142 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

The Lazy Sweep Ray Casting Algorithm for
Rendering Irregular Grids

Claudio T. Silva and Joseph S.B. Mitchell

Abstract —Lazy Sweep Ray Casting is a fast algorithm for rendering general irregular grids. It is based on the sweep-plane
paradigm, and it is able to accelerate ray casting for rendering irregular grids, including disconnected and nonconvex (even with
holes) unstructured irregular grids with a rendering cost that decreases as the “disconnectedness” decreases. The algorithm is
carefully tailored to exploit spatial coherence even if the image resolution differs substantially from the object space resolution.

Lazy Sweep Ray Casting has several desirable properties, including its generality, (depth-sorting) accuracy, low memory
consumption, speed, simplicity of implementation, and portability (e.g., no hardware dependencies).

We establish the practicality of our method through experimental results based on our implementation, which is shown to be
substantially faster (by up to two orders of magnitude) than other algorithms implemented in software.

We also provide theoretical results, both lower and upper bounds, on the complexity of ray casting of irregular grids.

Index Terms —Volumetric data, irregular grids, volume rendering, sweep algorithms, ray tracing, computational geometry, scientific

visualization.

1 INTRODUCTION

F OR the visualization of three-dimensional data, whether
scalar or vector, direct volume rendering has emerged
as a leading, and often preferred, method. While the surface
rendering method can be applied to visualize volumetric
data, they require the extraction of some structure, such as
isosurfaces or streamlines, which may bias the resulting
visualization. In rendering volumetric data directly, we
treat space as composed of semitransparent material that
can emit, transmit, and absorb light, thereby allowing one
to “see through” (or see inside) the data [43], [22], [21]. VolI-
ume rendering also allows one to render surfaces, and, in
fact, by changing the properties of the light emission and
absorption, different lighting effects can be achieved [18].

The most common input data type is a regular (Cartesian)
grid of voxels. Given a general scalar field in 9?3, one can use
a regular grid of voxels to represent the field by regularly
sampling the function at grid points (i, 4j, Ak), for integers
i, j, k, and some scale factor A € R, thereby creating a regu-
lar grid of voxels. However, a serious drawback of this ap-
proach arises when the scalar field is disparate, having non-
uniform resolution with some large regions of space having
very little field variation, and other very small regions of
space having very high field variation. In such cases, which
often arise in computational fluid dynamics and partial
differential equation solvers, the use of a regular grid is
infeasible, since the voxel size must be small enough to
model the smallest “features” in the field. Instead, irregular
grids (or meshes), having cells that are not necessarily uni-
form cubes, have been proposed as an effective means of
representing disparate field data.

« The authors are with the Department of Applied Mathematics and Statis-
tics, State University of New York at Stony Brook, Stony Brook, NY.
11794-3600. E-mail: {csilva, jshm}@ams.sunysb.edu.

For information on obtaining reprints of this article, please send e-mail to:
transvcg@computer.org, and reference IEEECS Log Number 104719.0.

Irregular grid data comes in several different formats
[37], [41]. One very common format has been curvilinear
grids, which are structured grids in computational space that
have been “warped” in physical space, while preserving the
same topological structure (connectivity) of a regular grid.
However, with the introduction of new methods for gener-
ating higher quality adaptive meshes, it is becoming in-
creasingly common to consider more general unstructured
(noncurvilinear) irregular grids, in which there is no im-
plicit connectivity information. Furthermore, in some appli-
cations disconnected grids arise.

Rendering of irregular grids has been identified as an
especially important research area in visualization [17]. The
basic problem consists of evaluating a volume rendering
equation [21] for each pixel of the image screen. To do this,
it is necessary to have, for each line of sight (ray) through
an image pixel, the sorted order of the cells of the mesh
along the ray. This information is used to evaluate the
overall integral in the rendering equation.

In this paper, we present and analyze the Lazy Sweep Ray
Casting algorithm, a new method for rendering general
meshes, which include unstructured, possibly disconnected,
irregular grids. A primary contribution of the Lazy Sweep
Ray Casting (LSRC) algorithm is a new method for accurately
calculating the depth-sorted ordering. LSRC is based on ray
casting and employs a sweep-plane approach, as proposed
by Giertsen [15], but introduces several new ideas that
permit a faster execution, both in theory and in practice.

This paper is built upon the paper of Silva, Mitchell, and
Kaufman [36], where the fundamentals of our method were
developed. In the months since the writing of [36], we have
made several improvements and extensions; as we report
our latest results here, we will compare them to the results
in the earlier work of [36].

1077-2626/97/$10.00 © 1997 IEEE

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 143

1.1 Definitions and Terminology

A polyhedron is a closed subset of %* whose boundary con-
sists of a finite collection of convex polygons (two-faces, or
facets) whose union is a connected two-manifold. The edges
(one-faces) and vertices (zero-faces) of a polyhedron are sim-
ply the edges and vertices of the polygonal facets. A convex
polyhedron is called a polytope. A polytope having exactly
four vertices (and four triangular facets) is called a simplex
(tetrahedron). A finite set S of polyhedra forms a mesh (or an
unstructured, irregular grid) if the intersection of any two
polyhedra from S is either empty, a single common edge, a
single common vertex, or a single common facet of the two
polyhedra; such a set S is said to form a cell complex. The
polyhedra of a mesh are referred to as the cells (or three-
faces). If the boundary of a mesh S is also the boundary of
the convex hull of S, then S is called a convex mesh; other-
wise, it is called a nonconvex mesh. If the cells are all sim-
plices, then we say that the mesh is simplicial.

We are given a mesh S. We let ¢ denote the number of
connected components of S. If ¢ = 1, we say that the mesh is
connected; otherwise, the mesh is disconnected. We let n de-
note the total number of edges of all polyhedral cells in the
mesh. Then, there are O(n) vertices, edges, facets, and cells.

For some of our theoretical discussions, we will be as-
suming that the input mesh is given in any standard data
structure for cell complexes (e.g., a facet-edge data structure
[10]), so that each cell has pointers to its neighboring cells,
and basic traversals of the facets are also possible by follow-
ing pointers. If the raw data does not have this topological
information already encoded in it, then it can be obtained by
a preprocessing step, using basic hashing methods.

Our implementation of the LSRC algorithm relies on
only a very simple and economical structure in the input
data. In particular, we store with each vertex v its “use set”
(see [32]), which is simply a list of the cells of the mesh that
“use” v (have v as a vertex of the cell). Note that this re-
quires only O(n) storage, since the total size of all use sets is
bounded by the sum of the sizes of the cells.

The image space consists of a screen of N-by-N pixels.
We let p;; denote the ray from the eye of the camera
through the center of the pixel indexed by (i, j). We let k; ;

denote the number of facets of S that are intersected by p; ;.

Finally, we let k = Z i jKi; be the total complexity of all ray

casts for the image. We refer to k as the output complexity.
Clearly, Q(k) is a lower bound on the complexity of ray
casting the mesh. Note that k = O(Nzn), since each of the N’
rays intersects at most O(n) facets.

1.2 Related Work

A simple approach for handling irregular grids is to resam-
ple them, thereby creating a regular grid approximation
that can be rendered by conventional methods [28], [42]. In
order to achieve high accuracy, it may be necessary to sam-
ple at a very high rate, which not only requires substantial
computation time, but may well make the resulting grid far
too large for storage and visualization purposes. Several
rendering methods have been optimized for the case of
curvilinear grids; in particular, Frihauf [12] has developed
a method in which rays are “bent” to match the grid de-

formation. Also, by exploiting the simple structure of cur-
vilinear grids, Mao et al. [20] have shown that these grids
can be efficiently resampled with spheres and ellipsoids
that can be presorted along the three major directions and
used for splatting.

A direct approach to rendering irregular grids is to com-
pute the depth sorting of cells of the mesh along each ray
emanating from a screen pixel. For irregular grids, and es-
pecially for disconnected grids, this is a nontrivial computa-
tion to do efficiently. One can always take a naive ap-
proach, and, for each of the N rays, compute the O(n) in-
tersections with cell boundary facets in time O(n), and then
sort these crossing points (in O(nlogn) time). However,

this results in overall time O(Nzn log n), and does not take
advantage of coherence in the data: The sorted order of
cells crossed by one ray is not used in any way to assist in
the processing of nearby rays.

Garrity [14] has proposed a preprocessing step that identi-
fies the boundary facets of the mesh. When processing a ray
as it passes through interior cells of the mesh, connectivity
information is used to move from cell to cell in constant time
(assuming that cells are convex and of constant complexity).
But every time that a ray exits the mesh through a boundary
facet, it is necessary to perform a “FirstCell” operation to
identify the point at which the ray first reenters the mesh.
Garrity does this by using a simple spatial indexing scheme
based on laying down a regular grid of voxels (cubes) on top
of the space, and recording each facet with each of the voxels
that it intersects. By casting a ray in the regular grid, one can
search for intersections only among those facets stored with
each voxel that is stabbed by the ray.

The FirstCell operation is in fact a “ray shooting query,”
for which the field of computational geometry provides some
data structures: One can either answer queries in time O(log n),

at a cost of O(n“s) preprocessing and storage [2], [4], [8],

[27], or answer queries in worst-case time O(n3/4), using a

data structure that is essentially linear in n [3], [33]. In terms
of worst-case complexity, there are reasons to believe that
these tradeoffs between query time and storage space are
essentially the best possible. Unfortunately, these algo-
rithms are rather complicated, with high constants, and
have not yet been implemented or shown to be practical.
(Certainly, data structures with super-linear storage costs are
not practical in volume rendering.) This motivated Mitchell
et al. [23] to devise methods of ray shooting that are “query
sensitive”—the worst-case complexity of answering the
query depends on a notion of local combinatorial complex-
ity associated with a reasonable estimate of the “difficulty” of
the query, so that “easy” queries take provably less time than
“hard” queries. Their data structure is based on octrees (as
in [31]), but with extra care needed to keep the space com-
plexity low, while achieving the provably good query time.

