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The Prioritized-Layered Projection Algorithm
for Visible Set Estimation

James T. Klosowski and Claudio T. Silva, Member, IEEE

Abstract—Prioritized-Layered Projection (PLP) is a technique for fast rendering of high depth complexity scenes. It works by
estimating the visible polygons of a scene from a given viewpoint incrementally, one primitive at a time. It is not a conservative
technique, instead PLP is suitable for the computation of partially correct images for use as part of time-critical rendering systems.
From a very high level, PLP amounts to a modification of a simple view-frustum culling algorithm, however, it requires the computation
of a special occupancy-based tessellation and the assignment to each cell of the tessellation a solidity value, which is used to compute
a special ordering on how primitives get projected. In this paper, we detail the PLP algorithm, its main components, and
implementation. We also provide experimental evidence of its performance, including results on two types of spatial tessellation (using
octree- and Delaunay-based tessellations), and several datasets. We also discuss several extensions of our technique.

Index Terms—Visibility, time-critical rendering, occlusion culling, visible set, spatial tessellation.

1 INTRODUCTION

RECENT advances in graphics hardware have not been
able to keep up with the increase in scene complexity.
In order to support a new set of demanding applications, a
multitude of rendering algorithms have been developed to
both augment and optimize the use of the hardware. An
effective way to speed up rendering is to avoid rendering
geometry that cannot be seen from the given viewpoint,
such as geometry that is outside the view frustum, faces
away from the viewer, or is obscured by geometry closer to
the viewer. Quite possibly, the hardest part of the visibility-
culling problem is to avoid rendering geometry that cannot
be seen due to its being obscured by closer geometry. In this
paper, we propose a new algorithm for solving the visibility
culling problem. Our technique is an effective way to cull
geometry with a very simple and general algorithm.

Our technique optimizes for rendering by estimating the
visible set for a given frame and only rendering those
polygons. It is based on computing, on demand, a priority
order for the polygons that maximizes the likelihood of
projecting visible polygons before occluded ones for any
given scene. It does so in two steps: 1) As a preprocessing
step, it computes an occupancy-based tessellation of space,
which tends to have smaller spatial cells where there are
more geometric primitives, e.g., polygons; 2) in real-time,
rendering is performed by traversing the cells in an order
determined by their intrinsic solidity (likelihood of being
occluded) and some other view-dependent information. As
cells are projected, their geometry is scheduled for render-
ing (see Fig. 1). Actual rendering is constrained by a user-
defined budget, e.g., time or number of triangles.

e |.T. Klosowski is with the IBM T.]. Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598. E-mail: jklosow@us.ibm.com.

o C.T. Silva is with AT&T Labs-Research, 180 Park Ave., PO Box 971,
Florham Park, NJ 07932. E-mail: csilva@research.att.com

Manuscript received 15 Mar. 2000; accepted 3 Apr. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number 111484.

Some highlights of our technique:

e Budget-based rendering. Our algorithm generates a
projection ordering for the geometric primitives that
mimics a depth-layered projection ordering, where
primitives directly visible from the viewpoint are
projected earlier in the rendering process. The
ordering and rendering algorithms strictly adhere
to a user-defined budget, making the PLP approach
time-critical.

e Low-complexity preprocessing. Our algorithm re-
quires inexpensive preprocessing that basically
amounts to computing an Octree and a Delaunay
triangulation on a subset of the vertices of the
original geometry.

e No need to choose occluders beforehand. Contrary
to other techniques, we do not require that occluders
be found before geometry is rendered.

e Object-space occluder fusion. All of the occluders
are found automatically during a space traversal that
is part of the normal rendering loop without
resorting to image-space representation.

e Simple and fast to implement. Our technique
amounts to a small modification of a well-known
rendering loop used in volume rendering of un-
structured grids. It only requires negligible overhead
on top of view-frustum culling techniques.

Our paper is organized as follows: In Section 2, we give
some preliminary definitions and briefly discuss relevant
related work. In Section 3, we propose our novel visibility-
culling algorithm. In Section 4, we give some details on our
prototype implementation. In Section 5, we provide experi-
mental evidence of the effectiveness of our algorithm. In
Section 6, we describe a few extensions and other avenues
for future work. In Section 7, we conclude the paper with
some final remarks.
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(a)

(b)

Fig. 1. The Prioritized-Layered Projection Algorithm. PLP attempts to prioritize the rendering of geometry along layers of occlusion. Cells that have
been projected by the PLP algorithm are highlighted in red wireframe and their associated geometry is rendered, while cells that have not been
projected are shown in green. Notice that the cells occluded by the desk are outlined in green, indicating that they have not been projected.

2 PRELIMINARIES AND RELATED WORK

The visibility problem is defined in [9] as follows: Let the
scene, S, be composed of modeling primitives (e.g.,
triangles or spheres) S = {Pj,P1,...,P,} and a viewing
frustum defining an eye position, a view direction, and a
field of view. The visibility problem encompasses finding
the points or fragments within the scene that are visible,
that is, connected to the eye point by a line segment that
meets the closure of no other primitive. For a scene with
n = O(|S]) primitives, the complexity of the set of visible
fragments might be as high as O(n?), but, by exploiting the
discrete nature of the screen, the Z-buffer algorithm [2]
solves the visibility problem in time O(n) since it only
touches each primitive once. The Z-buffer algorithm solves
the visibility problem by keeping a depth value for each
pixel and only updating the pixels when geometry closer to
the eye point is rendered. In the case of high depth-
complexity scenes, the Z-buffer might overdraw each pixel
a considerable number of times. Despite this potential
inefficiency, the Z-buffer is a popular algorithm, widely
implemented in hardware.

In light of the Z-buffer being widely available, and exact
visibility computations being potentially too costly, one
idea is to use the Z-buffer as a filter and design algorithms
that lower the amount of overdraw by computing an
approximation of the wvisible set. In more precise terms,
define the visible set V C S to be the set of modeling
primitives which contribute to at least one pixel of the
screen.

