown. (The numbers on the exterior faces are just to identify the faces for the purpose of this
diagram.) Note here that all insertions of PIX entries into PIX lists occur at the heads of the lists except for the entry into the PIX list for pixel D for
face d1, whose centroid happens to be farther from the screen than the centroids of faces c2 and c3. The completed PIX list for pixel D is
fb1; a3; c2; c3; d1; d3; e2; e3g, before discarding the first and last entries. The first pair in this list after discarding b1 is ða3; c2Þ, so a and c are PNs. Cell c is
the occluding PN and, so, its PN list contains a. The PN and MPVO relations for the relevant portion of this mesh are shown in the diagram. The sink
cells on which RECURSIVE-DFS is called are g and e. The DFS algorithm needs pointers which descend against the arrows, e.g., from e to d to c to a
to b, and this is why the occluding PN stores the dependency.

cell c) are now eligible neighbors of c in RECURSIVE-DFS.
The sort generated may not be a strict visibility ordering if
faces which overlap are not sampled at points in the region
of overlap. However, the visibility ordering will be correct
in image space and the volume rendered image will be
correct because we took care to sample all faces at actual
pixel locations.

To prove correctness, consider a cell a which occludes a
cell b along a ray r from the viewpoint vp through the center
of a pixel p. We need to show that the SXMPVO algorithm
generates a sequence of relations, either PN or MPVO,
between a and b which will be respected by the total
ordering sequence produced by the DFS algorithm in order
to conclude that b comes before a in the sequence. The mesh
may now be nonconvex, so we cannot conclude, as in
Section 3.2, that there is a sequence of cells that the ray
crosses without ray-gaps; ray-gaps may occur where the ray
leaves and reenters the mesh. Instead, we can divide the
line segment, between the point where the ray exits cell a
and the point where it enters cell b, into a sequence of
segments s1; s2; � � � ; sn, where si is either the intersection of
the ray with a cell ci or a ray-gap between cells ci�1 and ciþ1.
Let c0 ¼ a and cnþ1 ¼ b and let s0 and snþ1 be the
corresponding segments in those cells. See Fig. 7.

Consider the subsequence sij , j ¼ 0; � � � ;m, of si consist-
ing of those ray segments corresponding to a cell instead of
a ray-gap and let cij be the corresponding sequence of cells,
with ci0 ¼ a and cim ¼ b. Then, for each j ¼ 1; 2; � � � ;m, we
have a relation cij <vp cij�1

in the directed graph. If the two
indicies ij�1 and ij are consecutive, with ij ¼ ij�1 þ 1, then
the ray crosses from one cell to the other across a common
face and this relation comes from an MPVO arrow. If not,
since there are never two consecutive ray-gap segments,
ij ¼ ij�1 þ 2 and there is a ray-gap segment sij�1

þ 1
between cells cij�1

and cij . The ray exits a back-facing face
of cij�1

and next reenters the mesh through a front-facing
face of cij . Therefore, cij�1

and cij are a front-facing/back-
facing pair on the PIX list for pixel p and a PN relation
cij <vp cij�1

will be added to the directed graph. Thus, in the
total ordering sequence, b ¼ cim < cim�1

< � � � < ci1 < ci0 ¼ a,
so b comes before a in the sorted sequence.

As stated in Section 1, our sorting algorithm is designed to
provide a visibility ordering for use with volume rendering
systems based on cell projection. For this purpose, our

algorithm is guaranteed to provide a correct sort. However,
some systems, e.g., [28], combine cell projection with
splatting techniques, whereby tiny cells which do not project
onto anypixels are splatted, to provide some antialiasing.We
discuss this topic further in Appendix B.

5 ANALYSIS AND TIMING RESULTS

The execution of the SXMPVO algorithm described in
Sections 4.1 and 4.2 is timed and analyzed in four distinct
phases:

I. creating the partial ordering of the interior cells (i.e.,
computing arrows for each interior face),

II. sorting the exterior faces by centroid,
III. scan converting the exterior faces and recording the

PN relations,
IV. finding the sink cells and performing the DFS to

complete the visibility ordering.

5.1 Complexity

For this analysis, n is the number of cells in the mesh, b is
the number of exterior cells, a is the total area of all the
exterior faces as measured by the total number of pixels
generated in their scan conversion, and w and h are the
image width and height in pixels. The asymptotic times
discussed below are, as argued, expected times, not worst-
case times.