Uselton [39] proposed the use a Z-buffer to speed up
FirstCell; Ramamoorthy and Wilhelms [30] point out that
this approach is only effective 95 percent of the time. They
also point out that 35 percent of the time is spent checking
for exit cells and 10 percent for entry cells. Ma [19] de-
scribes a parallelization of Garrity’s method. One of the

144 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

disadvantages of these ray casting approaches is that they
do not exploit coherence between nearby rays that may
cross the same set of cells.

Another approach for rendering irregular grids is the
use of projection (“feed-forward”) methods [22], [45], [34],
[38], in which the cells are projected onto the screen, one-
by-one, in a visibility ordering, incrementally accumulating
their contributions to the final image. One advantage of
these methods is the ability to use graphics hardware to
compute the volumetric lighting models in order to speed
up rendering. Another advantage of this approach is that it
works in object space, allowing coherence to be exploited
directly: By projecting cells onto the image plane, we may
end up with large regions of pixels that correspond to rays
having the same depth ordering, and this is discovered
without explicitly casting these rays. However, in order for
the projection to be possible, a depth ordering of the cells
has to be computed, which is, of course, not always possi-
ble; even a set of three triangles can have a cyclic overlap.
Computing and verifying depth orders is possible in
O(n4/3+s) time [1], [7], [9], where € > 0 is an arbitrarily small
positive constant. In case no depth ordering exists, it is an
important problem to find a small number of “cuts” that
break the objects in such a way that a depth ordering does
exist; see [7], [5]. BSP trees have been used to obtain such a
decomposition, but can result in a quadratic number of
pieces [13], [26]. However, for some important classes of
meshes (e.g., rectilinear meshes and Delaunay meshes [11]),
it is known that a depth ordering always exists, with re-
spect to any viewpoint. This structure has been exploited
by Max et al. [22]. Williams [45] has obtained a linear-time
algorithm for visibility ordering convex (connected) acyclic
meshes whose union of (convex) cells is itself convex, as-
suming a visibility ordering exists. Williams also suggests
heuristics that can be applied in case there is no visibility
ordering or in the case of nonconvex meshes, (e.g., by tetra-
hedralizing the nonconvexities which, unfortunately, may
result in a quadratic number of cells). In [40], techniques are
presented where no depth ordering is strictly necessary
and, in some cases, calculated approximately. Very fast
rendering is achieved by using graphics hardware to proj-
ect the partially sorted faces.

A recent scanline technique that handles multiple and
overlapping grids is presented in [44]. They process the set
of polygonal facets of cells, by first bucketing them accord-
ing to which scanline contains the topmost vertex, and then
maintaining a “y-actives list” of polygons present at each
scanline, as they sweep from top to bottom (in y). Then, on
each scanline, they scan in x, bucketing polygons according
to their left extent, and then maintaining (via merging) a
z-sorted list of polygons, as they scan from left to right. The
method has been parallelized and used within a mul-
tiresolution hierarchy, based on a kD tree.

Two other important references on rendering irregular
grids have not yet been discussed here—Giertsen [15] and
Yagel et al. [47]. We elaborate on these in the next section,
as they are closely related to our method.

In summary, projection methods are potentially faster
than ray casting methods, since they exploit spatial coher-
ence. However, projection methods give inaccurate ren-
derings if there is no visibility ordering, and methods to
break cycles are either heuristic in nature or potentially
costly in terms of space and time.

2 SWEEP-PLANE APPROACHES

A standard algorithmic paradigm in computational ge-
ometry is the “sweep” paradigm [29]. Commonly, a sweep-
line is swept across the plane, or a sweep-plane is swept
across three-space. A data structure, called the sweep struc-
ture (or status), is maintained during the simulation of the
continuous sweep, and at certain discrete events (e.g., when
the sweep-line hits one of a discrete set of points), the
sweep structure is updated to reflect the change. The idea is
to localize the problem to be solved, solving it within the
lower dimensional space of the sweep-line or sweep-plane.
By processing the problem according to the systematic
sweeping of the space, sweep algorithms are able to exploit
spatial coherence in the data.

2.1 Giertsen's Method

Giertsen’s pioneering work [15] was the first step in optimizing
ray casting by making use of coherency in order to speed up ren-
dering. He performs a sweep of the mesh in three-space, using a
sweep-plane that is parallel to the x-z plane. Here, the viewing
coordinate system is such that the viewing plane is the x-y plane,
and the viewing direction is the z direction; see Fig. 1. The algo-
rithm consists of the following steps:

1) Transform all vertices of S to the viewing coordinate
system.

2) Sort the (transformed) vertices of S by their y-
coordinates; put the ordered vertices, as well as the
y-coordinates of the scanlines for the viewing image,
into an event priority queue, implemented in this case
as an array, A.

3) Initialize the Active Cell List (ACL) to empty. The ACL
represents the sweep status; it maintains a list of the
cells currently intersected by the sweep-plane.

4) While A is not empty, do:

a) Pop the event queue: If the event corresponds to a
vertex, v, then go to b; otherwise, go to c.

b) Update ACL: Insert/delete, as appropriate, the
cells incident on v. (Giertsen assumed that the cells
are disjoint, so each v belongs to a single cell.)

¢) Render current scanline: Giertsen uses a memory
hash buffer, based on a regular grid of squares in
the sweep-plane, allowing a straightforward cast-
ing of the rays that lie on the current scanline.

By sweeping three-space, Giertsen reduces the ray cast-
ing problem in three-space to a two-dimensional cell sort-
ing problem.

Giertsen’s method has several advantages over previous
ray casting schemes. First, there is no need to maintain con-
nectivity information between cells of the mesh. (In fact, he
assumes the cells are all disjoint.) Second, the computation-
ally expensive ray shooting in three-space is replaced by a
simple walk through regular grid cells in a plane. Finally,
the method is able to take advantage of coherence from one
scanline to the next.

However, there are some drawbacks to the method,
including:

1) The original data is coarsened into a finite resolution
buffer (the memory hashing buffer) for rendering,

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 145

Viewing Plane

Sweep Plane
Z axis

Fig. 1. A sweep-plane (perpendicular to the y-axis) used in sweeping
three-space.

basically limiting the resolution of the rendering, and
possibly creating an aliasing effect. While one could
simply increase the size of the buffer, this approach is
impractical in large datasets, where the cell size
variation can be on the order of 1:100,000. Further,
Giertsen mentions that when cells get mapped to the
same location, this is considered a degenerate case,
and the later cells are ignored; however, this resolu-
tion might lead to temporal aliasing when calculating
multiple images.

2) Another disadvantage when comparing to other ray
casting techniques is the need to have two copies of the
dataset, as the transformation and sorting of the cells
must be done before the sweeping can be started. (Note
that this is also a feature of cell projection methods.)
One cannot just keep retransforming a single copy,
since floating point errors could accumulate.

2.2 Yagel et al.’s Method

In [46], [47], Yagel et al. proposed a method that uses a
sweep-plane parallel to the viewing plane. At each position
of the sweep-plane, the plane is intersected with the grid,
resulting in a two-dimensional slice, each of whose cells are
then scan-converted using the graphics hardware in order
to obtain an image of that slice, which can then be com-
posited with the previously accumulated image that re-
sulted from the sweep so far. Several optimizations are pos-
sible. For example, instead of performing a full sort along
the z-direction, a bucketing technique can be used. Also, the
intersections of mesh edges with the slices can be acceler-
ated by storing incremental step sizes (Ax and Ay) corre-
sponding to the interslice distance (Az); however, this speedup
requires considerably more memory. Furthermore, the stor-
age of the polygons in any given slice requires a significant
amount of memory (e.g., 13.4 MB for the Blunt Fin [47]).

This method can handle general polyhedral grids with-
out having to compute adjacency information, and, con-
ceptually, it can generate high quality images at the ex-
pense of “slice oversampling.” The simplicity of the method
makes it very attractive for implementation and use.
(Ideally, the user should have access to high-performance
graphics hardware and an abundance of memory.)

3 THE LAZY SWEEP RAY CASTING ALGORITHM
The design of our new method is based on two main goals:

1) The depth ordering of the cells should be correct
along the rays corresponding to every pixel; and

2) The algorithm should be as efficient as possible, tak-
ing advantage of structure and coherence in the data.

With the first goal in mind, we chose to develop a new
ray casting algorithm, in order to be able to handle cycles
among cells (a case causing difficulties for projection meth-
ods). To address the second goal, we use a sweep approach,
as did Giertsen, in order to exploit both interscanline and
interray coherence. Our algorithm has the following ad-
vantages over Giertsen’s:

1) It avoids the explicit transformation and sorting
phase, thereby avoiding the storage of an extra copy
of the vertices;

2) It makes no requirements or assumptions about the
level of connectivity or convexity among cells of the
mesh; however, it does take advantage of structure in
the mesh, running faster in cases that involve meshes
having convex cells and convex components;

3) It avoids the use of a hash buffer plane, thereby al-
lowing accurate rendering even for meshes whose
cells greatly vary in size;

4) It is able to handle parallel and perspective projection
within the same framework, without explicit trans-
formations.

3.1 Performing the Sweep

Our sweep method, like Giertsen’s, sweeps space with a
sweep-plane that is orthogonal to the viewing plane (the x-
y plane), and parallel to the scanlines (i.e., parallel to the x-z
plane).