In computer graphics, visibility-culling research mainly
focused on algorithms for computing conservative (hope-
fully tight) estimations of V, then using the Z-buffer to
obtain correct images. The simplest example of visibility-
culling algorithms are backface and view-frustum culling
[11]. Backface-culling algorithms avoid rendering geometry
that faces away from the viewer, while viewing-frustum
culling algorithms avoid rendering geometry that is outside
of the viewing frustum. Even though both of these
techniques are very effective at culling geometry, more

complex techniques can lead to substantial improvements
in rendering time. These techniques for tighter estimation of
V do not come easily. In fact, most techniques proposed are
quite involved and ingenious and usually require the
computation of complex object hierarchies in both 3- and
2-space.

Here again, the discrete nature of the screen, and screen-
space coverage tests, play a central role in literally all
occlusion-culling algorithms since it paves the way for the
use of screen occupancy to cull 3D geometry that projects
into already occupied areas. In general, algorithms exploit
this fact by 1) projecting P; in front-to-back order and 2)
keeping screen coverage information. Several efficiency
issues are important for occlusion-culling algorithms:

1. They must operate under great time and space
constraints since large amounts of geometry must be
rendered in fractions of a second for real-time
display.

2. It is imperative that primitives that will not be
rendered be discarded as early as possible and
(hopefully) not be touched at all. Global operations,
such as computing a full front-to-back ordering of
P;, should be avoided.

3. The more geometry that gets projected, the less
likely the Z-buffer gets changed. In order to
effectively use this fact, it must be possible to merge
the effect of multiple occluders. That is, it must be
possible to account for the case that neither Py nor
Py obscures P, by itself, but together they do cover
P,. Algorithms that do not exploit occluder-fusion are
likely to rely on the presence of large occluders in
the scene.

A great amount of work has been done in visibility
culling in both computer graphics and computational
geometry. For those interested in the computational
geometry literature, see [8], [9], [10]. For a survey of
computer graphics work, see [28].
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We very briefly survey some of the recent work more
directly related to our technique. Hierarchical occlusion
maps [29] solve the visibility problem by using two
hierarchies, an object-space bounding volume hierarchy
and another hierarchy of image-space occlusion maps. For
each frame, objects from a precomputed database are
chosen to be occluders and used to cull geometry that
cannot be seen. A closely related technique is the
hierarchical Z-buffer [13].

A simple and effective hardware technique for improv-
ing the performance of the visibility computations with a
Z-buffer has been proposed in [23]. The idea is to add a
feedback loop in the hardware which is able to check if
changes would have been made to the Z-buffer when scan-
converting a given primitive.! This hardware makes it
possible to check if a complex model is visible by first
querying whether an enveloping primitive (often the
bounding box of the object, but, in general, one can use
any enclosing object, e.g., k-dop [16]), is visible and only
rendering the complex object if the enclosing object is
actually visible. Using this hardware, simple hierarchical
techniques can be used to optimize rendering (see [17]). In
[1], another extension of graphics hardware for occlusion-
culling queries is proposed.

It is also possible to perform object-space visibility
culling. One such technique, described in [26], divides
space into cells, which are then preprocessed for potential
visibility. This technique works particularly well for
architectural models. Additional object-space techniques
are described in [6], [7]. These techniques mostly exploit the
presence of large occluders and keep track of spatial extents
over time. In [4], a technique that precomputes visibility in
densely occluded scenes is proposed. They show it is
possible to achieve very high occlusion rates in dense
environments by precomputing simple ray-shooting checks.

In [12], a constant-frame rendering system is described.
This work uses the visibility-culling from [26]. It is related
to our approach in the sense that it also uses a (polygon)
budget for limiting the overall rendering time. Other
notable references include [3], for its level-of-detail manage-
ment ideas, and [21], where a scalable rendering architec-
ture is proposed.

3 THE PLP ALGORITHM

In this paper, we propose the Prioritized-Layered Projection
algorithm, a simple and effective technique for optimizing
the rendering of geometric primitives. The guts of our
algorithm consists of a space-traversal algorithm, which
prioritizes the projection of the geometric primitives in such
a way as to avoid (actually delay) projecting cells that have
a small likelihood of being visible. Instead of conservatively
overestimating V, our algorithm works on a budget. At each
frame, the user can provide a maximum number of
primitives to be rendered, i.e., a polygon budget, and our
algorithm, in its single-pass traversal over the data, will
deliver what it considers to be the set of primitives which
maximizes the image quality, using a solidity-based metric.

1. In OpenGL, the technique is implemented by adding a proprietary
extension that can be enabled when queries are being performed.

Our projection strategy is completely object-space based,
and resembles® cell-projection algorithms used in volume
rendering unstructured grids.

In a nutshell, our algorithm is composed of two parts:

Preprocessing. Here, we tessellate the space that con-
tains the original input geometry with convex cells in the
way specified in Section 3.1. During this one-time pre-
processing, a collection of cells is generated in such a way as
to roughly keep a uniform density of primitives per cell.
Our sampling leads to large cells in unpopulated areas and
small cells in areas that contain a lot of geometry.

In another similarity to volume rendering, using the
number of modeling primitives assigned to a given cell
(e.g., tetrahedron) we define its solidity value p, which is
similar to the opacity used in volume rendering. In fact, we
use a different name to avoid confusion since the
accumulated solidity value used throughout our priority-
driven traversal algorithm can be larger than one. Our
traversal algorithm prioritizes cells based on their solidity
value.

Generating such a space tessellation is not a very
expensive step, e.g., taking only a minute or two minutes
for a scene composed of one million triangles and, for
several large datasets, can even be performed as part of the
data input process. Of course, for truly large datasets, we
highly recommend generating this view-independent data
structure beforehand and saving it with the original data.

