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Short Abstract/Introduction: Hierarchical function decompositions and
error driven simplifications might not ensure a precise control of topological
features during multiscale analysis, impairing applications where topological
control is more relevant than numerical approximation error. Topology-based
multiscale analysis has emerged as an alternative to these conventional ap-
proaches, helping to understand complex scientific data.

Multiscale analysis has emerged as one of the most effective representa-
tion mechanisms for exploring massive and complex data sets. Most meth-
ods devised for multiscale analysis, such as function decomposition using
hierarchical basis and geometry based mesh decimation, rely on simplifi-
cation mechanisms that attempt to minimize the numerical approximation
error between models in consecutive levels of the hierarchy. Although nu-
merical error driven multiscale methods are quite effective in a wide range
of applications, the “blindness” for monitoring topological aspects renders
such techniques inadequate for dealing with problems where the control of
topological features and their spacial relationship are essential.

The search for topology-aware methods is not new, with initial ideas dat-
ing back to the 19th century [6]. However, much of the early research has
been neglected, being rediscovered only recently when topology ceased to
be a purely abstract mathematical concept, and became an important and
computationally efficient data analysis tool. A sudden boost of topological
tools has been motivated by current developments of robust combinatorial
algorithms which replace previously existing techniques based on costly and
unstable numerical integration methods. This change of paradigm has en-
abled the use of topological tools in large scale problems, making topology-
based multiscale data analysis a feasible methodology.

The fundamental element in topological analysis is the detection and
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classification of the critical points of a function f . A point in the domain
is critical if the gradient vanishes at that point, that is, ∇f(p) = 0. Notice
that ∇f points in the steepest ascending direction of f . One can classify
critical points by the behavior of gradients in a small neighborhood around
the point: At maxima, all gradients in the neighborhood point towards the
maximum; At minima, all gradients point away from the minimum; and
At saddles, there is a mixture of regions pointing towards and away from
the saddle. Equivalently, one can classify critical points by the number and
connectivity of regions in the neighborhood with lower and higher function
values.

Critical points are crucial when analyzing f as they form the start and
end-points of integral lines. Integral lines are paths that are everywhere par-
allel to the gradient of f and describe what is called the gradient flow of f .
Therefore, removing critical points (in pairs) from f implies a re-routing of
integral lines which, overall, results in a smoothing of (the gradient flow of)
f . Consequently, removing critical points corresponds directly to a (local)
simplification of f based on topological rather than geometric considerations.
Similar to the geometric approach, this topological simplification leads nat-
urally to a topology-based multiscale analysis of f driven by the successive
removal of critical points.

Critical Points
Although an extensive description about critical points and related prop-

erties is beyond the scope of this article, we present in the following essential
concepts that make up the basis of the robust topological multiscale anal-
ysis. We refer the interested reader to Munkres [8] and Milnor [7] for a
mathematically precise description of the topological concepts we present
only intuitively. A mathematically well founded presentation but with a
good computational flavour can be found in the recent surveys [4, 1].

Morse functions
Morse theory provides the foundation for the majority of current tech-

niques concerned with topological multiscale analysis. The key characteristic
of Morse theory is the possibility of getting information on the topology of a
domain by analyzing the critical points of a function defined on that domain.
As already mentioned, given a smooth scalar function f : M ⊂ Rn → R,
the points where the gradient of f vanish characterize the critical points
of f . A critical point p is non-degenerate if the determinant of the Hes-
sian matrix (matrix of second partial derivatives) of f is not zero at p. A
critical value is the real number corresponding to the image of a critical
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point by f . A function f is a Morse function when all its critical points are
non-degenerate and have pairwise different function values. Morse functions
admit only finitely many isolated critical points, moreover, these functions
become extremely simple in the neighborhood of a critical point. More
precisely, the Morse lemma states that any smooth function behaves as a
quadratic form near a non-degenerate critical point: that is, it is possible to
choose a local coordinate system such that f(x1, . . . , xn) = ±x2

1 ± · · · ± x2
n

in this neighborhood. The number of minus signs in this equation defines
the index of a critical point, and corresponds to the number of independent
directions in which f decreases. For example, for Morse functions defined
on two-dimensional domains, the indices of minima, saddles, and maxima
are 0, 1, and 2 respectively.