Events occur when the sweep-plane hits vertices of the
mesh S. But, rather than sorting all of the vertices of S in
advance and placing them into an auxiliary data structure
(thereby at least doubling the storage requirements), we
maintain an event queue (priority queue) of an appropriate
(small) subset of the mesh vertices.

A simple (linear-time) preprocessing pass through the
data readily identifies the set of vertices on the boundary of
the mesh. We initialize the event queue with these bound-
ary vertices, prioritized according to the magnitude of their
inner product (dot product) with the vector representing
the y-axis (“up”) in the viewing coordinate system (i.e., ac-
cording to their y-coordinates). (We do not explicitly trans-
form coordinates.) Furthermore, at any given instant, the
event queue only stores the set of boundary vertices not yet
swept over, plus the vertices that are the upper endpoints
of the edges currently intersected by the sweep-plane. In
practice, the event queue is relatively small, usually ac-
counting for a very small percentage of the total data size.
As the sweep takes place, new vertices (honboundary ones)
will be inserted into and deleted from the event queue each
time the sweep-plane hits a vertex of S.

As the sweep algorithm proceeds, we maintain a sweep
status data structure, which records the necessary infor-
mation about the current slice through S in an “active

146 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

edge” list—see Section 5. When the sweep-plane encoun-
ters a vertex event (as determined by the event queue),
the sweep status and the event queue data structures
must be updated. In the main loop of the sweep algo-
rithm, we pop the event queue, obtaining the next vertex,
v, to be hit, and we check whether or not the sweep-plane
encounters v before it reaches the y-coordinate of the next
scanline. If it does hit v first, we perform the appropriate
insertions/deletions on the event queue and the sweep
status structure; these are easily determined by local tests
(checking the signs of dot products) in the neighborhood
of v. Otherwise, the sweep-plane has encountered a scan-
line. At this point, we stop the sweep and drop into a two-
dimensional ray casting procedure (also based on a
sweep) as described below. The algorithm terminates once
the last scanline is processed.

3.2 Processing a Scanline

When the sweep-plane encounters a scanline, the current
(3D) sweep status data structure gives us a “slice”
through the mesh in which we must solve a two-
dimensional ray casting problem. Let S denote the po-
lygonal (planar) subdivision at the current scanline (i.e., S
is the subdivision obtained by intersecting the sweep-
plane with the mesh S.) In time linear in the size of S, the
subdivision S can be recovered (both its geometry and its
topology) by stepping through the sweep status structure
and utilizing the local topology of the cells in the slice.
(The sweep status gives us the set of edges intersecting
the sweep plane; these edges define the vertices of S, and
the edges of S can be obtained by searching the set of tri-
angular facets incident on each such edge.) In our imple-
mentation, however, S is not constructed explicitly, but
only given implicitly by the sweep status data structure (a
list of “active edges”), and then locally reconstructed as
needed during the two-dimensional sweep (described
below). The details of the implementation are nontrivial
and they are presented in Section 5.

The two-dimensional ray casting problem is also solved
using a sweep algorithm—now we sweep the plane with a
sweep-line parallel to the z axis. (Or, in the case of perspec-
tive projection, we sweep with a ray eminating from the
viewer’s eye.) Events now correspond to vertices of the
planar subdivision S, which occur at intersection points
between an “active edge” in the (3D) sweep status and the
current sweep-plane. These event points are processed in x-
order; thus, we begin by sorting them. (An alternative ap-
proach, mentioned in Section 4, is to proceed as we did in
3D, by first identifying and sorting only the locally extremal
vertices of S, and then maintaining an event queue during
the sweep. Since a single slice has relatively few event
points compared with the size of S, we opted, in our im-
plementation, simply to sort them outright.) The sweep-line
status is an ordered list of the segments of S crossed by the
sweep-line. The sweep-line status is initially empty. Then,
as we pass the sweep-line over S, we update the sweep-line
status at each event point, making (local) insertions and
deletions as necessary. (This is analogous to the Bentley-
Ottmann sweep that is used for computing line segment in-
tersections in the plane [29].) We also stop the sweep at each

of the x-coordinates that correspond to the rays that we are
casting (i.e., at the pixel coordinates along the current scan-
line), and output to the rendering model the sorted ordering
(depth ordering) given by the current sweep-line status.

4 ANALYSIS: UPPER AND LOWER BOUNDS

We now proceed to give a theoretical analysis of the time
required to render irregular grids. We begin with
“negative” results that establish lower bounds on the
worst-case running time:

THEOREM 1 (Lower Bounds). Let S be a mesh having ¢ con-
nected components and n edges. Even if all cells of S are
convex, Q(k +nlogn) is a lower bound on the worst-case
complexity of ray casting. If all cells of S are convex and, for
each connected component of S, the union of cells in the com-
ponent is convex, then Q(clogc) is a lower tgound. Here, k
is the total number of facets crossed by all N” rays that are
cast through the mesh (one per pixel of the image plane).

PROOF. It is clear that Q(k) is a lower bound, since k is the
size of the output from the ray casting.

Let us start with the case of ¢ convex components
in the mesh S, each made up of a set of convex cells.
Assume that one of the rays to be traced lies exactly
along the z-axis. In fact, we can assume that there is
only one pixel at the origin in the image plane. Then,
the only ray to be cast is the one along the z-axis, and
k simply measures how many cells it intersects. To
show a lower bound of Q(clogc), we simply note that
any ray tracing algorithm that outputs the intersected
cells, in order, along a ray, can be used to sort ¢ num-
bers, z;. (Just construct, in O(c) time, tiny disjoint tet-
rahedral cells, one centered on each z;.)

Now, consider the case of a connected mesh S, all
of whose cells are convex. We assume that all local
connectivity of the cells of S is part of the input
mesh data structure. (The claim of the theorem is
that, even with all of this information, we still must
effectively perform a sort.) Again, we claim that
casting a single ray along the z-axis will require that
we effectively sort n numbers, z;, ..., z,. We take the

unsorted numbers z; and construct a mesh S as fol-
lows. Take a unit cube centered on the origin and
subtract from it a cylinder, centered on the z-axis,
with cross sectional shape a regular 2n-gon, having
radius less than 1/2. Now remove the half of this
polyhedral solid that lies above the x-z plane. We
now have a polyhedron P of genus 0 that we have
constructed in time O(n). We refer to the n (skinny)
rectangular facets that bound the concavity as the
“walls.” Now, for each point (0, 0, z;), create a thin
“wedge” that contains (0, 0, z;) (and no other point

0, 0, z), j # i), such that the wedge is attached to
wall i (and touches no other wall). Refer to Fig. 2.
We now have a polyhedron P, still of genus 0, of size
O(n), and this polyhedron is easily decomposed in
O(n) time into O(n) convex polytopes. Further, the z-
axis intersects (pierces) all n of the wedges, and does

so in the order given by the sorted order of the zs.

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 147

Thus, the output of a ray tracing algorithm that has
one ray along the z-axis must give us the sorted or-

der of the n wedges, and, hence, of the n numbers z;.
The Q(nlog n) bound follows. |

/

Fig. 2. Lower bound construction.

REMARK. It may be tempting to think that if one is given a con-
vex mesh (e.g., connected, with tetrahedral cells), that this
information can be used to sort the vertices of the mesh
(e.g., by x-coordinate) in linear time, thereby using topo-
logical information to make sweep algorithms more effi-
cient. However, it is easy to show that, even in two dimen-
sions, if we are given a triangulation with complete topo-
logical information, it still requires time Q(nlogn) to sort
the n vertices by their x-coordinates. (The proof, based on a
reduction from sorting, is left to the reader.)

4.1 Upper Bounds

The previous theorem establishes lower bounds that show
that, in the worst case, any ray casting method will have
complexity that is superlinear in the problem size—
essentially, it is forced to do some sorting. However, the
pathological situations in the lower bound constructions are
unlikely to arise in practice.

We now examine upper bounds for the running time of
the sweep algorithm we have proposed, and we discuss
how its complexity can be written in terms of other pa-
rameters that capture problem instance complexity.

First, we give a worst-case upper bound. In sweeping
three-space, we have O(n) vertex events, plus N (presorted)
“events” when we stop the sweep and process the two-
dimensional slice corresponding to a scanline. Each opera-
tion (insertion/deletion) on the priority queue requires
time O(log M), where M is the maximum size of the event
queue. In the worst case, M can be of the order of n, so we
get a worst-case total of O(N +nlogn) time to perform
the sweep of three-space.

For each scanline slice, we must perform a sweep as well
on the subdivision S, which has worst-case size O(n). The
events in this sweep algorithm include the O(n) vertices of
the subdivision (which are intersections of the slice plane
with the edges of the mesh, S), as well as the N (presorted)
“events” when we stop the sweep-line at discrete pixel val-

ues of x, in order to output the ordering (of size k;; for the

ith pixel in the jth scanline) along the sweep-line, and pass
it to the rendering module. Thus, in the worst case, this

sweep of 2-space requires time O(iki ; +nlog n) for slice
j, for an overall cost, for all N slices, of
oY, ik + Nnlogn) = O(k + Nnlogn)."

Now, the product term, Nn, in the bound of
O(k + Nnlog n) is due to the fact that each of the N slices
might have complexity roughly n. However, this is a pes-
simistic bound for practical situations. Instead, we can let ng
denote the total sum of the complexities of all N slices; in
practice, we expect n, to be much smaller than Nn, and,
potentially, n, is considerably smaller than n. (For example,
if the mesh is uniform, we may expect each slice to have
complexity of n%2, as in the case of a n%®-by-n¥®-by-n??
grid, which gives rise to n, = O(Nn2/3).) If we now write

the complexity in terms of n,, we get worst-case running
time of O(k + nlogn + n logn).