Rendering Loop. Our rendering algorithm traverses the
cells in roughly front-to-back order. Starting from the seed
cell, which, in general contains the eye position, it keeps
carving cells out of the tessellation. The basic idea of our
algorithm is to carve the tessellation along layers of polygons.
We define the layering number (€ X of a modeling
primitive P in the following intuitive way: If we order each
modeling primitive along each pixel by their positive®)
distance to the eye point, we define {(P) to be the smallest
rank of P over all of the pixels to which it contributes.
Clearly, ¢(P) = 1 if, and only if, P is visible.

Finding the rank 1 primitives is equivalent to solving the
visibility problem. Instead of solving this hard problem, the
PLP algorithm uses simple heuristics. Our traversal algo-
rithm attempts to project the modeling primitives by layers,
that is, all primitives of rank 1, then 2, and so on. We do this
by always projecting the cell in the front F (we call the front,
the collection of cells that are immediate candidates for
projection) which is least likely to be occluded according to
its solidity values. Initially, the front is empty and, as cells
are inserted, we estimate its accumulated solidity value to
reflect its position during the traversal. (Cell solidity is
defined below in Section 3.2.) Every time a cell in the front
is projected, all of the geometry assigned to it is rendered.
In Fig. 2, we see a snapshot of our algorithm for each of
the spatial tessellations that we have implemented. The
cells which have not been projected in the Delaunay

2. Our cell-projection algorithm is different than the ones used in volume
rendering in the following ways: 1) In volume rendering, cells are usually
projected in back-to-front order, while, in our case, we project cells in
roughly front-to-back order; 2) more importantly, we do not keep a strict
depth-ordering of the cells during projection. This would be too restrictive,
and expensive, for our purposes.

3. Without loss of generality, assume P is in the view frustum.
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(a)

(b)

Fig. 2. The input geometry is a model of a seminar room. Snapshots of the PLP algorithm highlight the spatial tessellations that are used. The cells
which have not been projected in the (a) Delaunay triangulation and (b) the octree are highlighted in blue and green, respectively. At this point in the
algorithm, the geometry associated with the projected cells has been rendered.

triangulation Fig. 2a and the octree Fig. 2b are highlighted
in blue and green, respectively.

There are several types of budgeting that can be applied
to our technique, for example, a triangle-count budget can
be used to make it time-critical. For a given budget of k
modeling primitives, let 7 be the set of primitives our
traversal algorithm projects. This set, together with S, the
set of all primitives, and V, the set of visible primitives, can
be used to define several statistics that measure the overall
effectiveness of our technique. One relevant statistic is the
visible coverage ratio for a budget of k primitives, ¢;. This is
the number of primitives in the visible set that we actually
render, that is, ¢, = % If ¢, < 1, we missed rendering
some visible primitives.

PLP does not attempt to compute the visible set exactly.
Instead, it combines a budget with its solidity-based
polygon ordering. For a polygon budget of k, the best case
scenario would be to have ¢, = 1. Of course, this would
mean that PLP finds all of the visible polygons.

In addition to the visible coverage ratio &, another
important statistic is the number of incorrect pixels in the
image produced by the PLP technique. This provides a
measure as to how closely the PLP image represents the
exact image produced by rendering all of the primitives.

3.1 Occupancy-Based Spatial Tessellations

The underlying data structure used in our technique is a
decomposition of the 3-space covered by the scene into
disjoint cells. The characteristics we required in our spatial
decomposition were:

1. Simple traversal characteristics—must be easy and
computationally inexpensive to walk from cell to
cell.

2. Good projection properties—depth-orderable from
any viewpoint (with efficient, hopefully linear-time
projection algorithms available); easy to estimate
screen-space coverage.

3. Efficient space filler—given an arbitrary set of
geometry, it should be possible to sample the

geometry adaptively, that is, with large cells in
sparse areas, and smaller cells in dense areas.

4. Easy to build and efficient to store.

It is possible to use any of a number of different spatial
data structures, such as kd-trees, octrees, or Delaunay
triangulations. The particular use of one kind of spatial
tessellation may be related to the specific dataset character-
istics, although our experiments have shown that the
technique works with at least two types of tessellations
(octrees and Delaunay triangulations).

Overall, it seems that using low-stabbing triangulations,
such as those used by Held et al. [14] (see also Mitchell et al.
[18], [19] for theoretical properties of such triangulations),
which are also depth-sortable (see [27], [25], [5]) are a good
choice for occupancy-based tessellations. The main reason
for this is that, given any path in space, these triangulations
tend to minimize the traversal cost, allowing PLP to
efficiently find the visible surfaces.

In order to actually compute a spatial decomposition M
which adaptively samples the scene, we use a very simple
procedure, explained in Section 4. After M is built, we use a
naive assignment of the primitives in S to M by basically
scan-converting the geometry into the mesh. Each cell
¢; € M, has a list of the primitives from S assigned to it.
Each of these primitives is either completely contained in
¢; or it intersects one of its boundary faces. We use |¢;,
the number of primitives in cell ¢;, in the algorithm that
determines the solidity values of ¢;’s neighboring cells. In
a final pass over the data during preprocessing, we
compute the maximum number of primitives in any cell,
Pmaz = MaX;c)1. M |ci], to be used later as a scaling factor.

3.2 Priority-Based Traversal Algorithm
Cell-projection algorithms [27], [25], [5] are implemented
using queues or stacks, depending on the type of traversal
(e.g., depth-first versus breadth-first), and use some form of
restrictive dependency among cells to ensure properties of
the order of projection (e.g., strict back-to-front).
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(a)

(c)

Fig. 3. Occupancy-based spatial tessellation algorithm. The input geometry, a car with an engine composed of over 160K triangles, is shown in (a).
Using the vertices of the input geometry, we build an error-bounded octree, shown in (b). The centers of the leaf-nodes of the octree, shown in yellow

in (c), are used as the vertices of our Delaunay triangulation.