The relationship between the critical points of f and the topology of
its domain M is established by analyzing the changes in the level sets, the
preimage in M of some scalar value t, L(t) = {x ∈ M | f(x) = t}, as the
parameter t changes. In fact, a strong mathematical result ensures that the
topology of level sets only change when t passes through a critical value.
Furthermore, the type of topological change, such as the creation/removal
of tunnels or components, is intrinsically related to the index of the critical
point. The utility of critical points motivates techniques for finding them.

Robust identification of critical points is not straightforward: while ex-
trema can be detected as the endpoint of most integral lines, ensuring that
each extrremum is found on no spurious extrema have been introduced re-
quires combinatorial techniques. Furthermore, as discussed below, detection
of saddle points is significantly more challenging. Consider, for example, the
gravitational field between earth and moon, as depicted in Figure 1. Any
particle released in the gravitational field follows an integral line towards a
maximum located in either the earth or the moon. There is only one point
in space, a saddle point, where a particle released at this location remains
at rest. Detecting this saddle point is equivalent to finding an integral line
with one endpoint being the saddle, computationally a very difficult task.

Functions occurring in scientific applications are rarely Morse functions,
and mostly are available only as values at a finite set of sample locations,
such as the vertices of a triangulation of the domain. Typically, a contin-
uous function is recovered through interpolation. Piecewise linear interpo-
lation, in particular, is often used with triangulated domains. Fortunately,
the problem of detecting and classifying critical points becomes much more
manageable for piecewise linear functions, using robust combinatorial meth-
ods.
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Piecewise linear functions
Simplicial decompositions (triangulation in 2D and tetrahedralization in

3D) are one of the most popular domain discretization techniques. In this
kind of representation, the domain is decomposed into a set of d-dimensional
simplices, where 0,1,2, and 3 simplices are called vertices, edges, triangles
and tetrahedra, respectively. It is convenient to assume that the function
has pairwise different values at the vertices of each simplex. A continuous
function is created by extending the function values through piecewise linear
interpolation. Under these assumptions, critical points may occur only at
the vertices of the simplices, making their identification easier.

In fact, in a piecewise linear function on a simplicial domain, critical
points can be identified by analyzing the combinatorial structure of neigh-
borhood of vertices. For example, if f(q) < f(p) for all vertices q sharing an
edge with p then p is a maximum. The lower link of p is the set of simplices
spanned by the vertices q surrounding p. For a maximum, the lower link is
a topological sphere. For a minimum, the lower link is empty. At a regular
point the lower link is a topological disk and all other vertices are (multi-
)saddles of various indices. As can be seen, in the piecewise linear case, all
critical points can be identified and classified through a purely combinato-
rial analysis of the connected components of the lower link of each vertex
(see Figure 2 ), thus introducing a very robust computational framework.
An algorithmic description about critical point identification in three and
higher dimensional domains can be found in [5] and [3], respectively.

Persistence
A crucial problem in data analysis is the assessment of the relevance

of a feature. Measurement errors and discretization processes inherently
add irrelevant features to data, making it difficult to discern vital features
from all others. From a topological point of view, features are characterized
by topological changes in level sets of the function, which, in turn, are
intimately related with the critical points of the function.

We illustrate the relationship between topological features and critical
points by examining the behavior of level sets in a sweep through the range
of the function. Given a function f (Morse function) defined in a piecewise
linear domain M, one can sort the vertices of M in ascending order as to
f . The vertex ordering allows to sweep M from the extremum minimum
towards the highest maximum, identifying the occurrence of new feature
each time a critical point is crossed. For example, consider a surface endowed
with the height function, as illustrated in Figure 3. It can be seen that a
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new level set component is created as a consequence of starting to sweep
the surface from the lowest minimum. When the sweeping process reaches
the next critical point, also a minimum, a second level set component is
created. Both these components are features. The first and second features
stay “alive” until a new critical point is reached, a saddle point now, which
merges the two existing features into a single one, effectively “destroying”
one of the features. Creation, splitting, or merging of features happens each
time a critical point is crossed, ending only when the sweep crosses the
highest maximum.