Phase I is OðnÞ because every cell in the data set must be
examined to mark arrows on its Oð1Þ faces. Note that the
plane equations for the faces, needed to determine the
arrow directions, are view independent and can be
precomputed. Phase II is a simple sort of the exterior faces
and is thus Oðb log bÞ. Unless b is asymptotically larger than
n= log2 n, the cost Oðb log bÞ is only OðnÞ. As can be seen in
Table 1, typically, b is less than this threshold.

Phase III is the heart of the algorithm. Rasterizing the
exterior faces is OðaÞ. The per-polygon and per-edge set up
cost of the scan conversion algorithm is OðbÞ. The scan
conversion may also have a cost per scan line. But, the total
number of scan lines involved depends on the projected
shapes and orientations of the exterior faces, which are
difficult to parameterize, so we have neglected this cost.
There is an additional potential Oðb2Þ term necessary due to
the insertion of new PIX entries into the PIX lists for each
cell during the scanning. Every test we ran showed that
insertions into the PIX list occurred at the head of the list
more than 99 percent of the time due to presorting the cells
by centroid. Thus, these insertions are each approximately

COOK ET AL.: IMAGE-SPACE VISIBILITY ORDERING FOR CELL PROJECTION VOLUME RENDERING OF UNSTRUCTURED DATA 7

Fig. 7. This figure shows proof of correctness of the SXMPVO algorithm
showing an example with four cells and three ray-gaps between cells a
and b. In this example, n ¼ 7 and m ¼ 5. So, for example, for j ¼ 5,
cij ¼ ci5 ¼ c8 and cij�1

¼ ci4 ¼ c6. The ordering c8 < c6 is enforced by a
PN relation. See Section 4.2 for details.

TABLE 1
Values of the Parameters Used in the Analysis
of the SXMPVO Algorithm for Several Data Sets

constant work and the total insertion cost should thus be
OðaÞ. There is also a Oðw � hÞ contribution in Phase III to
initialize and check each PIX list.

When creating the PN lists from the PIX lists, traversing
the PIX lists to discover dependencies is simply OðaÞ. There
is also the cost of scanning the PN lists to prevent duplicate
entries, which could potentially cost Oðb2Þ per list. It is
possible to reduce the searching cost in the list to Oðlog bÞ by
keeping the PN lists sorted. This would lower the insertion
cost to Oðb log bÞ per list. In most cases, coherence and our
practice of moving duplicates, when found, to the head of
the list reduce this cost toOð1Þ. In the tests shown in Figs. 11,
12, and 13, for a pathological case of many parallel slabs, the
cost was proportional to a, so the cost per PIX entry was, in
fact, Oð1Þ. Thus, Phase III requires Oðw � hþ aÞ time for
most data sets.

If we were to allow duplicates in the PN list, each cell
would have, on average, Oða=bÞ occluded PNs, and
scanning these lists for new dependencies could take
Oða=bÞ time per dependency. Since there are Oða=bÞ
dependencies per list, we thus avoid adding Oðða2=b2Þ �
bÞ ¼ Oða2=bÞ work by eliminating duplications in the lists.

In Phase IV, we examine each cell to see which are still
marked as sink cells, which has a cost of OðnÞ. The DFS
algorithm traverses each edge in the directed graph twice,
so its cost is proportional to the number of edges. The
number of graph edges from shared faces is OðnÞ and the
total number of all PNs, as constructed from scan conver-
sion, is OðaÞ (and usually much less), so Phase IV is
Oðnþ aÞ. Therefore the overall algorithm requires Oðw �
hþ aþ nÞ time for most data sets. Table 1 shows the values
of the parameters n, ðn= log2 nÞ, b, a, and w � h for several
typical unstructured data sets. In the next section, timings
are given for these data sets which are consistent with the
cost estimate above.

We now discuss storage requirements for SXMPVO. For
a tetrahedral mesh, the MPVO data structures require 4f þ
14n words of storage, where f is the number of interior
faces in the mesh and, thus, is OðnÞ. This includes space for
the adjacency graph, cell vertices, the plane equation
coefficients, the arrows, and one word per cell for flags.
For SXMPVO, Oðw � hþ aÞ space is required for the
A-Buffer, including the PIX lists. The PN lists require an

additional OðaÞ words, plus an extra word per cell (another
OðnÞ words) to store the PN list head pointer, even if it is
null. The exterior face list requires OðbÞ words.