Unfortunately, such limited and strict projection strate-
gies do not seem general enough to capture the notion of
polygon layering, which we are using for visibility culling.
In order for this to be feasible, we must be able to selectively
stop (or at least delay) cell-projection around some areas,
while continuing in others. In effect, we would like to
project cells from M using a layering defined by the
primitives in S. The intuitive notion we are trying to
capture is as follows: If a cell ¢; has been projected, and
|¢i| = Pmae, then the cells behind should wait until (at least)

Algorithm Renderingloop()
1. while (empty(F) !=true)
c = min F)
projeci(c)
if ((reached budger() == true)
break;
for each n; n = cell_adjacent to(c)
if ((projected(n) == true)

continue;

X ox N2 A » N

p = update_solidity(n, c)

10. enqueue(n, P)

Fig. 4. Skeleton of the RenderinglLoop algorithm. Function min(F)
returns the minimum element in the priority queue F. Function project(c)
renders all the elements assigned to cell ¢; it also counts the number of
primitives actually rendered. Function reached_budget() returns true if
we have already rendered k primitives. Function cell_adjacent_to(c) lists
the cells adjacent to c. Function projected(n) returns true if cell n has
already been projected. Function update_solidity(n, ¢) computes the
updated solidity of cell n, based on the fact that ¢ is one of its neighbors,
and has just been projected. Function enqueue(n, p) places n in the
queue with a solidity p. If n was already in the queue, this function will
first remove it and reinsert it with the updated solidity value. See text for
more details on update_solidity().

a corresponding layer of polygons in all other cells have
been projected. Furthermore, in order to avoid any
expensive image-based tests, we would prefer to achieve
such a goal using only object-space tests.

In order to achieve this goal of capturing global solidity,
we extend the cell-projection framework by replacing the
fixed insertion/deletion strategy queue with a metric-based
queue (i.e.,, a priority queue) so that we can control how
elements get pushed and popped based on a metric we can
define. We call this priority queue, F, the front. The
complete traversal algorithm is shown in Fig. 4. In order to
completely describe it, we need to provide details on
solidity metrics and its update strategies.

Solidity. The notion of a cell’s solidity is at the heart of
our rendering algorithm shown in Fig. 4. At any given
moment, cells are removed from the front (i.e., priority
queue F) in solidity order, that is, the cells with the smallest
solidity are projected before the ones with larger solidity.
The solidity of a cell B used in the rendering algorithm is
not an intrinsic property of the cell by itself. Instead, we use
a set of conditions to roughly estimate the visibility
likelihood of the cell and make sure that cells more likely
to be visible get projected before cells that are less likely to
be visible.

The notion of solidity is related to how difficult it is for
the viewer to see a particular cell. The actual solidity value
of a cell B is defined in terms of the solidity of the cells that
intersect the closure of a segment from the cell B to the eye
point. The heuristic we have chosen to define the solidity
value of our cells is shown in Fig. 5.

We use several parameters in computing the solidity
value.

e The normalized number of primitives inside cell A4,
the neighboring cell (of cell B) that was just
projected. This number, which is necessarily be-
tween 0 and 1, is p‘i‘ The rationale is that the more
primitives cell A contains, the more likely it is to
obscure the cells behind it.

e Its position with respect to the viewpoint. We

transfer a cell’s solidity to a neighboring cell based
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float function update solidity(B, A)

/* refer to Fig. 6 */
A

L. p3=m+(ﬁ~ﬁ3)*p14

2. if ((star_shaped(V, B) == false)

3. pp = apply_penalty_factor(pp)
4. returnpp

Fig. 5. Function update_solidity(). This function works as if transferring
accumulated solidity from cell A into cell B. pp is the solidity value to be
computed for cell B. |A| is the number of primitives in cell A. py,.. is the
maximum number of primitives in any cell. ni; is the normal of the face
shared by cells A and B. p4 is the accumulated solidity value for cell A.
The maximum transfer happens if the new cell is well-aligned with the
view direction ¢ and in star-shaped position. If this is not the case,
penalties will be incurred to the transfer.

on how orthogonal the face that is shared between
cells is to the view direction ¥ (see Fig. 6).

We also give preference to neighboring cells that are star-
shaped [8] with respect to the viewpoint and the shared
face. That is, we attempt to force the cells in the front to
have their interior, e.g., their center point, visible from the
viewpoint along a ray that passes through the face shared
by the two cells. The reason for this is to avoid projecting
cells (with low solidity values) that are occluded by cells in
the front (with high solidity values) which have not been
projected yet. This is likely to happen as the front expands
away from an area in the scene where two densely occupied
regions are nearby; we refer to such an area as a bottleneck.
Examples of such areas can easily be seen in Fig. 7, which
highlights our 2D prototype implementation. Actually,
forcing the front to be star-shaped at every step of the way
is too limiting a rule. This would basically produce a
visibility ordering for the cells (such as the one computed in
[25], [5]). Instead, we simply penalize the cells in the front
that do not maintain this star-shaped quality.

4 |IMPLEMENTATION DETAILS

We have implemented a system to experiment with the
ideas presented in this paper. The code is written in C++,
with a mixture of Tcl/Tk and OpenGL for visualization. In
order to access OpenGL functionality in a Tcl/Tk applica-
tion, we use Togl [20]. In all, we have about to 10,000 lines of
code. The code is very portable, and the exact same source
code compiles and runs under IBM AIX, SGI IRIX, Linux,
and Microsoft Windows NT. See Fig. 8 for a screen shot of
our graphical user interface.

One of the reasons for the large amount of code actually
comes from our flexible benchmarking capabilities. Among
other functionality, our system is able to record and replay
scene paths; automatically compute several different statis-
tics about each frame as they are rendered (e.g., number of
visible triangles, incorrect pixels); compute PLP traversals
step-by-step; and “freeze” in the middle of a traversal to
allow for the study of the traversal properties from different
viewpoints.

v

Fig. 6. Solidity Transfer. After projecting cell A, the traversal algorithm
will add cells B and C to the front. Based upon the current viewing
direction #, cell B will accumulate more solidity from A than will cell C,
however, C will likely incur the non-star-shaped penalty. nz and n¢: are
the (respective) normals of the faces shared by the cell A’s neighboring
cells. Refer to Fig. 5 for the transfer calculation.