Note that, in the worst case, k = Q(Nzn); e.g., it may be

that every one of the N° rays crosses Q(n) of the facets in the
mesh. Thus, the output size k could end up being the domi-
nant term in the complexity of our algorithm. Note too that,

even in the best case, k = Q(NZ), since there are N rays.

The O(nlog n) term in the upper bound comes from the
sweep of three-space, where, in the worst case, we may be
forced to (effectively) sort the O(n) vertices (via O(n) inser-
tions/deletions in the event queue). We now discuss how
we can analyze the complexity in terms of the number, n,
of “critical” vertices; this approach was used in the two-
dimensional triangulation algorithm of Hertel and
Mehlhorn [16].

Consider the sweep of three-space with the sweep-
plane. We say that vertex v is critical if, in a small neigh-
borhood of v, the number of connected components in the
slice changes as the sweep-plane passes through v. (Thus,
vertices that are locally min or max are critical, but also
some “saddle” points may be critical.) Let n, denote the
number of critical vertices. Now, note that the lower
bound construction that shows that, in the worst case, we
must resort to sorting, is quite contrived: In particular, it
has n, = Q(n), while one would expect in practice that n,
is very small (say, on the order of c, the number of con-
nected components of the mesh).

Now, if we conduct our sweep of three-space carefully,
we can get away with only having to sort the critical ver-
tices, resulting in total time O(n+n, +n_logn,) for con-
structing all N of the slices. (Similarly, Hertel and
Mehlhorn [16] were able to triangulate polygonal regions
in the plane in time O(n+n,logn,), compared with the

previous bound of O(n log n) based on plane sweep.) The

main idea is to exploit the topological coherence between
slices, noting that the number of connected components

1. The upper bound of O(k + Nn log n) should be contrasted with the bound
O(Nzn log n) obtained from the most naive method of ray casting, which
computes the intersections of all N> rays with all O(n) facets, and then
sorts the intersections along each ray.

148 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

changes only at critical vertices (and their y-coordinates
are sorted, along with the N scanlines). In particular, we
can use depth-first search to construct each connected
component of S within each slice, given a starting “seed”
point in each component. These seed points are obtained
from the seed points of the previous slice, simply by
walking along edges of the grid (in the direction of in-
creasing y-coordinate), from one seed to the next slice (in
total time O(n), for all walks); changes only occur at criti-
cal vertices, and these are local to these points, so they can
be processed in time linear in the degree of the critical
vertices (again, overall O(n)). This sweep of three-space
gives us the slices, each of which can then be processed as
already described. (Note that the extremal vertices within
each slice can be discovered during the construction of the
slice, and these are the only vertices that need to be sorted
and put into the initial event queue for the sweep of a slice.)
In summary, we have

THEOREM 2 (Upper Bound). Ray casting for an irregular grid
having n edges can be performed in time O(k+n+

n. logn, +nglogn), where k = O(Nzn) is the size of the
output (the total number of facets crossed by all cast rays),
n, = O(Nn) is the total complexity of all slices, and
n, = O(n) is the number of critical vertices.

REMARK. The upper bound shows only linear dependence on n,
while the lower bound theorem showed an Q(nlogn)
lower bound. This is not a contradiction, since, in the proof
of the lower bound, the construction has n, = Q(n) critical
vertices; this is in agreement with the upper bound term,
O(n, logn,).

Another potential savings, particularly if the image
resolution is low compared with the mesh resolution, is to
“jump” from one slice to the next, without using the sweep
to discover how one slice evolves into the next. We can in-
stead construct the next slice from scratch, using a depth-
first search through the mesh, and using “seed” points that
are found by intersecting the new slice plane with a critical
subgraph of mesh edges that connects the critical vertices of
the mesh. Of course, we do not know a priori if it is better
to sweep from slice i to slice i + 1, or to construct slice i + 1
from scratch. Thus, we can perform both methods in paral-
lel, on two processors, and use the result obtained by the
first processor to complete its task. (Alternatively, we can
achieve the same effect using a single processor by per-
forming a “lock step” algorithm, doing steps in alternation
between the two methods.) This results in an asymptoti-
cally complexity that is the minimum of the complexities of
the two methods. This scheme applies not just to the sweep
in three-space, but also to the sweeps in each slice.

As an illustration of how these methods can be quite use-
ful, consider the situation in Fig. 3, which, while drawn only
in two dimensions, can depict the cases in three-space as
well. When we sweep from line 2 to line 3, a huge complexity
must be swept over, and this may be costly compared to re-
building from scratch the slice along line 3. On the other
hand, sweeping from line 5 to line 6 is quite cheap
(essentially no change in the geometry and topology), while
constructing the slice along line 6 from scratch would be
quite costly. By performing the two methods in parallel (or in

>
>
>
S .
S .
>
>

——
—
><\/
—>
1 2 3 4 5 6 7

Fig. 3. lllustration of a sweep in one slice.

“lock step”), we can take advantage of the best of both meth-
ods. The resulting algorithm exploits coherence in the data
and has a running time that is sensitive, in some sense, to the
complexity of the visualization task. Note that, in practice,
when the image resolution is very low, one would probably
prefer to oversample and then filter, rather than to use this
method of “jumping” from slice to slice or from ray to ray.

5 |IMPLEMENTATION DETAILS

We have implemented a version of the main LSRC algorithm
with some simplifications. Here, we discuss some of the de-
tails of our implementation, concentrating on the most rele-
vant issues unique to implementing LSRC. We try to present
enough details so that an experienced graphics programmer
can reproduce our results with minimal guess work.

Our current implementation handles general discon-
nected grids; however, it also assumes, for simplicity, that
cells of the mesh are tetrahedra (simplices). The extension
to more complex convex (or even nonconvex) cells is con-
ceptually straightforward, while the details are somewhat
tedious and do not contribute to the basic understanding of
the algorithm.

There are other ways in which our implemented algo-
rithm differs from the methods discussed previously, in the
section on upper bounds. This is for two reasons—
simplicity of coding and efficiency in practice (both in
terms of running time and in terms of memory). In our dis-
cussions below, we point out how the implemented algo-
rithm differs both for the 3D sweep (in inserting into the
heap all boundary vertices of the grid, rather than just the
critical vertices) and for the 2D sweep (in our maintaining
of the sweep-line status).

Our implementation, in its entirety, consists of less than
5,000 lines of C code. We have not yet attempted to opti-
mize the code, so we expect that it can be further improved.

The major modules of the program include:

« 3D sweep, which sweeps the input mesh with a plane
orthogonal to the viewing plane, while maintaining
an active edge list (aEdge), and marking those tetra-
hedra that have been swept over;

¢ 2D sweep, which sweeps a slice, producing the sorted
intersections of cells along each ray of a scanline.

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 149

We also have a graphics module that handles computa-
tions of coordinates with respect to the viewing coordinate
frame, manages the other modules, and computes the trans-
fer function and the optical integration (or simple shading).
When we speak below of x-, y-, or z-coordinates, these are
all calculated using simple dot products (with the defining
unit vectors of the viewing frame), and are not the result of
a full coordinate transformation (which we seek to avoid).

5.1 Major Data Structures

Due to the large sizes of irregular grids, efficient data struc-
tures can substantially influence the performance and
memory requirements of the implementation.

We basically have two “big” data structures:

e The vertex list, which contains, for each vertex, its
position and field value(s), its “use set” (list of tetra-
hedra containing it), and a couple of other utility data
fields (e.g., a general-purpose flag).

e The Tetrahedron list, which contains, for each tetra-
hedron, pointers to its four vertices and one flag data
field used to indicate if the sweep-plane has reached it
yet in the 3D sweep.

In our experiments, these two main data structures typi-
cally occupy 95 percent of the overall space used by the
algorithm. This organization of the data is memory effi-
cient, while allowing the necessary connectivity informa-
tion to be recovered quickly within the algorithm. Since
each tetrahedron contains four vertices, the total amount of
memory required by all of the “use sets” is bounded by 4 x
the number of tetrahedra (this clearly extends to other cell
complexes composed of cells of bounded complexity). We
collect the vertices on the boundary of the meshes in lists
so, during the sweep, we can preinsert them on the priority
queues. It is important to note that not all points on the
boundary need to be inserted.

In the 3D sweep, our sweep-plane (orthogonal to the
y-axis) is moved from top to bottom, in the direction of de-
creasing y. As the sweep progresses, we need to be able to
detect what is the next event, which corresponds to the
closest vertex in the direction of the 3D sweep (y-axis). This
is done by maintaining a priority queue that contains (some
of the) vertices sorted along the y-axis. In particular, the
priority queue contains those vertices not yet encountered
by the sweep-plane, which are the bottom endpoints of the
“active” edges of S intersected by the sweep-plane. The
priority queue is implemented as a heap, 3DHeap. Vertices
are inserted as they are discovered (when a neighboring
vertex above is encountered by the sweep-plane), and they
are deleted as they are swept over.

For the sweep status data structure, we do not explicitly
keep a list of active tetrahedra, as this is not necessary,
but we do keep a list, AEdge, of which edges are currently
active.

The AEdge (active edge) list is the central data structure
in our implementation. Each AEdge element contains data
fields used in several different phases of the algorithm. We
have not yet attempted to optimize the storage space asso-
ciated with the AEdge list; it typically does not contain a
particularly large number of elements, since it represents
only a cross section of the dataset. (The size of a cross sec-

tion is typically only about n2/3; e.g., in a regular m-by-m-
by-m mesh, a cross section has complexity O(mZ), while
n= m3.) An active edge entry in AEdge contains:

¢ pointers to its endpoints.

¢ arecord of its intersection with the current position of
the sweep-plane.

e pointers to its “top segment” and “bottom segment”
(defined below, when we detail the 2D sweep).

« afew other data fields used for bookkeeping.