5.2 Test Results

Fig. 8a and Fig. 8b show volume rendered images of the
same tetrahedral data set, using the SXMPVO and
MPVONC algorithms, respectively. This data set has
3.57 million cells arranged in a helix, with a green inner
helix surrounded by a pink outer helix. Note that the
SXMPVO algorithm correctly orders data sets upon which
MPVONC fails. In Fig. 8b, it can be seen that some cells
from the green helix incorrectly occlude some cells from the
pink helix. Fig. 8c shows the pixels which differ between
these two images. We verified the correctness of our
implementation of the SXMPVO algorithm by checking
the ordering of the cells by rasterizing them into a software
Z-Buffer [28].

We ran detailed performance comparison tests of
SXMPVO and MPVONC on an SGI Power Onyx, using a
single R10000 250 MHz IP27 processor. For the helix3.5 data
set, shown in Fig. 8a, which has 3.57 million cells, MPVONC
requires 7.4 MB to store the vertices, 100.0 MB to store the
cells, and 240.0 MB to store the face structures, for a total of
347.4 MB. The additional overhead for SXMPVO is very
modest in comparison. For a 375� 450 pixel image, the
A-Buffer, an array of PIX lists, requires 3.7 MB for the a ¼
252; 825 pixels scanned over the 91,400 exterior faces. For an
image of this same data set with 1,000,000 pixels, the
A-Buffer consumes 22.0 MB, (a ¼ 1; 496; 468.) The PN data
structures use 14.5 MB (for the PN list pointers for each cell
and 31,084 dependencies) and the exterior face list uses
1.5 MB, for a total of 367 MB.

Table 2 compares times for the SXMPVOandBSP-XMPVO
algorithms.Prior to theSXMPVOalgorithm, theBSP-XMPVO
algorithm was the fastest known algorithm for accurately
visibility ordering acyclic unstructuredmeshes. The times for
BSP-XMPVO are from a 333 MHz Power PC as given in [6],
whereas the timings for SXMPVO (andMPVONC) are from a
slower 250 MHz machine described above. In addition to
being faster, the SXMPVO algorithm has the following
advantages over the BSP-XMPVO algorithm:

1. A long preprocessing phase is needed to construct
the BSP tree,

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

Fig. 8. (a) A volume rendered image of the helix3.5 data set, with 3.57 million cells, created using the SXMPVO algorithm for sorting. (b) A volume

rendered image of the helix3.5 data set, with 3.57 million cells, created using the MPVONC heuristic for sorting. Note the errors. (c) An image of the

difference between the images shown in (a) and (b). The white pixels occur where there are differences in the images. The entire image has been

included dimly as a frame of reference.

2. The SXMPVO algorithm is easier to implement since
the implementation of BSP-XMPVO requires the
implementation of the BSP tree and the “glue” code
described in Fig. 2 of [6],

3. Handling degeneracies in the BSP tree often requires
complex code and the use of exact arithmetic,

4. BSP trees for complex boundaries can get large and
consume substantial memory, and

5. The performance of BSP-XMPVO has a quasi-
quadratic term, which seems to show up in practice
and limits performance when compared to the
SXMPVO algorithm.

To determine the effect of image size on the performance
of the SXMPVO algorithm, we ran it on several data sets, as
shown in Table 2. This behavior is in agreement with the

complexity found in the previous section—that the running
time is linear in terms of the image size in pixels. In each
case, the window size was set to match the bounding box of
the data set.

Table 3 breaks down the execution time for the four
phases of the SXMPVO algorithm for some of the data sets
used in our tests. Fig. 9 shows how each of these phases
perform for different sized data sets. Fig. 10 shows the
performance of MPVONC broken down into its two phases:
creating the partial order by setting arrows for the interior
arrows (CPO time) and executing the depth first search
(DFS time).

A comparison of the SXMPVO algorithm’s performance
with that of MPVONC is shown in Table 4. The time for
both MPVONC and SXMPVO grows approximately
linearly in the number of cells. Since SXMPVO must always
determine and respect every relationship that MPVONC

COOK ET AL.: IMAGE-SPACE VISIBILITY ORDERING FOR CELL PROJECTION VOLUME RENDERING OF UNSTRUCTURED DATA 9

TABLE 2
Comparative Timings for the BSP-XMPVO and SXMPVO Algorithms

Prior to the SXMPVO algorithm, the BSP-XMPVO algorithm was the fastest known algorithm for accurate visibility ordering acyclic unstructured
meshes. Note that the times for BSP-XMPVO are from a 333 MHz PowerPC, as given in [6], whereas the timings for XMPVCO are from a slower
250 MHz machine, the one described in Section 5.2. As discussed in the text, the BSP-XMPVO algorithm does not appear to be of practical use due
to implementation complexity. The change in timing with image size is due almost entirely to Phase III.