Here is a brief discussion of some of the important
aspects of our implementation:

4.1 Rendering Data Structures

At this time, the main rendering primitive in our system is
the triangle. In general, we accept and use “triangle soups”
as our input. For each triangle, we save pointers to its
vertices (which include color information) and a few flags,
one of which is used to mark whether it has been rendered
in the current traversal. At this point, we do not make any
use of the fact that triangles are part of larger objects.
Triangles are assigned to cells and their renderings are
triggered by the actual rendering of a cell. Although
triangles can (in general) be assigned to more than one
cell, they will only be rendered once per frame. A cell might
get partially rendered in case the triangle budget is reached
while attempting to render that particular cell.

4.2 Traversal Data Structures and Rendering Loop

During rendering, cells need to be kept in a priority queue.
In our current implementation, we use an STL set to
actually implement this data structure. We use an object-
oriented design, which makes it easy for the traversal
rendering code to support different underlying spatial
tessellations. For instance, at this time, we support both
octree and Delaunay-based tessellations. Since we are using
C++, it is quite simple to do this. The following methods
need to be supported by any cell data structure (this list
only includes methods needed for the rendering traversal;
other methods are needed for initialization and triangle
assignment, and also for benchmarking):

e calculateInitialSolidityValues (int
Pmaz) —Uses the techniques presented in Section 3.2
for computing the initial solidity.

e getSolidity(), setSolidity (), getOrigi-
nalsolidity () —Uses the techniques presented
in Section 3.2 for updating the solidity values during
traversal. Solidity updates need to be adjusted for
different kinds of spatial tessellations.

We use these functions to define a comparator
class (1ess< >) that can be used by the STL set to
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(a)

(b)

(c)

()

Fig. 7. Priority-based traversal algorithm. In (a), the first cell, shown in green, gets projected. The algorithm continues to project cells based upon the
solidity values. Note that the traversal, in going from (b) to (c), has delayed projecting those cells with a higher solidity value (i.e., those cells less
likely to be visible) in the lower-left region of the view frustum. In (d), as the traversal continues, a higher priority is given to cells likely to have visible
geometry, instead of projecting the ones inside of high-depth complexity regions. Note that the star-shaped criterion was not included in our 2D

implementation.

sort the different cells. Each cell also has an internal
timestamp, which is used to guarantee a first-in first-
out behavior when there are ties with respect to the

solidity values.

e findCell (float vp[3])—Find the cell that con-
tains the viewpoint or returns that the viewpoint is
outside the convex hull of the tessellation. (In order
to jump start the traversal algorithm when the
viewpoint is outside the tessellation, we use the cell
that is closest to the viewpoint.)

e getGeometry VEC ()—Returns a reference to the
list of primitives inside this cell.

e getNeighbors_VEC () —Returns a reference to the
list of neighbors of this cell. (We also save the
direction which identifies the face the two cells
share. This is used to perform the solidity update on
the neighboring cells.)

Although simple and general, STL can add considerable
overhead to an implementation. In our case, the number of
cells in the front has been kept relatively small and we have
not noticed substantial slowdown due to STL.

The rendering loop is basically a straightforward
translation of the code in Fig. 4 into C++. Triangles are
rendered very naively, one by one. We mark triangles as
they are rendered in order to avoid overdrawing triangles
that get mapped to multiple cells. We also perform simple
backface culling, as well as view-frustum culling. We take
no advantage of triangle-strips, vertex arrays, or other
sophisticated OpenGL features.

4.3 Space Tessellation Code

This is quite possibly the most complicated part of our
implementation and it consists of two parts, one for each of
the two spatial tessellations we support. There is a certain
amount of shared code since it is always necessary to first
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Fig. 8. Snapshot of our Tcl/Tk graphical user interface.

compute an adaptive sampling from the scene, for which
we use a simple octree.

In more detail, in order to compute a spatial decomposi-
tion M, which adaptively samples the scene S, we use a
very simple procedure that, in effect, just samples S with
points, then (optionally) constructs M as the Delaunay
triangulation of the sample points, and, finally, assigns
individual primitives in S to M. Fig. 3 shows our overall
triangulation algorithm. Instead of accurately sampling the
actual primitives (Fig. 3a), such as is done in [15], we simply
construct an octree using only the original vertices (Fig. 3b);
we limit the size of the octree leaves, which gives us a
bound on the maximum complexity of our mesh.* Note
that, at this point, we do not have a space partitioning
where we can run PLP; instead, the octree provides a
hierarchical representation of space (i.e., the nodes of the
octree overlap and are nested).

Once the octree has been computed with the vertex
samples, we can generate two different types of subdivisions:

e Delaunay triangulation—We can use the (randomly
perturbed) center of the octree leaves as the vertices
of our Delaunay triangulation (Fig. 3c).

For this, we used ghull, software written at the
Geometry Center, University of Minnesota. Our
highly constrained input is bound to have several
degeneracies as all the points come from nodes of an
octree, therefore we randomly perturbed these
points and ghull had no problems handling them.

After M is built, we use a naive assignment of the
primitives in S to M by basically scan-converting
the geometry into the mesh. Each cell ¢; € M has a
list of the primitives from S assigned to it. Each of

4. 1) The resolution of the octree we use is very modest. By default, once
an octree node has a side shorter than 5 percent of the length of the
bounding box of S, it is considered a leaf node. This has been shown to be
quite satisfactory for all the experiments we have performed thus far. 2)
Even though primitives might be assigned to multiple cells of M (we use
pointers to the actual primitives), the memory overhead has been negligible.
See Section 5.1.

Fig. 9. Finding neighbors within the octree.

these primitives is either completely contained in ¢;,
or it intersects one of its boundary faces.