The process described in the example above is usually called filtration
and it provides a natural mechanism for pairing critical points in accordance
with the “birth” and “death” of features, that is, one can build critical pairs
(pi, pj) indicating that a new feature is created in f(pi) and destroyed when
the filtration crosses f(pj). The pairing of critical points allows to measure
the relevance of a feature by for example comparing the function values
in each critical point. In more mathematical terms, one can compute the
relevance of feature represented by (pi, pj) through Pj

i = |f(pi)−f(pj)|. The
relevance of a feature is usually called persistence, a concept that enables
to rank features and build hierarchies, an essential component of multiscale
analysis.

Once each pair of critical points represents the birth and death of a
feature, the removal of a critical pair represents the removal of a feature,
thus resulting in a simplification of the data. In a multiscale analysis, critical
pairs are withdrawn according to their persistence, meaning that the smaller
the persistence of a critical pair is the earlier that pair is removed. The
models on the right of Figure 3 illustrates the above mechanism applied to
a 3D model. Notice, that the removal of the critical pair formed by the
left minimum and the lowest saddle point makes the ”left leg” of the model
disappear, whereas the removal of the critical pair formed by the two other
saddle points cause the tunnel to be filled. The resulting model is a simplified
version of the original one, as it contains a smaller number of features, that
is, the simplified model is in a ”coarser” scale than the original surface. A
detailed description about persistence and corresponding properties can be
found in [2].

The aforementioned framework has been employed in a wide class of
applications, making possible to handle problems where conventional ap-
proaches are not effective. Some examples of such applications are discuss
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in the following.

Applications
Analysis and Multi-Scale Representation of Surface Meshes

One application of critical points in geometric modeling is finding and
highlighting defects in geometric models. Pascucci et al. [?] developed a
technique for automatically detecting defects in surface models by identify-
ing saddles that create and destroy a loop. Ideally, a perfect mesh would
only have “holes” where actual features are, such as the loops created by
the arms and legs of the statue of David in figure 4. In practice, however,
a mesh aquired from triangulation of points from a scan of the object can
admit small holes or filpped triangles that can be very difficult to detect. By
using critical points to find such defects, one can find small manifold handles
and tunnels, not only non-manifold or missing triangles. The former defects
are global in nature and therefore much harder to identify than the latter
which can be found by checking a local neighborhood.

For each model, all saddle-saddle pairs are found that form a loop. The
loop count is plotted above a certain persistence (as a percentage of function
range) creating one-dimensional graphs, see figure 4. These plots indicate
both the topological complexity of a model as well as a threshold separating
noise from features. In particular, consider the David model: although not
visible in traditional rendering, several tunnels exist in the model. These
“noise” tunnels show up as low-persistence pairs in the plot. While these
tunnels might not impact the visual quality of the model, they will adversely
effect most geometric processing, e.g. simplification or parametrization of
the surface. Automatic and robust identification of such defects is essential
for applications that utilize manifold properties of a mesh.
Analysis of Porous Media

Next, we examine how critical points can be used to identify features at
multiple scales in a volumetric simulation. Aerogels have recently become
popular for their high insulating ability and low weight, motivating further
research in material sciences. Gyulassy et al. [?] showed how critical points
could be used to aid in understanding properties of such a material. In
the simulation, a copper foam targeted for use as an insulating material for
spacecrafts is hit by a micrometeoroid travelling at 5km/s. The following
questions were of particular interest: How can one quantify the loss of poros-
ity of the material? How does the filament density profile of the material
change? What is the portion of the material that is affected by the impact
crater? How does the structure around the impact crater change?
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To answer these questions, Gyulassy et al. used a multi-scale represen-
tation of the topology of the data to explicitly extract the core structure
of the filaments. The multi-scale representation was useful in eliminating
confounding noise from the analysis. First, critical points of the function
were identified. The 2-saddle-maximum pairs of this function correspond to
the features of interest in this data, since the integral lines connecting them
trace out the core structure of the filaments. Figure 5 illustrates the pro-
cess of identifying critical points, distinguishing between features and noise,
filtering and simplifying the topology, and finally using the extracted core
structures to answer the motivating questions about the filaments.