TABLE 3
Breakdown of Execution Time, in Seconds, for the SXMPVO Algorithm for Various Data Sets for the Image Sizes Given in Table 1

Fig. 9. Timings of the various phases of the SXMPVO algorithm for the
data sets and image sizes given in Table 1.

Fig. 10. Timings for the different phases of the MPVONC heuristic for the
same data sets as shown in Fig. 9.

does, as well as creating and following extra relations
between exterior faces, it is always slower than MPVONC
for every data set and view angle. For data sets with more
than 100,000 cells and for the image sizes shown in Table 1,
our SXMPVO algorithm is able to generate an exact image-
space visibility ordering of the cells of an nonconvex mesh
at about the same speed as the MPVONC heuristic, a
nonexact sorting heuristic.

To determine the effect on the execution time, of the
number of exterior faces relative to the total number of cells,
we created 20 data sets whose meshes had a varying number
of disconnected components. Each data set had the same
number of cells, but a varying number of exterior faces. The
first data set had a single rectilinear 50� 50� 100 mesh of
hexahedra (250,000 in all) which was then subdivided into
tetrahedra, creating six tetrahedra per hexahedron, for a total
of 1.5 million tetrahedra. The subdivision created two
triangular faces for each rectangular face in the original
mesh, so the subdividedmeshhad50,000exterior faces.There
were 5,000 exterior faces on each end and10,000 exterior faces
on each of the remaining four sides.

The second data set was identical to the first, but, instead
of creating a single mesh, we sliced the original mesh into
six equivalent parts (like slicing bread), creating six
equivalent disconnected meshes. We refer to the space
between two slices as a gap. The planes of exterior faces
created by the gaps were parallel to the ends of the mesh, so
each gap added 10,000 exterior faces, without changing the
total number of cells. So, these five gaps added 50,000

exterior faces. For each additional data set, we added

another five gaps to the mesh so that, for the 20th data set,

there were 95 gaps, forming a mesh with 96 disconnected

components. That mesh had 1,000,000 exterior faces and

1,500,000 cells—a 67 percent ratio of exterior faces to total

cells. Fig. 11 shows that the time required to sort the cells

was a linear function of the projected area, in pixels, of the

exterior faces. Figs. 12 and 13 show volume rendered

images of one of the meshes with 50 gaps, from two

different views.
The preceding discussion has dealt with tetrahedral

meshes, however, the SXMPVO algorithm can also sort the

cells of zoo meshes. Fig. 14 shows an image generated using

our algorithm on six disconnected zoo meshes. Each

disconnected mesh approximates a sphere and is built in

layers using zoo elements. The layer of cells touching the

center of each sphere consists of tetrahedra around the

north and south poles, and pyramids elsewhere. Subse-

quent layers consist of prisms around the poles and

hexahedra elsewhere. There are a total of 240 tetrahedra,

960 pyramids, 1,200 prisms, and 4,800 hexahedra. The time

to compute the visibility ordering for this image was

1.47 seconds. The reason for the slow time is that we

utilized complex data structures for zoo meshes, which

were created to allow the selective subdivision of nonplanar

faces described in [1] and which require following multiple

pointers to establish the MPVO face adjacency. The

modifications to add the PN relations are basically the

same as for tetrahedral data sets.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

TABLE 4
Comparison of Execution Times for the SXMPVO Algorithm
and the MPVONC Algorithm for Certain of the Data Sets

Given in Table 1

Fig. 11. Times in seconds for execution of the SXMPVO algorithm as a

function of the projected area, in pixels, of exterior faces. The data set

was rotated 45 degrees around the x and y axes, as shown in Fig. 13,

and is for an image size of 375� 450 pixels.

Fig. 12. Volume Rendering of a Tetrahedral Mesh with 1.5 million cells,

partitioned with 50 gaps so as to have 51 disconnected components,

resulting in 550,000 exterior faces, as described in Section 5.2.

Fig. 13. The same data set as in Fig. 12, but shown rotated 45 degrees

around the x and y axes.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented the SXMPVO algorithm
that efficiently finds a global ordering of the cells of an
unstructured mesh. This ordering produces the correct sort
of the segments along a viewing ray through each pixel.
Thus, the algorithm is image-space correct and can be used
for the sorting phase of cell projection volume rendering to
generate images free from any sorting errors, provided the
mesh is acyclic. The boundary of the mesh may be
nonconvex and the mesh may be disconnected. Further-
more, the mesh may have cells of different types. The cells
of the mesh may even have nonplanar surfaces.