Each tetrahedron is represented by pointers to its
vertices. Adjacency information is also required, as
are a few flags for rendering purposes.

e Octree—Since we have already built an octree, it is
obvious that we can use the same octree to compute
a subdivision of space for PLP. Conceptually, this is
quite simple since the leaves of the octree are
guaranteed to form a subdivision of space. All that
is really needed is to compute neighborhood
information in the octree, for instance, looking at
Fig. 9, we need to find that node A is a “face”
neighbor of node I and J and vice-versa.

Samet [22] describes several techniques for neigh-
bor finding. The basic idea in finding the “face”
neighbor of a node is to ascend the octree until the
nearest common ancestor is found and to descend the
octree in search of the neighbor node. In descending
the octree, one needs to reflect the path taken while
going up (for details, see Table 3.11 in [22]).

One shortcoming with the technique as described
in [22] is that it is only possible to find a neighbor at
the same level or above (that is, it is possible to find
that A is the “right” neighbor of I, but it is not
possible to go the other way). A simple fix is to
traverse the tree from the bottom to the top and
allow the deeper nodes (e.g., I) to complete the
neighborhood lists of nodes up in the tree (e.g., A).

Regardless of the technique used for subdivision, for the
solidity calculations, we use |¢;|, the number of primitives in
cell ¢;, in the algorithm that determines the solidity values
of ¢;’s neighboring cells. In a final pass over the data during
preprocessing, we compute the maximum number of
primitives in any cell, pjq; = max;eq. jm ||, to be used
later as a scaling factor.

4.4 Computing the Exact Visible Set

A number of benchmarking features are currently included
in our implementation. One of the most useful is the
computation of the actual exact visible set. We estimate V by
using the well-known item buffer technique. In a nutshell,
we color all the triangles with different colors, render them,
and read the frame buffer back, recording which triangles
contributed to the image rendered. After rendering, all the
rank-1 triangles have their colors imprinted into the frame
buffer.
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Fig. 10. CITY results. (a) The top curve, labeled Exact, is the number of visible triangles for each given frame. The next four curves are the number of
visible triangles PLP finds with a given budget. From top to bottom, budgets of 10 percent, 5 percent, 2 percent, and 1 percent are reported. The
bottom curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering times in seconds for each curve shown in (a),
with the exception of the centroid sorting algorithm, which required 4-5 seconds per frame. (c) Image of all the visible triangles. (d) Image of the 10

percent PLP visible set.

4.5 Centroid-Ordered Rendering

In order to have a basis for comparison, we implemented a
simple ordering scheme based on sorting the polygons with
respect to their centroid and rendering them in that order
up to the specified budget. Our implementation of this
feature tends to be slow for large datasets, as it needs to sort
all of the triangles in S at each frame.

5 EXPERIMENTAL RESULTS

We performed a series of experiments in order to determine
the effectiveness of PLP’s visibility estimation. Our experi-
ments typically consist of recording a flight path consisting
of several frames for a given dataset, then playing back the
path while varying the rendering algorithm used. We have
four different strategies for rendering: 1) rendering every
triangle in the scene at each frame, 2) centroid-based
budgeting, 3) PLP with octree-based tessellation, and
4) PLP with Delaunay triangulation. During path playback,

we also change the parameters when appropriate (e.g.,
varying the polygon budget for PLP). Our primary bench-
mark machine is an IBM RS/6000 595 with a GXT800
graphics adapter. In all our experiments, rendering was
performed using OpenGL with Z-buffer and lighting
calculations turned on. In addition, all three algorithms
perform view-frustum and backface culling to avoid
rendering those triangles that clearly will not contribute to
the final image. Thus, any benefits provided by PLP will be
on top of the benefits provided by traditional culling
techniques.
We report experimental results on three datasets:

Room 306 of the Berkeley SODA Hall (ROOM). This
model has approximately 45K triangles (see Figs. 13 and
14) and consists of a number of chairs in what appears to
be a reasonably large seminar room. This is a difficult
model to perform visibility culling on since the number
of visible triangles along a path varies quite a bit with
respect to the total size of the dataset, in fact, in the path
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Fig. 11. 5CBEM results. (a) The top curve, labeled Exact, is the number of visible triangles for each given frame. The next four curves are the number
of the visible triangles PLP finds with a given budget. From top to bottom, budgets of 10 percent, 5 percent, 2 percent, and 1 percent are reported.
The bottom curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering times in seconds for each curve shown in
(a), with the exception of the centroid sorting algorithm, which required 6-7 seconds per frame. (c) Image of all the visible triangles. (d) Image of the

10 percent PLP visible set.

we use, this number ranged from 1 percent to 20 percent
of the total number of triangles.

City Model (CITY). The city model is composed of over
500K triangles (Fig. 10c). Each house has furniture inside
and, while the number of triangles is large, the actual
number of visible triangles per frame is quite small.

5 Car Body/Engine Model (5CBEM). This model has over
810K triangles (Fig. 11c). It is composed of five copies of
an automobile body and engine.

5.1 Preprocessing
Preprocessing involves computing an octree of the model,
then (optionally) computing a Delaunay triangulation of
points defined by the octree (which is performed by calling
ghull), and, finally, assigning the model geometric
primitives to the spatial tessellation generated by ghull.
For the CITY model, preprocessing took 70 seconds and
generated 25K tetrahedra. Representing each tetrahedron
requires less than 100 bytes (assuming the cost of
representing the vertices is amortized among several
tetrahedra), leading to a memory overhead for the spatial
tessellation on the order of 2.5MB. Another source of
overhead comes from the fact that some triangles might be
multiply assigned to tetrahedra. The average number of
times a triangle is referenced is 1.80, costing 3.6 MB of
memory (used for triangle pointers). The total memory

overhead (on top of the original triangle lists) is 6.1 MB,
while storing all the triangles alone (the minimal amount of
memory necessary to render them) already costs 50 MB. So,
PLP costs an extra 12 percent in memory overhead.