Without direct control over the topological features, such analysis would
be very challenging. While visual inspection of the simulation can give a
general feel for how the filaments are affected by the impact of the microme-
teoroid, examination of the core structures immediately reveals with a high
degree of confidence the locality of the impact. The loss of porosity of the
material becomes quantifiable by computing the length and number of cycles
in the structure defined by the core lines. Finally, using critical points and
persistence to reveal the stable underlying features of the dataset proved to
be an essential tool for comparison of core structures at different time steps
in the simulation.
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Figure 1: This is where a cool motivational picture should go
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Figure 2: Critical points of a continous Morse function on a two-dimensional
domain (left) include maxima, saddles, and minima. The gradient behavior
(show with arrows) in a neighborhood around a critical point determines its
classification. Regions in the neighborhood of a point with lower function
value, called oceans, are colored blue, and regions with higher value, called
continents, are colored white. The shape and connectivity of oceans and
continents identify the type of critical point. At a maximum, the gradient
points inwards everywhere, and correspondingly, its entire neighborhood is
an ocean. At a saddle, integral lines approach from two directions and
then diverge, creating two oceans and two continents. At a minimum, the
gradient points away in the entire neighborhood, and correspondingly, the
entire neighborhood is a continent. The gradient is non-zero at a regular
point, and there is exactly one ocean and one continent. In a piecewise
linear (PL) function (right), gradients are not continuous, and therefore
critical points are identified using the shape of the oceans and continents in
a 1-neighborhood around a vertex. The “+” and “−” signs indicate vertices
that are higher or lower than the vertex in the middle. For the case of
two-manifold domains, it is sufficient to count the number of continents and
oceans around a vertex: maxima = 0,1; saddles = 2,2; minima = 1,0; regular
points = 1,1.
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Figure 3: Displayed is a three-dimensional model with a height function. In
a sweep from low to high function value, the level sets change their topology
as various critical points are passed. (a) Passing the lowest minimum, a
level set component (beige disk) is created. (b) The next minimum creates
another level set component (green disk). (c) Passing the saddle “destroys”
the most recently created (green) component, and the level set has only
one connected component again. (d) Another saddle splits the level set
and creates a new (red disk) contour. (e) The next saddle destroys this (red
disk) contour, and (f) finally, the maximum destroys the level set component
created by the first minimum (beige disk). The critical points that create
and destroy a feature are paired. Subsequent removal of these pairs in order
of persistence smooths the function by first removing a bump (g), and finally
removing a tunnel (h). In this manner, removal of critical points gives direct
control over simplification of a function for multi-scale analysis.
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Figure 4: Surface meshes constructed from high resolution scans often have
defects that are not visibile, however can be problematic for applications
such as simplification or parametrization of the surface. In particular, the
surface can have small manifold tunnels (defects) which are not detectable
by local techniques. Here, we apply a height function to the mesh, and
strong results from Morse theory guarantee that each tunnel will necessarily
have a pair of saddles that create and destroy the feature. Two models are
examined: (left) the the model of David has three main “holes”, formed
by each arm and the legs. Further investigation reveals that small “noise”
loops also exist, defects. The plot shows the number of loops versus the
simplification threshold. As in figure 3(g), cancelling a saddle-saddle pair
removes these small loops. When the persistence threshold for simplification
reaches 1̃0, the plot flattens out, at which point only the 3 “feature” loops
have not been removed from the model. This process is repeated (right)
for the model of the Malaysian goddess. Again, the plot shows that there
are exactly two “feature” loops. In both cases, the locations of the paired
saddles pinpoint the defects in the surface meshes.
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Figure 5: The critical points of a simulated porous solid are identified and
used to extract features (top). In this experiment, the desired feature is the
core structure of the filaments. The integral lines of 2-saddle-maximum pairs
in this three-dimensional function form the core structures, however, due to
noise and uncertainty in the simulation, there are initially many extra critical
points (a). The 2-saddle-maximum pairs are displayed in a density plot (b),
where color indicates the number of pairs in each bin. Distance from the
diagonal corresponds to the persistence of a pair. Critical points are canceled
in order of persistence, however, the simplification is guided using filters,
explicit restrictions placed on the changes allowed to the topology by the
cancellation of a critical point pair. In particular, various parameters used in
the simulation indicate certain ranges of the 2-saddle and maximum values
that correspond to imporant features. This plot inticates thresholds to select
those features in the most stable manner possible, enabling removal of noise
while preserving features. A stable core structure is identified (c) in this
manner. The same filters and simplification is applied to extract consitent
core structures for various timesteps as the simulated material is hit by
a micrometeoroid (bottom). By inspecting the different core structures,
changes in the connectivity of the material become obvious, and the loss of
porosity can be quantified and computed.
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