As a result of careful analysis and optimizations, this
algorithm has several desirable features; among them are
speed, simplicity of implementation, and no extra (i.e., with
respect to the MPVO algorithm) preprocessing. This
algorithm is faster than all published algorithms that
produce an exact visibility ordering, either in object or in
image space. It has the potential to be the algorithm of
choice for exact visibility sorting for volume rendering.
Note that our timing tests were performed using a 250 MHz
MIPS R10000 processor. Current CPUs are an order of
magnitude faster than this, so our algorithm can be
expected to give a faster sorting performance.

The most recently published, and the fastest, times for
the rendering phase of volume rendering based on cell
projection are reported by Wylie et al. [31] and Weiler et al.
[24]. For data sets varying from 187,000 to 1,000,000
tetrahedra, they report rendering times, exclusive of
visibility sorting, of between 0.4 and 2.0 seconds (250K-
500K tetrahedra per second), using the latest graphics cards.

Both of these systems require a visibility sorting algorithm
that can keep pace with them. We expect that if the
SXMPVO algorithm was implemented and run on the same
machines as used by Wylie and Weiler (1200 MHz Athlon
PC and 2 GHz Pentium 4) as opposed to our 250 MHz MIPS
R10000, it would give very satisfactory performance in the
context of these two volume renderers.

Our latest results from the execution of the SXMPVO
algorithm on a 2.53 GHz Pentium 4 machine, which is
comparable to the machine use by Wylie, are shown in
Table 5. These times yield a throughput of 500K-600K
tetrahedra per second (for a 1,050,000 pixel image), thus
making the SXMPVO algorithm a very suitable candidate
for use with these latest rendering techniques. Phases I and
III of the algorithm, which account for a substantial portion
of the sorting time, are ideal candidates for optimization
using Intel’s Streaming SIMD Extensions 2 (SSE2).

We see a few directions for future work. It would be
interesting to integrate the ideas of Kraus and Ertl [12] into
SXMPVO, so our algorithm would be able to handle meshes
with visibility cycles. Also, in terms of optimization, we
could potentially further optimize the code by using the
ideas in [10] for optimizing the cache performance of the
scanning phase of our algorithm. Less memory would be
required for the PIX lists if the A-Buffer was tiled and
created in stages, thus memory for each tile’s PIX lists could
be reused [9]. Another optimization would be to tile the
image and perform parallel sorting [10].

APPENDIX A

Here, we analyze the complexity of the R-Buffer algorithm
of Wittenbrink [30] in the case that all volume cells are
semitransparent and none are completely opaque. Let dðpÞ,
the depth complexity at pixel p, be the number of cells
overlapping the center of p, i.e., the number of fragments
that must be sorted and composited at p. (If, instead, there
are opaque cells, dðpÞ will be the number of fragments in
front of the first opaque one.) Then, since only one of these
fragments is composited per pass through the R-Buffer and
the others remain and each pass processes all the remaining
fragments, the total number of fragments processed, in
either the first pass where all fragments are processed or in
subsequent passes using the R-Buffer is

X

p

XdðpÞ�1

i¼0

ðdðpÞ � iÞ ¼
X

p

dðpÞðdðpÞ þ 1Þ
2

� 1

2
w � h � AðdðpÞ2Þ;

where w and h are the width and height of the screen and

COOK ET AL.: IMAGE-SPACE VISIBILITY ORDERING FOR CELL PROJECTION VOLUME RENDERING OF UNSTRUCTURED DATA 11

Fig. 14. A volume rendered image of data defined on a zoo mesh, using

the SXMPVO algorithm. The mesh has six disconnected components,

with 240 tetrahedra, 960 pyramids, 1,200 prisms, and 4,800 hexahedra.

TABLE 5
Timings for the Execution of the SXMPVO Algorithm on an Intel Pentium 4 2.53 MHz Machine for Five Different Image Sizes

The times for a 1,050,000 pixel image correspond to a throughput of 500K-600K tetrahedra per second. In each case, the window size was set to
match the bounding box of the data set. The data sets, spx, kew, and fighter, are from finite element method simulations on unstructured meshes.