For the 5CBEM model, preprocessing took 135 seconds
(also including the ghull time) and generated 60K
tetrahedra. The average number of tetrahedra that points
to a triangle is 2.13, costing 14.7 MB of memory. The total
memory overhead is 20 MB and storing the triangles takes
approximately 82 MB. So, PLP costs an extra 24 percent in
memory overhead.

Since PLP’s preprocessing only takes a few minutes, the
preprocessing is performed online when the user requests a
given dataset. We also support offline preprocessing by
simply writing the spatial tessellation and the triangle
assignment to a file.

5.2 Rendering

We performed several rendering experiments. During these
experiments, the flight path used for the 5CBEM is
composed of 200 frames. The flight path for the CITY has
160 frames. The flight path for the ROOM has 235 frames.
For each frame of the flight path, we computed the
following statistics:

1. The exact number of visible triangles in the frame,
estimated using the item-buffer technique.
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TABLE 1
Visible Coverage Ratio
Dataset/Budget | 1% | 2% | 5% | 10%
City Model || 51% | 66% | 80% | 90%
5 Car Body/Engine Model || 44% | 55% | 67% | 76%

The table summarizes ¢, for several budgets on two large models. The
city model has 500K polygons and the five car body/engine model has
810K polygons. For a budget of 1 percent, PLP is able to find over 40
percent of the visible polygons in either model.

7. Time the centroid-based budgeting took to render a

given frame.

Several of the results (in particular, 1, 2, 3, 5, and 6) are
shown in Table 1 and Figs. 10 and 11, which show PLP’s
overall performance and how it compares to the centroid-
sorting based approach. The centroid rendering time (7) is
mostly frame-independent since the time is dominated by
the sorting, which takes 6-7 seconds for the 5CBEM model,
and 4-5 seconds for the CITY model. We collected the
number of wrong pixels (4) on a frame-by-frame basis. We
report worst-case numbers. For the CITY model, PLP gets as
many as 4 percent of the pixels wrong; for the 5SCBEM

model, this number goes up and PLP misses as many as
12 percent of the pixels in any given frame.

The other figures focus on highlighting specific features
of our technique, and compare the octree and Delaunay-
based tessellations.

2. The number of visible triangles PLP was able to find
for a given triangle budget. We varied the budget as
follows: 1 percent, 2 percent, 5 percent, and
10 percent of the number of triangles in the dataset.

3. The number of visible triangles the centroid-based
budgeting was able to find under a 10 percent
budget.

4. The number of wrong pixels generated by PLP.

5. Time (all times are reported in seconds) to render the
whole scene.

6. Time PLP took to render a given frame.

5.2.1 Speed and Accuracy Comparisons on the CITY
Model

Fig. 12c shows the rendering times of the different
algorithms and compares them with the rendering of the
entire model geometry. For a budget of 10 percent, the
Delaunay triangulation was over two times faster, while the
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Fig. 12. This figure illustrates the quantitative differences among the different rendering techniques for each frame of the CITY path. In each plot, we
report results for each rendering technique (centroid, octree-based PLP, and Delaunay-based PLP, respectively). In (a), we show the percentage of
the visible polygons that each technique was able to find. In (b), we show the number of incorrect pixels in the images computed with each technique.
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Fig. 13. This figure illustrates the qualitative differences among the different rendering techniques on each frame of the ROOM path. The three
images show the actual rendered picture achieved with each rendering technique (centroid, octree-based PLP, and Delaunay-based PLP

respectively).

octree approach was about four times faster. We have not
included the timings for the centroid-sorting method as our
implementation was straightforward and naively sorted all
of the triangles for each of the frames. Fig. 12a highlights the
effectiveness of our various methods for a budget of
10 percent of the total number of triangles, showing the
number of visible triangles that were found. The magenta
curve shows the exact number of visible triangles for each
frame of this path. In comparison, the Delaunay triangula-
tion was very successful, finding an average of over
90 percent of the visible triangles. The octree was not as
good in this case and averaged only 64 percent. However,
this was still considerably better than the centroid-sorting
approach, which averaged only 30 percent. Fig. 12b high-
lights the effectiveness of the PLP approaches. In the worst
case, the Delaunay triangulation version produced an
image with 4 percent of the pixels incorrect with respect
to the actual image. The octree version of PLP was a little
less effective, generating images with at most 9 percent of
the pixels incorrect. However, in comparison with the
centroid-sorting method, which rendered images with

between 7-40 percent of the pixels incorrect, PLP has done
very well.

5.2.2 Visual and Quantitative Quality on the ROOM
Model

Figs. 13 and 14 show one of the viewpoints for the path in
the Seminar Room dataset. Most of the geometry is made
up of the large number of chairs, with relatively few
triangles being contributed by the walls and floor. From a
viewpoint on the outside of this room, the walls would be
very good occluders and would help make visibility culling
much easier. However, once the viewpoint is in the interior
sections of this room, all of these occluders are invalidated
(except with respect to geometry outside of the room), and
the problem becomes much more complicated. For a budget
of 10 percent of the triangles, we provide figures to
illustrate the effectiveness of our PLP approaches, as well
as the centroid-sorting algorithm. Fig. 13 shows the
images rendered by the centroid method, the octree
method, and the Delaunay triangulation method, respec-
tively. The image produced by the octree in this case is
the best overall, while the centroid-sorting image clearly
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(c)

Fig. 14. This figure illustrates the qualitative differences among the different rendering techniques on a single frame of the ROOM. The three images
show the missed polygons, rendered in red, to highlight which portion of the image a given technique rendered incorrectly.

demonstrates the drawback of using such an approach. To
better illustrate where the algorithms are failing, Fig. 14
shows exactly the pixels which were drawn correctly, in
white, and those drawn incorrectly, in red. Further
quantitative information can be seen in Fig. 15. In fact, it
is quite interesting that, in terms of the overall number of
visible primitives, the centroid technique actually does
quite well. On the other hand, it keeps rendering a large
number of incorrect pixels.