In addition to insertions and deletions, the AEdge list
must support endpoint queries: Given a pair of vertices, v
and w, determine the entry of AEdge that have the pair as
endpoints. For this, we have implemented a simple-
minded, hash-based dictionary data structure. We have
experimented with using other data structures for keeping
AEdge, such as a binary tree, but the overhead of keeping
these more complex data structures seems to outweigh
their advantages.

In the 2D sweep, we will also use the segment data
structure, which stores pairs of active edges that belong to
the same facet of some cell. Such a pair of active edges de-
termines a line segment in the current slice. Each Segment
object also has two pointer fields to allow for the construc-
tion of double-linked lists of segment objects, correspond-
ing to the sweep-line status data structure, a depth-sorting
of segments along each ray.

5.2 3D Sweep

In the 3D sweep, the events are determined by when the
sweep-plane hits a vertex or arrives at a scanline. Since the
y-coordinates of the scanlines are predetermined (and
sorted), we have only to concern ourselves with the y-
coordinates of the vertices. Since we are trying to be “lazy”
about the sweep, we are interested in avoiding creating a
single sorted list of all vertices, so we proceed as follows.
First, in a single (preprocessing) pass over the vertex list,
we identify all of the vertices that lie on the boundary of the
grid S; typically, this set of vertices is only a tiny fraction of
the total set. Then, for a given viewing frame, we insert
these boundary vertices into the 3DHeap, based on y-
coordinate key values. (Our current implementation does
not take advantage of the fact that we can restrict attention
to critical vertices, as discussed in Section 4; the boundary
vertices, which can be identified in a preprocessing step (as
opposed to critical vertices, which are defined with respect
to a view-dependent y-axis) will be a (still small) superset
of the critical vertices.) This aspect of the algorithm allows
us to exploit nice structure that may be present in the in-
put—qgrids that have few connected components, with each
component being well-shaped (having relatively few
boundary vertices), will allow our 3D sweep algorithm to
run faster, as the only nonlinear time component of the al-
gorithm is sensitive to the number of vertices on the
boundary of the grid.

Next, we begin the sweep, using this 3DHeap to identify
vertex events. As the sweep progresses, we process vertex
events in a natural way, by making insertions and deletions
to the 3DHeap and the AEdge list accordingly. Based on the
“use set” of a vertex, we can determine the local geometry

150 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

about it, and thereby decide what insertions/deletions to
make; see Fig. 4. The vertex event processing proceeds as
follows:

While 3DHeap is not empty, do

1) Remove from 3DHeap the vertex v that has smallest
key value (y-coordinate).
2) For each cell C that contains v,

a) If v is the topmost vertex of C, insert the other ver-
tices of C into the 3DHeap, add the incident edges
to the AEdge list, and mark C and its vertices as
“visited.”

b) If v is the bottommost vertex of C, remove the inci-
dent edges from the AEdge list.

c) Otherwise, make insertions and deletions from the
AEdge list according to which edges incident on v
are below or above it.

| t l
t

(@) (b)

t

© (d)

Fig. 4. Processing a cell C during the 3D sweep: (a) the sweep-plane
hits the topmost vertex of C—the three incident edges are added to
AEdge; (b) the sweep-plane hits an intermediate vertex of C—one
edge is removed from AEdge and two edges are added; (c) the
sweep-plane hits another intermediate vertex of C—two edges are re-
moved from AEdge and one edge is added; (d) the sweep plane hits
the bottommost vertex of C—three edges are removed from AEdge.

5.3 2D Sweep
The 3D sweep stops each time that the sweep-plane arrives
at a scanline, at which point a 2D sweep occurs in the corre-
sponding slice of S. Rather than explicitly constructing the
slice (e.g., building a winged-edge data structure for the
two-dimensional subdivision S), we use only the AEdge list
to represent implicitly the structure of S. We refer to the
line segments that are edges in the subdivision S as seg-
ments rather than “edges,” in order to distinguish them
from the edges of the three-dimensional mesh S (which are
elements of AEdge). Since segments are determined by a
pair of edges bounding a common face, the segment data
type simply stores such pairs. (The endpoints of a segment
are determined by the intersection of the edges of the pair
with the sweep-plane.)

In the 2D sweep, we maintain the ordering of segments
intersected by a line, parallel to the z-axis, which is swept

across the slice; this data structure is the sweep-line status.
Typically, sweep-line algorithms utilize some form of bal-
anced binary tree in order to affect efficient (logarithmic)
insertion, deletion, and lookup in the sweep-line status
structure. Indeed, in our first implementation of the 2D
sweep, we too used a binary tree to store the sorted order of
segment crossings; see [36]. However, through further ex-
perimentation, we have determined that a different (and
simpler) approach works faster in practice, even though it
cannot guarantee logarithmic worst-case performance.
Thus, we describe here our current method of maintaining
the sweep-line status structure.

Our 2D sweep begins by computing the intersections of
the active edges (in AEdge) with the sweep-plane, caching
them, and sorting them in x as we place them into the event
priority queue, which is implemented as a heap—2DHeap.
(Since a single slice is relatively small in size, we go ahead
in this case with a full sorting for simplicity of implementa-
tion.) The sweep-line status structure is implemented as a
doubly linked list of segment objects, which represent the
sorted list of segments intersecting the current sweep-line.
When the sweep-line hits an active edge (i.e., hits a point p
in the slice, where an active edge intersects the slice), we
process this event, making updates to the sweep-line status
structure and the 2DHeap as necessary. The overall sweep
algorithm proceeds as follows:

While 2DHeap is not empty, do

1) Remove from 2DHeap the active edge, (v, Vv4), with
the smallest key value (x-coordinate). Let v, be the
vertex that is above (in y) the current slice.

2) For each cell C in the use set of v,

a) If C is not in the use set of v,, then we are done con-
sidering C (since (v, V4) is not an edge of C); oth-
erwise, proceed to (b).

b) For each of the other vertices of C (exactly two, in
the case of tetrahedral cells), determine if it forms
an active edge (by querying the AEdge list) with
one of v, or vy; if so, then instantiate a Segment
corresponding to that edge and (v, v,). These Seg-
ment objects are inserted, as explained below, in a
doubly linked (sorted) list that corresponds to the
sweep-line status structure.

Step 2b above discovers the segments that are incident
on the event point p, which is the intersection of the active
edge (vq, v4) with the sweep-plane.

The updates to the sweep-line status structure are done
in a manner that exploits the topological structure in the
mesh (see Fig. 5). In particular, when point p is encoun-
tered, if there are leftward segments incident on p, then we
identify them (using “top” and “bottom” pointers, de-
scribed below), and delete them from the doubly-linked list.
At the same time, we insert the rightward segments inci-
dent on p, after sorting them by angle (using only dot
product computations) about p, using as insertion point the
position in the list where the leftward segments had been.
In this way, we need to do no searching in the sorted list of
segments, except in the case that there were no leftward
segments incident on p (in which case, we do a naive linear-
time search in the linked list). While we could do these

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 151

Fig. 5. lllustration of the action of the 2D sweep. The solid “thick” edges
represent the elements of the Segment data structure currently in the
sweep-line. The dashed elements have not been touched by the
sweep-line yet. When the sweep-line encounters event point p, we
discover edge (p, g), and therefore update the bottom segment of g,
from (b, q) to (p, g). (The top segment of g, (, q), remains unchanged.)

search and insertions more efficiently, in worst-case loga-
rithmic time, we have found that the overhead associated
with the data structures does not pay off in practice. Fur-
ther, in the vast majority of cases, there is no linear search
to do, since most event points have one or more leftward
segments. (Indeed, those event points having no leftward
segments are “critical” in the sense described earlier, as in
Hertel and Mehlhorn [16].)

Specifically, we maintain, with each active edge, pointers
to two additional segment objects: a top segment and a bot-
tom segment, representing the topmost and bottommost,
respectively, among the leftward segments incident on the
corresponding crossing point, p. These pointers are initial-
ized to NULL. We maintain these pointers each time a new
segment is added (when we discover its left endpoint), at
which point we check its right endpoint and potentially
update the top/bottom segment pointer of its correspond-
ing active edge. If the active edge corresponding to event
point p has a non-NULL top and bottom pointer, we know
where to add the new segments (to the right of p), without
having to search the whole sweep-line status structure. (If
the pointers are NULL, then we must do a linear search to
locate p in the linked list, since, in this case, p has no left-
ward segments.)

There are several advantages to our new approach
(compared to the former binary-tree approach). Notice that
now, we are only inserting edges where they share an end-
point. This allows for a much simpler and more robust or-
dering function. In our implementation, we use a 2D de-
terminant method, which requires four subtractions, two
multiplications, and one comparison in the general case,
plus two extras comparisons to handle degeneracies when
determining the correct ordering between two segments
that share an endpoint. When performing the insertions
into the sweep-line status, we still have to be careful in
handling degeneracies, like in [36], but the case analysis is
much simpler.

5.4 Final Rendering Issues

There is an issue of handling degeneracies when event points
happen to coincide with y-coordinates of scanlines or with x-
coordinates of pixels within a scanline. Thus, in our 3D
sweep, we must be careful to process all event vertices that
have the same y-coordinate before starting the processing of
the 2D slice. Similarly, when sweeping a slice, we only per-
form the rendering along a ray once all event points that may
have the same x-coordinate as the ray are processed.

5.4.1 Interpolation

Because the original scalar field is only provided at the
original vertices and during rendering, we need to be able
to evaluate the field at any given point, some form of inter-
polation is necessary. This is a nontrivial step in general,
and considerable research has been devoted to this topic.
We refer the reader to [24], [25]. In our current implementa-
tion, for tetrahedral cells, our approach is straightforward.
To compute the value of the scalar field at the point r,
where a ray crosses a segment (p, q) (in a 2D slice), we first
use linear interpolation along each of the active edges (in
AEdge) that define p and g to compute the values at p and g,
and then do a third interpolation along (p, q) to determine
the value atr.

