
DESIGNING A PARALLEL DATAFLOW ARCHITECTURE

FOR STREAMING LARGE-SCALE VISUALIZATION ON

HETEROGENEOUS PLATFORMS

by

Huy T. Vo

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2011

Copyright c© Huy T. Vo 2011

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of

has been approved by the following supervisory committee members:

 , Chair
Date Approved

 , Member

Date Approved

 , Member

Date Approved

 , Member

Date Approved

 , Member

Date Approved

and by , Chair of

the Department of

and by Charles A. Wight, Dean of The Graduate School.

Huy T. Vo

Cláudio T. Silva 03/18/2011

Juliana Freire 03/18/2011

Charles D. Hansen 03/18/2011

Valerio Pascucci 03/18/2011

João L.D. Comba 03/18/2011

Al Davis

School of Computing

ABSTRACT

Dataflow pipeline models are widely used in visualization systems. Despite recent advance-

ments in parallel architecture, most systems still support only a single CPU or a small collection

of CPUs such as a SMP workstation. Even for systems that are specifically tuned towards parallel

visualization, their execution models only provide support for data-parallelism while ignoring task-

parallelism and pipeline-parallelism. With the recent popularization of machines equipped with

multicore CPUs and multi-GPU units, these visualization systems are undoubtedly falling further

behind in reaching maximum efficiency.

On the other hand, there exist several libraries that can schedule program executions on multiple

CPUs and/or multiple GPUs. However, due to differences in executing a task graph and a pipeline

along with their APIs being considerably low-level, it still remains a challenge to integrate these

run-time libraries into current visualization systems.

Thus, there is a need for a redesigned dataflow architecture to fully support and exploit the power

of highly parallel machines in large-scale visualization. The new design must be able to schedule

executions on heterogeneous platforms while at the same time supporting arbitrarily large datasets

through the use of streaming data structures.

The primary goal of this dissertation work is to develop a parallel dataflow architecture for

streaming large-scale visualizations. The framework includes supports for platforms ranging from

multicore processors to clusters consisting of thousands CPUs and GPUs. We achieve this in our

system by introducing the notion of Virtual Processing Elements and Task-Oriented Modules along

with a highly customizable scheduler that controls the assignment of tasks to elements dynamically.

This creates an intuitive way to maintain multiple CPU/GPU kernels yet still provide coherency and

synchronization across module executions. We have implemented these techniques into HyperFlow

which is made of an API with all basic dataflow constructs described in the dissertation, and a

distributed run-time library that can be used to deploy those pipelines on multicore, multi-GPU and

cluster-based platforms.

To my mother, my endless source of support...

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

ACKNOWLEDGEMENTS . xiii

CHAPTERS

1. INTRODUCTION . 1
1.1 Dissertation Objectives . 2
1.2 Dissertation Structure . 2
1.3 Remark . 3

2. BACKGROUND AND RELATED WORK . 4
2.1 Dataflow Architecture . 4

2.1.1 Executive Policy and Scope . 4
2.1.2 Parallelism . 6
2.1.3 Dataflow vs. Workflow . 7

2.2 Visualization Systems . 7
2.3 Heterogeneous Programming Frameworks . 9

3. STREAMING SIMPLIFICATION OF TETRAHEDRAL MESHES 11
3.1 Streaming Mesh Layout . 12
3.2 Tetrahedral Simplification . 15

3.2.1 Quadric-Based Simplification . 15
3.2.2 Streaming Simplification . 16

3.3 Implementation Details and Optimizations . 18
3.3.1 Numerical Issues . 21

3.4 Results . 23
3.4.1 Stability and Error Analysis . 23
3.4.2 Performance . 26
3.4.3 Large-Scale Experiment . 26

3.5 Proposition . 27

4. INTERACTIVE RENDERING OF LARGE UNSTRUCTURED GRIDS 28
4.1 Interactive Out-of-Core Volume Rendering . 29

4.1.1 Preprocessing . 30
4.1.2 Out-of-Core Dataset Traversal . 30
4.1.3 Hardware-Assisted Rendering . 33
4.1.4 Distributed Rendering . 34