5.2.3 Summary of Results

PLP seems to do quite a good job at finding visible triangles.
In fact, looking at Figs. 10a and 11a, we see a remarkable
resemblance between the shape of the curve plotting the
exact visible set and PLP’s estimations. In fact, as the budget
increases, the PLP curves seem to smoothly converge to the
exact visible set curve. It is important to see that this is not a
random phenomena. Notice how the centroid-based bud-
geting curve does not resemble the visible set curves.
Clearly, there seems to be some relation between our
heuristic visibility measure (captured by the solidity-based

traversal) and actual visibility, which cannot be captured by
a technique that relies on distance alone.

Still, we would like PLP to do a better job at approximat-
ing the visible set. For this, it is interesting to see where it
fails. In Figs. 10d and 11d, we have 10 percent-budget
images. Notice how PLP loses triangles in the back of the
cars (in Fig. 11d) since it estimates them to be occluded.

With respect to speed, PLP has very low overhead. For
5CBEM, at 1 percent, we can render useful images at over
10 times the rate of the completely correct image and, for
CITY, at 5 percent, we can get 80 percent of the visible set
and still have four times faster rendering times.

Overall our experiments have shown that: 1) PLP can be
applied to large data, without requiring large amounts of
preprocessing; 2) PLP is able to find a large amount of
visible geometry with a very low budget; 3) PLP is useful in
practice, making it easier to inspect large objects and in
culling geometry that cannot be seen.

6 ALGORITHM EXTENSIONS AND FUTURE WORK

In this section, we mention some of the possible extensions
of this work:
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Fig. 15. This figure illustrates the quantitative differences among the
different rendering techniques on a single frame of the ROOM. In each
plot, we report results for each rendering technique (centroid, octree-
based PLP, and Delaunay-based PLP, respectively). In (a), we show the
percentage of the visible polygons that each technique was able to find.
In (b), we show the number of incorrect pixels in the images computed
with each technique.

1. Occlusion-culling techniques which rely on being
able to use the z-buffer values to cull geometry, e.g.,
HOM [29], HP’s occlusion-culling hardware [23], can
potentially be sped up considerably with PLP.

Take, for instance, the HP fx6 graphics accel-

erator. Severson [24] estimates that performing an
occlusion-query with a bounding box of an object on
the fx6 is equivalent to rendering about 190 25-pixel
triangles. This indicates that a naive approach,
where objects are constantly checked for being
occluded, might actually hurt performance and not
achieve the full potential of the graphics board. In
fact, it is possible to slow down the fx6 considerably
if one is unlucky enough to project the polygons in a
back to front order (because none of the primitives
would be occluded).

Since PLP is able to determine a large number of
the visible polygons at low cost in terms of projected
triangles (e.g., PLP can find over 40 percent of the
visible polygons while only projecting 1 percent of
the original geometry). An obvious approach would
be to use PLP’s traversal for rendering a first
“chunk” of geometry, then use the hardware to cull
away unprojected geometry. Assuming PLP does its
job, the z-buffer should be relatively complete, and a
much larger percentage of the tests should lead to
culling.

A similar argument is valid for using PLP with
HOM [29]. In this case, PLP can be used to replace
the occluder selection piece of the algorithm, which
is time consuming, and involves a nontrivial
“occlusion preserving simplification” procedure.

2. Another potential use of the PLP technique is in
level-of-detail (LOD) selection. The PLP traversal
algorithm can estimate the proportion of a model
that is currently visible, which would allow us to
couple visibility with the LOD selection process, as
opposed to relying only on screen-space coverage
tests.

3. Related to 1 and 2, it would be interesting to explore
techniques which automatically can adjust the PLP
budget to the optimum amount to increase the
quality of the images and, at the same time, decrease
the rendering cost. Possibly, ideas from [12] could be
adapted to our framework.

Besides the extensions cited above, we would like to
better understand the relation of the solidity measure to the
actual set of rendered polygons. Changing our solidity
value computation could possibly lead to even better
performance, for example, accounting for front facing
triangles in a given cell by considering their normals with
respect to the view direction. The same is true for the mesh
generation. Another class of open problems are related to
further extensions in the front-update strategies. At this
time, a single cell is placed in the front, after which the PLP
traversal generates an ordering for all cells. We cut this tree
by using a budget. It would be interesting to exploit the use
of multiple initial seeds. Clearly, the better the initial guess
of what’s visible, the easier it is to continue projecting
visible polygons.

7 CONCLUSIONS

In this paper, we proposed the Prioritized-Layered Projec-
tion algorithm. PLP renders geometry by carving out space
along layers while keeping track of the solidity of these
layers as it goes along. PLP is very simple, requiring only a
suitable tessellation of space where solidity can be
computed (and is meaningful). The PLP rendering loop is
a priority-based extension of the traversal used in depth-
ordering cell projection algorithms developed originally for
volume rendering.

As shown in this paper, PLP can be used with many
different spatial tessellations, for example, octrees or
Delaunay triangulations. In our experiments, we have
found that the octree method is typically faster than the
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Delaunay method due to its simple structure. However, it
does not appear to perform as well as the Delaunay
triangulation in terms of capturing our notion of polygon
layering.

We use PLP as our primary visibility-culling algorithm.
Two things are most important to us. First, there is no
offline preprocessing involved, that is, no need to simplify
objects, pregenerate occluders, and so on. Second, its
flexibility to adapt to multiple machines with varying
rendering capabilities. In essence, in our application, we
were mostly interested in obtaining good image accuracy
across a large number of machines with minimal time
and space overheads. For several datasets, we can use
PLP to render only 5 percent of a scene and still be able
to visualize over 80 percent of the visible polygons. If this
is not accurate enough, it is simple to adjust the budget
for the desired accuracy. A nice feature of PLP is that the
visible set is stable, that is, the algorithm does not have
major popping artifacts as it estimates the visible set from
nearby viewpoints.
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