5.4.2 Lighting Model

Once the stabbing order of the cells along a ray has been
computed, any single-scattering lighting model can be ap-
plied. (See [21] for a survey.) We implemented the simple
lighting model proposed by Uselton [39], in which cell size
is not taken into consideration. The assumption is that each
cell is as important as any other cell. We have been able to
generate very good pictures with this method, but it does
tend to overemphasize portions of the volume having par-
ticularly high cell density.

6 EXPERIMENTAL RESULTS

6.1 Datasets

The code currently handles datasets composed of tetrahe-
dral grids (possibly disconnected, with nonconvex bound-
ary). The input format is very similar to the GeomView
“off” file format: It simply has the number of vertices and
tetrahedra, followed by a list of the vertices and a list of the
tetrahedra, each of which is specified using the vertex loca-
tions in the file as an index. This format is compact, can
handle general (disconnected) grids, and it is fairly simple
(and fast) to recover topological information. Maintaining
explicit topological information in the input file would
waste too much space.

For our test runs, we have used tetrahedralized ver-
sions of four different datasets, all originally in NASA
Plot3D format. For each dataset we broke each
(hexahedral) cell into five tetrahedra. Information about
the datasets are summarized in Table 1. (See volume-
rendered images in Figs. 8-11.) Besides these, we tested
LSRC on several artificial datasets for debugging pur-
poses; in particular, we generated simple datasets that
have disconnected components.

152

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

TABLE 1 TABLE 3
A LIST OF THE DATASETS USED FOR TESTING TIME SPENT READING AND PREPROCESSING THE DATA
Name Dimensions | # of Vertices | # of Cells Operation Blunt Fin Liquid Delta | Combustion
Blunt Fin 40 x 32 x 32 40,960 187,395 Oxygen | Wing Chamber
Liquid Oxygen 38 x 76 x 38 109,744 513,375 Post
Post Reading 3.86s 10.48s 20.69s 4.51s
Delta Wing 56 x 54 x 70 211,680 1,005,675 Connectivity 3.47s 9.62s 18.98s 4.02s
Combustion 57 x 33 x 25 47,025 215,040 Boundary 6,760 13,840 20,736 7,810
Chamber vertices

“Dimensions” are the original NASA Plot3D sizes. “# of Vertices” and “# of
Cells™ are the actual sizes used by LSRC during rendering.

TABLE 2
MEMORY CONSUMPTION DURING RENDERING
Data Blunt Liquid Delta Combustion
Structure Fin Oxygen Wing Chamber
Post
Dataset Size 7.8MB 21.3MB 41.8MB 9MB

AEdge 390KB 675KB 2.14MB 375KB

Segment 8KB 8KB 20KB 4KB

“Reading” accounts for the time spent reading and parsing the dataset off the
disk. “Connectivity” represents the time spent recovering the adjacency and
boundary information. The “Boundary vertices” row gives the number of
vertices we classified as being on the boundary of the dataset.

“Dataset Size” includes the memory necessary to keep all the vertices
(including their “use set”) and tetrahedra. The AEdge row gives the space
used in storing the list of active edges cut by the current sweep-plane. The
Segment row gives the storage requirement for the sweep-line status,
representing the stabbing order of the cells along each ray.

6.2 Memory Requirements

LSRC is very memory efficient. (See Section 5 for details
about the data structures.) Besides the input dataset, the
only other memory consumption is in the priority queues,
and the aAEdge and Segment data structures, which are
very small in practice. This low storage requirement is
due to our incremental computations, which only touch
one cross section of the dataset at a time. See Table 2 for
details about the overall memory consumption during the
rendering of each dataset. These numbers are independ-
ent of the screen size being rendered, although they do
depend on the “view,” given that different cross sections of
the datasets might lead to different memory usage patterns.

6.3 Performance Analysis

Our primary system for measurements was a Silicon
Graphics Power Challenge, equipped with 16 processors
(R10,000 195MHz), and three GB of RAM. We only used
one of the processors during our experiments. All of the
disk 170 numbers reflect reading off a local disk. We pre-
sent rendering figures for the tetrahedralized version of
the datasets described in Table 1. (We expect our render-
ing times to be considerably less if we work directly with
the hexahedral cells without first tetrahedralizing them;
however, the current implementation assumes tetrahedral
cells.) The LSRC code was compiled with the native SGI
compiler (for IRIX 6.2) and optimization level “-~03.” All
times reported are in seconds and represent measured
wall-clock times.

In Table 3, we present the times to read and preprocess
the datasets. Our input files are currently ASCII, which
requires some amount of parsing upon reading; thus, the
“Reading” time is dominated by this parsing time, not by
disk access time. (The use of binary files would likely im-
prove efficiency, but using ASCII files simplifies the man-
ual creation of test samples.)

TABLE 4
RENDERING RESULTS FOR THE FOUR DATASETS
Blunt Fin Liquid Delta | Combustion
Oxygen Wing Chamber
Post
Image Size | 530 x 230 300 x 300 300 x 300 x 200
300
Rendering 22s 37s 64s 19s
Time
Full Pixels 83,264 70,503 48,009 33,947

Table 4 presents the rendering times for the different
datasets. Each dataset has been rendered at a different
resolution, primarily because it would not make sense to
present square images for all of them, since their projec-
tions do not cover a square region. We also present the
pixel coverage (number of “Full Pixels”) for each image.
These rendering times are about three to four times faster
than the ones presented earlier in [36]. (In [36], only the
Blunt Fin and Liquid Oxygen Post were used; there, it
was reported that it took 70 seconds to render the Blunt
Fin, while the new results reported here obtain a time of
22 seconds, an improvement by a factor of 3.1; for the Post
dataset, the improvement has been from 145 seconds to 37
seconds, a factor of 3.9.)

We also tested how our algorithm scales with the im-
age size: We rendered the Liquid Oxygen Post in three
different resolutions: 300 x 300 (70,503 full pixels), 600 x
600 (282,086 pixels), and 900 x 900 (634,709 pixels), and
the rendering times were 37 seconds, 82 seconds, and 136
seconds, respectively. This indicates that the cost per pixel
actually decreases as the image size increases. This
matches our intuition, because the larger the image, the
less “useless sorting” we have to do per scanline. That is,
in 2Dsweep, we basically get all the sorting information in
a continuum along the scanline, but we only use that in-
formation along each pixel actually rendered. As the im-
age size gets larger, the less “sorting” work 2Dsweep has
to do per pixel rendered. For very large images, the
shading cost should dominate. At this point, the sorting
becomes essentially “free,” as it has constant cost for a
given dataset and view.

So far, we have shown that the new method is over
three times as fast as the one presented in [36]. It is impor-
tant to understand where the speedup was achieved. In
order to be able to analyze the differences, we will recalcu-
late Figs. 5 and 6 from [36] using our new method. We are
using the same dataset (e.g., the Blunt Fin), in order to make
direct performance comparisons possible. Fig. 6 illustrates

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 153

5500 T T T T T T T T T

Active Edges ——
5000 .

4500 r 1
4000 1
3500 | 1
3000 1

2500 r 1

Number of Active Edges

2000 | |

‘1500 L L L L 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Scanline Number

Fig. 6. The size of the AEdge list as a function of the scanline
(y-coordinate).

0.4 T T T T T T T T T

Total Time ——

Event Handling Time - .
Integration Time -

0.3 | |

035 r

025 r 1

02 1 1

0.15 f/

01 F/ T

Time (seconds)

0.05 [s Y

0 20 40 60 80 100 120 140 160 180 200
Scanline Number

Fig. 7. An illustration of the breakdown of the total rendering time per
scanline. The “Total Time” represents the actual time each scanline
required for rendering. In order to avoid clutter in the plot, only the two
major components of the rendering time are shown: the “Event Han-
dling Time” (which is the time to process each active edge as it enters
and exists the sweep-line status), and “Integration Time” (which is the
time necessary for the shading calculations).

how the number of active edges varies in y during the 3D
sweep. (This figure corresponds to Fig. 5 in [36].)

Fig. 7 illustrates how the rendering time breaks down
by task, as a function of the scanline (again, for the Blunt
Fin dataset so we can compare with the earlier results pre-
sented in [36]). Rendering a scanline involves computing
the intersection points, sorting them along the direction of
the scanline, performing a 1D sweep (or sort) along each
ray incrementally (which basically involves processing
events), and finally shading (or intergration time). The
two components presented in Fig. 7 correspond to over 85
percent of the overall time spent in rendering. (The
“Event Handling Time” is approximately 50 percent of
the time and “Integration Time” is about 30 percent).

The results in Fig. 7 should be compared to Fig. 6 [36].
Our improvements to the 2D sweep, as explained in the
previous section, resulted in several changes. First, the
processing of each scanline is about three times as fast.

Second, the event handling time is much lower
(previously, it accounted for over 80 percent of the ren-
dering time). Because of the lowering of the cost of han-
dling the events, we can now clearly see the relative in-
crease in the cost for the shading phase. (Before, the event
handling cost was so dominating that all of the other
processing time was negligible and did not appear clearly
on the graph.)
The performance numbers indicate that:

1) The time to process a given scanline is directly corre-
lated to the number of active edges corresponding to
that slice;

2) The cost per scanline varies depending on the com-
plexity of the slice being rendered; and,

3) The event handling time still dominates the total time
spent per scanline.