AðdðpÞ2Þ ¼ 1

w � h
X

p

dðpÞ2

is the average squared value of the depth complexity. Since
dðpÞ is nonnegative and the square function has a positive
second derivative, AðdðpÞ2Þ � AðdðpÞÞ2 ¼ d̂d2, where d̂d is the
average depth complexity. Therefore, the cost of the
R-Buffer sorting algorithm is �ðw � h � d̂d2Þ. For volume data
of moderate to large complexity, this makes the R-Buffer
impractical, even in hardware. The A-Buffer algorithm of
Wilhelms et al. [26] can take advantage of x-coherence of the
z-sort, where such coherence exists, so it may cost some-
what less. However, if the x range of most cells is only one
or two pixels, there is no such coherence and, if an insertion
sort is used for the z-sort, its costs will also be quadratic in d̂d,
as above.

Now, let d̂de be the average depth complexity of the
exterior faces of the mesh. If the mesh consists of disjoint
cells with no common faces, then d̂de ¼ 2d̂d, but, in the meshes
that are visualized in practice, d̂de is much less than d̂d. The
total area a of the exterior faces, measured in pixels, is
w � h � d̂de. Therefore, according to the analysis in Section 5.1,
our algorithm’s expected cost for data sets seen in practice
is Oðw � h � ðd̂de þ 1Þ þ nÞ. Thus, our sorting algorithm is
much faster than the R-Buffer or A-Buffer algorithms that
sort all the fragments, which also have an �ðnÞ term since
they must at least read all input cells.

APPENDIX B

In this appendix, we discuss our algorithm in the context of
aliasing that is inherent in volume rendering based on cell
projection. If a cell is so small that it does not project onto
any screen pixels, we call it a tiny cell. Of course whether or
not a cell is tiny is view-dependent. A cell may be tiny for
one view direction and not another, for one image size and
not another, etc. In Table 6, we show the results of tests of
several data sets to determine the number of tiny cells for
different image sizes. It is an open question, which we are
investigating, just how much of an impact splatting tiny
cells will have on the performance of the rendering phase
when using current graphics cards. Certainly, one way to
include tiny cells in the image would be to use current
methods for the rendering phase and zoom in on the data.

The system reported in [28] is capable of some antialias-
ing. It can render tiny cells too small to be accurately
sampled at pixel centers by splatting them using a
piecewise quadratic splat kernel with a 3� 3 pixel footprint.
If one of the system’s object space sorting options, from [6],
[22], or [23] is used, these tiny cells will be sorted correctly,
together with all the other cells. If the image space methods

of this paper are used, however, the relationship a <vp b
will be only guaranteed to be respected if there is a
continuous sequence of adjacent intervening cells between
cells a and b, as in Section 3.2, which will be enforced by the
behind relations from adjacent cells, or if the necessary
relations across regions where ray-gaps may occur happen
to be sampled at some pixel center. This is not always
guaranteed to be the case, so there may be some sorting
errors if splatting is used to antialias tiny cells. Tiny cells
that are interior cells will be output by SXMPVO in correct
order. However, if a tiny cell is an exterior cell, then it may
occur out of order. Sorting the sink cells by increasing
distance of their centroid to the viewpoint should reduce
the number of these sorting errors. In any case, all cells,
regardless of size, will be output by SXMPVO.

We describe a completely different method of dealing
with tiny cells in [17] in connection with the cell slicing
algorithm of Yagel et al. [32]. It splats the tiny cells onto a
texture in the closest slice plane.

ACKNOWLEDGMENTS

This work was performed under the auspices of the US
Department of Energy by the University of California,
Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48. Cláudio T. Silva is partially supported
by the US Department of Energy under the VIEWS program
and the MICS office and the US National Science Founda-
tion under grants CCR-0306530 and EIA-0323604. The
authors are grateful to the referees who reviewed this
paper and offered very helpful suggestions and criticisms.

REFERENCES

[1] J. Bennett, R. Cook, N. Max, and P. Williams, “Parallelizing a High
Accuracy Hardware-Assisted Volume Renderer for Meshes with
Arbitrary Polyhedra,” Proc. IEEE Symp. Parallel and Large-Data
Visualization and Graphics, pp. 101-106, Oct. 2001.

[2] L. Carpenter, “The A-Buffer, an Antialiased Hidden Surface
Method,” Computer Graphics, Proc. SIGGRAPH ’84, pp. 103-108,
July 1984.

[3] P. Cignoni and L. De Floriani, “Power Diagram Depth Sorting,”
Proc. 10th Canadian Conf. Computational Geometry, 1998.

[4] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno, “On the
Optimization of Projective Volume Rendering,” Proc. Visualization
in Scientific Computing ’95, pp. 58-71, 1995.

[5] P. Cignoni, C. Montani, and R. Scopigno, “Tetrahedra Based
Volume Visualization,” Math. Visualization—Algorithms, Applica-
tions, and Numerics, H.-C. Hege and K. Polthier, eds., pp. 3-18,
Springer Verlag, 1998.