In [36], the event handling time was clearly the bottle-
neck of the rendering speed. Now, it still accounts for
about 50 percent of the overall rendering time. Future im-
provements may be possible based on reuse of intersweep
planes sorting information or the use of some form of
“jumping” over complexity between pixels (as in the lock-
step idea proposed before).

6.4 Performance Comparisons

The most recent report on an irregular grid ray caster is
that of Ma [19], from October 1995. Ma is using an Intel
Paragon (with superscalar 50MHz Intel i860XPs). He re-
ports rendering times for two datasets—an artificially
generated Cube dataset with 130,000 tetrahedra and a Flow
dataset with 45,500 tetrahedra. He does not report times
for single CPU runs; his experiments use two processing
nodes. For the Cube, he reports taking 2,415 seconds (2,234
seconds for the ray casting—the rest is parallel overhead)
for a 480-by-480 image (approximately 230,000 pixels), for
a total cost of 10.5 (9.69) milliseconds per pixel. The cost
per tetrahedron is 18.5 (17.18) milliseconds. For the Flow
dataset he reports 1,593 (1,585) milliseconds (same image
size), for a cost of 6.9 (6.8) milliseconds per pixel, and
35.01 (34.8) milliseconds per tetrahedron.

Giertsen [15] reports running times of 38 seconds for
3,681 cells (10.32 milliseconds per cell). His dataset is too
small (and too uniform) to allow direct and meaningful
comparisons; however, our implementation handles a cell
complex that has over 100 times the number of cells he used
at a fraction of the cost per cell.

Yagel et al. [47] report rendering the Blunt Fin, using
an SGI with a Reality Enginez, in just over nine seconds,
using a total of 21MB of RAM, using 50 “slicing” planes;
with 100 planes, they report a rendering time of 13-17 sec-
onds. (Their rendering time is dependent on the number
of “slicing” planes, which, of course, affects the accuracy
of the picture generated.) For a 50-slice rendering of the
Liquid Oxygen Post, it takes just over 20 seconds, using
about 57MB of RAM. For the Delta Wing, it takes almost
43 seconds and uses 111.7MB of RAM.

In order to facilitate comparisons, Table 5 summarizes
all the performance results with the available data for
each reported algorithm. Comparing these numbers with

154 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

PERFORMANCE SUMMARY OF SEVERALTA’?\L%IE)IIE?I'SI'HMS (|NDICATED IN THE LAST COLUMN)
Dataset # of Cells Ren. Time u/Pixel uiCell Image Size | Memory Algorithm
Blunt Fin 187,395 22s 180us 117us 530 x 230 8MB LSRC
Post 513,375 37s 411us T2us 300 x 300 22MB LSRC
Post 513,375 82s 227us 159us 600 x 600 22MB LSRC
Post 513,375 136s 167us 264us 900 x 900 22MB LSRC
Delta Wing 1,005,675 64s 711us 63us 300 x 300 44MB LSRC
Chamber 215,040 19s 316us 88us 300 x 200 9MB LSRC
Blunt Fin 187,395 70s 373us 664us 527 x 200 8MB [36]
Post 513,375 145s 1,611us 282us 300 x 300 22MB [36]
Cube 130,000 2,415s 10,500us 18,500us 480 x 480 N/A Ma
Flow 45,500 1,593s 6,900us 35,010us 480 x 480 N/A Ma
Blunt Fin 187,395 9.11s N/A 48us N/A 21MB Yagel
*Blunt Fin 187,395 13s-17s N/A 69-91us N/A 21MB Yagel
Post 513,375 20.45s N/A 40us N/A 57MB Yagel
Delta Wing 1,005,675 42.97s N/A 42us N/A 112MB Yagel
N/A 3,681 38s 144us 10,320us 512 x 512 2.7MB Giertsen

“LSRC” are for results for the lazy sweep ray casting algorithm proposed in this paper; “[36]” are for the results we obtained in our
previous work; “Yagel” are for results reported in [47]; “Ma” are for results reported in [19]; and “Giertsen” are results reported in
[15]. The table includes columns indicating the datasets used, their sizes, and, when possible, the cost per pixel and per cell, and the
memory usage of each algorithm. (For Yagel et al., 50-plane rendering times are reported, with the exception of the row marked with

a “*” which represents the rendering times using 100 planes.)

those in Table 4, we see that LSRC is much faster than the
other ray casting algorithms. Furthermore, it is compara-
ble in performance to Yagel et al.’s method for 100-slice
rendering, but it uses less than half of the memory used
by their technique. By looking at the increase in rendering
times as the datasets get larger, we see that the larger the
dataset the more advantageous it is to use LSRC over
these other techniques.

7 ALGORITHM EXTENSIONS

In this section, we mention some of the possible extensions
to this work:

1) While our current implementation assumes tetrahe-
dral cells, it is conceptually simple to extend it to ar-
bitrary cells. The method itself applies in general.

2) It is straightforward to generalize our method to the
case of multiple grids: We simply perform the sweep
independently in each of the several grids and do a
merge sort of the results along each ray, just before
rendering.

3) We are now investigating some possible methods to
improve our algorithm so that it exploits more of the
coherence between scanline slices. It is reasonable to
expect us to be able to reuse much of the slice infor-
mation from one scanline to the next. In particular,
the order of the (2D) event points is nearly the same
for two consecutive slices. An improvement here could
help to address the current bottleneck in the code.

4) An interesting possible extension of our work that we
are now investigating is its application in “out-of-
core” cases, in which the dataset is too large to fit in

main memory, and we must be careful to control the
number of paging operations to disk. The spatial lo-
cality of our memory accesses indicates that we
should be able to employ prefetching techniques to
achieve fast rendering when the irregular grids are
much larger than memory.

5) Finally, our method is a natural candidate for paral-
lelization. See Silva [35, Chapter 5], for further discus-
sion on parallelization issues.

8 CONCLUSIONS

In this paper, we have proposed a fast new algorithm,
termed the “Lazy Sweep Ray Casting” (LSRC) algorithm,
for rendering irregular grids based on a sweep-plane ap-
proach. Our method is similar to other ray casting meth-
ods in that it does not need to transform the grid; instead,
it uses (as do projection methods) the adjacency informa-
tion (when available) to determine ordering and to at-
tempt to optimize the rendering. An interesting feature of
our algorithm is that its running time and memory re-
quirements are sensitive to the complexity of the render-
ing task. Furthermore, unlike the method of Giertsen [15],
we conduct the ray casting within each “slice” of the
sweep-plane by a sweep-line method whose accuracy
does not depend on the uniformity of feature sizes in the
slice. Our method is able to handle the most general types
of grids without the explicit transformation and sorting
used in other methods, thereby saving memory and com-
putation time while performing an accurate ray casting of
the datasets. We established the practicality of our
method through experimental results based on our im-
plementation. We have also discussed theoretical lower

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 155

Fig. 8. Blunt Fin.

Fig. 10. Delta Wing.

and upper bounds on the complexity of ray casting in ir-
regular grids.

We have reported timing results showing that our
method compares favorably with other ray casting
schemes, and is, in many instances, two orders of mag-
nitude faster than other published ray casting results.
Another advantage of our method is that it is very mem-
ory efficient, making it suitable for use with very large
datasets.

It is difficult to give a direct comparison of our method
with hardware-based techniques (e.g., [47]), which can
yield impressive speed-ups over purely software-based
algorithms. On the other hand, software-based solutions
broaden the range of machines on which the code can run;
e.g., much of our code was developed on a small laptop,

Fig. 9. Combustion Chamber.

Fig. 11. Liquid Oxygen Post.

with only 16MB of RAM. Further, we are optimistic that
implementation of the optimizations suggested in the last
section will further improve the performance of our soft-
ware. More experimentation should help us quantify ex-
actly how our algorithm compares with other methods.

ACKNOWLEDGMENTS

We are indebted to Arie Kaufman for extensive discussions
and encouragement on this research, as well as contribu-
tions to this paper; a precursor [36] to this paper was pre-
pared jointly with him. We also thank the Center for Visual
Computing (A. Kaufman, Director), for use of the comput-
ing resources in our experiments. We thank Dirk Bartz, Pat
Crossno, George Davidson, Juliana Freire, Dino Pavlakos,

156 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, APRIL-JUNE 1997

Ashish Tiwari, and Brian Wylie for useful criticism and
help in this work. The Blunt Fin, the Liquid Oxygen Post,
and the Delta Wing datasets are courtesy of NASA. The
Combustion Chamber dataset is from Vtk [32].

This paper was supported in part by Sandia National Labs,
by U.S. National Science Foundation grant CDA-9626370,
U.S. National Science Foundation grant CCR-9504192,
Hughes Aircraft, Boeing, and Sun Microsystems. Part of
this work was conducted while C. Silva was partially sup-
ported by CNPqg-Brazil on a PhD fellowship.

REFERENCES

[1] P.K. Agarwal, M.J. Katz, and M. Sharir, “Computing Depth Or-
ders and Related Problems,” Proc. Fourth Scandinavian Workshop
Algorithm Theory, pp. 1-12, Lecture Notes in Computer Science,
vol. 824, Springer-Verlag, 1994.

[2] P.K. Agarwal and J. Matousek, “Ray Shooting and Parametric
Search,” SIAM J. Computing, vol. 22, no. 4, pp. 794-806, 1993.

[3] P.K. Agarwal and J. Matousek, “On Range Searching with Semi-
Algebraic Sets,” Discrete Computer Geometry, vol. 11, pp. 393-418,
1994.

[4] P.K. Agarwal and M. Sharir, “Applications of a New Partition
Scheme,” Discrete Computer Geometry, vol. 9, pp. 11-38, 1993.

[5] B. Chazelle, H. Edelsbrunner, L.J. Guibas, R. Pollack, R. Seidel, M.
Sharir, and J. Snoeyink, “Counting and Cutting Cycles of Lines
and Rods in Space,” Computer Geometry Theory Applications, vol. 1,
pp. 305-323, 1992.

[6] T.Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
Cambridge, Mass: The MIT Press, 1990.

[71 M. de Berg, Ray Shooting, Depth Orders and Hidden Surface Re-
moval, Lecture Notes in Computer Science, vol. 703, Berlin:
Springer-Verlag, 1993.

[8] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van
Kreveld, “Efficient Ray Shooting and Hidden Surface Removal,”
Algorithmica, vol. 12, pp. 30-53, 1994.

[91 M. de Berg, M. Overmars, and O. Schwarzkopf, “Computing and
Verifying Depth Orders,” SIAM J. Computing, vol. 23, pp. 437-446,
1994.

[10] D.P. Dobkin and M.J. Laszlo, “Primitives for the Manipulation of
Three-Dimensional Subdivisions,” Algorithmica, vol. 4, pp. 3-32,
1989.

[11] H. Edelsbrunner, “An Acyclicity Theorem for Cell Complexes in
d Dimensions,” Combinatorica, vol. 10, pp. 251-260, 1990.

[12] T. Fruhauf, “Raycasting of Nonregularly Structured Volume
Data,” Computer Graphics Forum (Eurographics ‘94), vol. 13, no. 3, 1994.

[13] H. Fuchs, Z.M. Kedem, and B. Naylor, “On Visible Surface Gen-
eration by A Priori Tree Structures,” Computer Graphics, vol. 14,
no. 3, pp. 124-133, 1980. Proc. SIGGRAPH *80.

[14] M.P. Garrity, “Raytracing Irregular Volume Data,” Computer
Graphics (San Diego Workshop on Volume Visualization), vol. 24,
pp. 35-40, Nov. 1990.

[15] C. Giertsen, “Volume Visualization of Sparse Irregular Meshes,”
IEEE Computer Graphics and Applications, vol. 12, no. 2, pp. 40-48,
Mar. 1992.

[16] S. Hertel and K. Mehlhorn, “Fast Triangulation of the Plane with
Respect to Simple Polygons,” Information and Control, vol. 64,
nos. 1-3, pp. 52-76, Jan. 1985.

[17] A.E. Kaufman et. al., “Research Issues in Volume Visualization,”
IEEE Computer Graphics and Applications, vol. 14, no. 2, pp. 63-67,
Mar. 1994.

[18] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Com-
puter Graphics and Applications, vol. 8, no. 3, pp. 29-37, May 1988.

[19] K-L. Ma, “Parallel Volume Rendering for Unstructured-Grid Data
on Distributed Memory Machines,” Proc. IEEE/ACM Parallel Ren-
dering Symp. ‘95, pp. 23-30, 1995.

[20] X. Mao, L. Hong, and A. Kaufman, “Splatting of Curvilinear
Grids,” Proc. IEEE Visualization ‘95, pp. 61-68, 1995.

[21] N. Max, “Optical Models for Direct Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 99-
108, June 1995.

[22] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume Coher-
ence for Efficient Visualization of 3D Scalar Functions,” Computer

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]
(33]

[34]

[35]

[36]

(37]

[38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

Graphics (San Diego Workshop on Volume Visualization), vol. 24,
pp. 27-33, Nov. 1990.

J.S.B. Mitchell, D.M. Mount, and S. Suri, “Query-Sensitive Ray
Shooting,” Proc. 10th Ann. ACM Symp. Computational Geometry,
pp. 359-368, June 1994. (To appear, Int’l J. Computational Geometry
& Applications)

G.M. Nielson, “Scattered Data Modeling,” IEEE Computer Graph-
ics and Applications, vol. 13, no. 1, pp. 60-78, Jan. 1993.

G.M. Nielson, T.A. Foley, B. Hamann, and D. Lane, “Visualizing
and Modeling Scattered Multivariate Data,” |IEEE Computer
Graphics and Applications, vol. 11, no. 3, pp. 47-55, May 1991.

M.S. Paterson and F.F. Yao, “Efficient Binary Space Partitions for
Hidden-Surface Removal and Solid Modeling,” Discrete Computa-
tional Geometry, vol. 5, pp. 485-503, 1990.

M. Pellegrini, “Ray Shooting on Triangles in 3-Space,” Algorithmica,
vol. 9, pp. 471-494, 1993.

C.E. Prakash, “Parallel Voxelization Algorithms for Volume
Rendering of Unstructured Grids,” PhD thesis, Supercomputer
Centre, Indian Inst. of Science, 1996.

F.P. Preparata and M.l. Shamos, Computational Geometry: An In-
troduction. New York: Springer-Verlag, 1985.

S. Ramamoorthy and J. Wilhelms, “An Analysis of Approaches to
Ray-Tracing Curvilinear Grids,” Technical Report UCSC-CRL-92-
07, Univ. of California, Santa Cruz, 1992.

H. Samet, The Design and Analysis of Spatial Data Structures.
Reading, Mass: Addison-Wesley, 1990.

W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit. Upper Saddle River, N.J.: Prentice Hall, 1996.

M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their
Geometric Applications. New York: Cambridge Univ. Press, 1995.

P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct
Scalar Volume Rendering,” Computer Graphics (San Diego Work-
shop on Volume Visualization), vol. 24, pp. 63-70, Nov. 1990.

C. Silva, “Parallel Volume Rendering of Irregular Grids,” PhD
thesis, Dept. of Computer Science, State Univ. of New York at
Stony Brook, 1996.

C. Silva, J. Mitchell, and A. Kaufman, “Fast Rendering of Irregu-
lar Grids,” Proc. IEEE-ACM Volume Visualization Symp., pp. 15-22,
Nov. 1996.

D. Speray and S. Kennon, “Volume Probes: Interactive Data Ex-
ploration on Arbitrary Grids,” Computer Graphics (San Diego
Workshop on Volume Visualization), vol. 24, pp. 5-12, Nov. 1990.

C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted
Rendering for Volume Visualization,” Proc. Symp. Volume Visuali-
zation, pp. 83-90, Oct. 1994.

S. Uselton, “Volume Rendering for Computational Fluid Dy-
namics: Initial Results,” Technical Report RNR-91-026, NASA
Ames Research Center, 1991.

A. Van Gelder and J. Wilhelms, “Rapid Exploration of Curvilin-
ear Grids Using Direct Volume Rendering,” Proc. IEEE Visualiza-
tion ‘93, pp. 70-77, 1993.

J. Wilhelms, “Pursuing Interactive Visualization of Irregular
Grids,” Visual Computer, vol. 9, no. 8, 1993.

J. Wilhelms, J. Challinger, N. Alper, S. Ramamoorthy, and A.
Vaziri, “Direct Volume Rendering of Curvilinear Volumes,” Com-
puter Graphics (San Diego Workshop on Volume Visualization), vol. 24,
pp. 41-47, Nov. 1990.

J. Wilhelms and A. Van Gelder, “A Coherent Projection Ap-
proach for Direct Volume Rendering,” Computer Graphics
(SIGGRAPH ‘91 Proc.), vol. 25, pp. 275-284, July 1991.

J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs.
“Hierarchical and Parallelizable Direct Volume Rendering for
Irregular and Multiple Grids,” Proc. IEEE Visualization ‘96,
pp. 57-64, 1996.

P. Williams, “Visibility Ordering Meshed Polyhedra,” ACM
Trans. Graphics, vol. 11, no. 2, 1992.

R. Yagel, “Volume Rendering Polyhedral Grids by Incremental
Slicing,” Technical Report OSU-CISRC-10/93-TR35, 1993.

R. Yagel, D. Reed, A. Law, P-W. Shih, and N. Shareef, “Hardware
Assisted Volume Rendering of Unstructured Grids by Incre-
mental Slicing,” Proc. IEEE-ACM Volume Visualization Symp.,
pp. 55-62, Nov. 1996.

SILVA AND MITCHELL: THE LAZY SWEEP RAY CASTING ALGORITHM FOR RENDERING IRREGULAR GRIDS 157

Claudio T. Silva received a BS (1990) in
mathematics from the Federal University of
Ceara (UFC, Brazil), and an MS (1993) and PhD
(1996) in computer science from the State Uni-
versity of New York at Stony Brook. He is cur-
rently a research associate in the Department of
Applied Mathematics and Statistics, State Uni-
versity of New York at Stony Brook. Dr. Silva
won a U.S. National Science Foundation CISE
Postdoctoral Research Associateship and is
partially funded by Sandia National Labs. His
recent work focuses on the visualization of large datasets, and includes
the development of a large interactive parallel volume rendering sys-
tem; algorithms for volume rendering irregular grids; and simplification
methods for terrain, 3D surface, and volumetric models. His main re-
search interests are in computer graphics, scientific visualization, and
high performance computing.

Joseph S.B. Mitchell received a BS (1981) in
physics and applied mathematics, and an MS
(1981) in mathematics from Carnegie-Mellon
University. He received a PhD (1986) in opera-
tions research from Stanford University, while on
a Howard Hughes doctoral fellowship and serv-
ing on the technical staff at Hughes Research
Labs. From 1986 to 1991, Dr. Mitchell served on
the faculty of Cornell University. In 1991, he
joined the faculty of the State University of New
York at Stony Brook, where he is currently an
associate professor of applied mathematics and statistics and a re-
search professor of computer science. Dr. Mitchell has received vari-
ous research awards (U.S. National Science Foundation Presidential
Young Investigator, Fulbright Scholar) and numerous teaching awards,
including the President’s and Chancellor's Awards for Excellence in
Teaching. His primary research area is computational geometry ap-
plied to problems in computer graphics, visualization, manufacturing,
and geographic information systems.