[6] J. Comba, J. Klosowski, N. Max, J.S.B. Mitchell, C. Silva, and P.
Williams, “Fast Polyhedral Cell Sorting for Interactive Rendering
of Unstructured Grids,” Computer Graphcs Forum, vol. 18, pp. 367-
376, 1999.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

TABLE 6
The Number of Tiny Cells, Cells that Do Not Project onto Any Screen Pixels,

for Several Different Image Sizes and Several Different Unstructured Data Sets

In each case, the image size matches the bounding box of the data set.

[7] C. Everett, “Interactive Order-Independent Transparency,” tech-
nical report, NVIDIA Corp., 2001, http://developer.nvidia.com/
view.asp?IO=Interactive_Order_Transparency.

[8] R. Farias, J. Mitchell, and C. Silva, “ZSWEEP: An Efficient and
Exact Projection Algorithm for Unstructured Volume Rendering,”
Proc. 2000 Volume Visualization Symp., pp. 91-99, Oct. 2000.

[9] R. Farias and C. Silva, “Out-of-Core Rendering of Large,
Unstructured Grids,” IEEE Computer Graphics & Applications,
vol. 21, no. 4, pp. 42-51, July/Aug. 2001.

[10] R. Farias and C. Silva, “Parallelizing the ZSWEEP Algorithm For
Distributed-Shared Memory Architectures,” Proc. Int’l Volume
Graphics Workshop 2001, pp. 181-192, 2001.

[11] D. King, C. Wittenbrink, and H. Wolters, “An Architecture for
Interactive Tetrahedral Volume Rendering,” Proc. Int’l Volume
Graphics Workshop 2001, pp. 101-110, 2001.

[12] M. Kraus and T. Ertl, “Cell Projection of Cyclic Meshes,” Proc.
IEEE Visualization 2001, pp. 215-222, 2001.

[13] A. Mammen, “Transparency and Antialiasing Algorithms Im-
plemented with the Virtual Pixel Maps Technique,” IEEE
Computer Graphics and Applications, vol. 9, pp. 43-55, July 1984.

[14] N. Max, “Optical Models for Direct Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, pp. 99-108, June
1995.

[15] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume
Coherence for Efficient Visualization of 3D Scalar Functions,”
Computer Graphics, vol. 24, pp. 27-33, Nov. 1990.

[16] N. Max, P. Williams, and C. Silva, “Approximate Volume
Rendering for Curvilinear and Unstructured Grids by Hard-
ware-Assisted Polyhedron Projection,” Int’l J. Imaging Systems and
Technology, vol. 11, pp. 53-61, 2000.

[17] N. Max, P. Williams, C. Silva, and R. Cook, “Volume Rendering
for Curvilinear and Unstructured Grids,” Proc. Computer Graphics
Int’l 2003, pp. 210-215, 2003.

[18] S. Röttger, M. Kraus, and T. Ertl, “Hardware Accelerated Volume
and Isosurface Rendering Based on Cell Projection,” Proc. IEEE
Visualization 2000, pp. 109-116, 2000.

[19] G. Schussman and N. Max, “Hierarchical Perspective Volume
Rendering Using Triangle Fans,” Proc. Int’l Volume Graphics
Workshop 2001, pp. 195-200, 2001.

[20] M. Segal and K. Akeley, The OpenGL Graphics System: A
Specification, version 1.2.1. Silicon Graphics, Inc., Apr. 1999.

[21] P. Shirley and A. Tuchman, “A Polygonal Approximation to
Direct Scalar Volume Rendering,” Computer Graphics (Proc. San
Diego Workshop Volume Visualization), vol. 24, pp. 63-70, Nov. 1990.

[22] C. Silva, J.S.B. Mitchell, and P. Williams, “An Exact Interactive
Time Visibility Ordering Algorithm for Polyhedral Cell Com-
plexes,” Proc. ACM Symp. Volume Visualization, pp. 87-94, Oct.
1998.

[23] C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted
Rendering for Volume Visualization,” Proc. SIGGRAPH Symp.
Volume Visualization, pp. 83-90, Oct. 1994.

[24] M. Weiler, M. Kraus, and T. Ertl, “Hardware-Based View-
Independent Cell Projection,” Proc. 2002 Volume Visualization
Symp., pp. 13-22, 2002.

[25] J. Wilhelms and A. Van Gelder, “A Coherent Projection Approach
for Direct Volume Rendering,” Computer Graphics, vol. 25, pp. 275-
283, July 1991.

[26] J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs,
“Hierarchical and Parallelizable Direct Volume Rendering for
Irregular and Multiple Grids,” Proc. IEEE Visualization 1996,
pp. 57-64, 1996.

[27] P. Williams, “Visibility Ordering Meshed Polyhedra,” ACM Trans.
Graphics, vol. 11, no. 2, pp. 103-126, Apr. 1992.

[28] P. Williams, N. Max, and C. Stein, “A High Accuracy Volume
Renderer for Unstructured Data,” IEEE Trans. Visualization and
Computer Graphics, vol. 4, no. 1, pp. 37-54, Jan.-Mar. 1998.

[29] C. Wittenbrink, “Cellfast: Interactive Unstructured Volume
Rendering,” Proc. IEEE Visualization ’99, Late Breaking Hot Topics,
pp. 21-24, 1999.

[30] C. Wittenbrink, “R-Buffer: A Pointerless A-Buffer Hardware
Architecture,” Proc. ACM-Eurographics Workshop Graphics Hard-
ware, pp. 73-80, 2001.

[31] B. Wylie, K. Moreland, L.A. Fisk, and P. Crossno, “Tetrahedral
Projection Using Vertex Shaders,” Proc. 2002 Volume Visualization
Symp., pp. 7-12, 2002.

[32] R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef, “Hardware
Assisted Volume Rendering of Unstructured Grids by Incremental

Slicing,” Proc. 1996 Volume Visualization Symp., pp. 55-62, Oct.
1996.

Richard Cook received the MS degree in
computer science from the University of Califor-
nia at Davis in 2001. He is a computer scientist
working at Lawrence Livermore National La-
boratory in the Services and Development
Department. His current projects include work
on the Tera-Scale Browser Project (TSB) for the
US Department of Energy’s Accelerated Strate-
gic Computing Initiative (ASCI) and scientific
visualization support duties for the Information

Management and Graphics Group (IMG).

Nelson Max received the PhD degree in
mathematics from Harvard University in March
1967. His research interests are in the areas of
scientific visualization, volume and flow render-
ing, computer animation, molecular graphics,
predicting protein folding from sequence, and
realistic computer rendering, including shadow
and radiosity effects. Since 1977, he has been a
computer scientist at Lawrence Livermore Na-
tional Laboratory and has been teaching part

time at the University of California, Davis, currently as a 50 percent
professor of applied science. He has taught mathematics and computer
science at the University of California, Berkeley, the University of
Georgia, Carnegie Mellon University, and Case Western Reserve
University. He was director of the US National Science Foundation
supported Topology Films Project in the early 1970s, which produced
computer animated educational films on mathematics. He worked in
Japan for 3 1/2 years as codirector of two Omnimax (hemisphere
screen) stereo films for international expositions, showing the molecular
basis of life. He is a member of the IEEE Computer Society.

Cláudio T. Silva received the Bachelor’s degree
in mathematics from the Federal University of
Ceara, Brazil, and the MS and PhD degrees in
computer science from the State University of
New York at Stony Brook. He is an associate
professor of computer science at the University
of Utah and a member of the Scientific Comput-
ing and Imaging (SCI) Institute. His main
research interests are in graphics, visualization,
applied computational geometry, bioinformatics,

and high-performance computing. His current projects include the
development of out-of-core algorithms for large-scale scientific visuali-
zation, techniques for point-based modeling and rendering, and efficient
algorithms for modern graphics hardware. He has published more than
60 publications in international conferences and journals, holds four US
patents, and presented tutorials at ACM SIGGRAPH, Eurographics, and
IEEE Visualization conferences. He serves on numerous program
committees and is cochair of the IEEE Symposium on Volume
Visualization and Graphics (VolVis 2004). He is a member of the
ACM, Eurographics, and IEEE.

Peter L. Williams received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign and the BS degree in
engineering-physics from the University of Cali-
fornia at Berkeley. He has taught computer
science at Vassar College, the University of
Connecticut at Storrs, and Harvey Mudd Col-
lege. He is currently a computer scientist at the
Lawrence Livermore National Laboratory, where
he is a member of the Center for Applied

Scientific Computing. His research interests include graphics, scientific
visualization, volume rendering (especially unstructured data), and high
performance parallel and distributed computing. He is a member of the
IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

COOK ET AL.: IMAGE-SPACE VISIBILITY ORDERING FOR CELL PROJECTION VOLUME RENDERING OF UNSTRUCTURED DATA 13