4.2 Results . 36

4.3 Discussion . 37
4.3.1 Limitations . 37
4.3.2 VTK . 41
4.3.3 iRun vs. iWalk . 41

4.4 Proposition . 42

5. PARALLEL VISUALIZATION ON LARGE CLUSTERS USING MAPREDUCE . 43
5.1 MapReduce Overview . 44
5.2 Visualization Algorithms Using MapReduce . 46

5.2.1 Isosurface Extraction . 46
5.2.2 Rendering . 47
5.2.3 Mesh Simplification . 47

5.3 Experimental Analysis . 49
5.3.1 MapReduce Baseline . 50
5.3.2 Isosurface Extraction . 52
5.3.3 Rendering . 52
5.3.4 Mesh Simplification . 56

5.4 Discussion . 56
5.5 Proposition . 59

6. INITIAL DESIGN FOR MULTICORE SYSTEMS . 60
6.1 Execution Model . 61
6.2 Scheduler . 63
6.3 Streaming Computation . 64
6.4 Framework Implementation . 66
6.5 Applications . 67

6.5.1 Multicore Image Processing . 67
6.5.2 Streaming Tetrahedral Mesh Simplification . 73

6.6 Discussion . 74

7. HYPERFLOW: AN EFFICIENT DATAFLOW ARCHITECTURE FOR SYSTEMS
WITH MULTIPLE CPUS AND GPUS . 76
7.1 HyperFlow Architecture . 76

7.1.1 Pipeline Construction Using Task-Oriented Modules . 77
7.1.2 Pipeline Execution Using Flows . 78
7.1.3 Virtual Processing Elements (VPEs) . 78
7.1.4 Execution Engine . 80
7.1.5 VPE Scheduler . 81
7.1.6 Memory Transfer . 82
7.1.7 Classes of Parallelism Supported . 83

7.2 Synthetic Applications . 87
7.2.1 Micro-Benchmarks . 87
7.2.2 Performance Results . 87

7.3 Real-Case Applications . 89
7.3.1 High Throughput Image Processing . 91
7.3.2 Multigrid for Gradient-Domain Operations . 91
7.3.3 Map/Reduce Word Count . 95
7.3.4 Broad-Phase Collision Detection . 98
7.3.5 Isocontouring Structured Grids . 99
7.3.6 Saturation of Memory Bandwidth . 103

vi

7.4 Discussion . 105

8. FUTURE WORKS . 106
8.1 Remote Computing Resources and VPE . 106
8.2 Distributed Scheduling . 107
8.3 Persistent Module . 108

9. CONCLUSIONS . 110

REFERENCES . 112

vii

LIST OF FIGURES

2.1 Executive Classification Executives are classified based on their updating scope
and policy (a) a centralized push model handling (b) a centralized pull model han-
dling (c) a distributed push model handling a data request (d) a distributed pull model 5

2.2 Dataflow Parallelism The three fundamental types of parallelism in the dataflow
architecture (a) Task Parallelism (b) Pipeline Parallelism and (c) Data Parallelism. . . . 6

2.3 Dataflow vs. Workflow Two main differences between dataflow and workflow:
(a) pipeline topology and (b) execution strategy. 7

3.1 Streaming Simplification Streaming simplification performed on a tetrahedral
mesh ordered from bottom to top. The portion of the mesh that is in-core at each step
is shown in green. 12

3.2 Mesh Format Layout diagrams with cell indices on the horizontal and vertex in-
dices on the vertical axis. A vertex is active from the time it is introduced until it is
finalized, as indicated by the horizontal lines. (a) A standard format for tetrahedral
meshes based on the OBJ format. (b) A streaming format that interleaves vertices
with cells. Vertex finalization is provided with a negative index (i.e., relative to the
most recent vertex). 13

3.3 Streaming Simplification Buffer Example of a buffer moving across the surface
of a tetrahedral mesh sorted from left to right. As new tetrahedra are introduced, the
tetrahedra that have been in-core the longest are removed from memory. 16

3.4 QEM Data Structure Data structures used for our quadric-based simplification. . . . 19

3.5 Conjugate Gradient Solver Conjugate gradient solver for positive semidefinite
systems Ax = b. On input x is an estimate of the solution, n = 4 is the number of
linear equations, and κmax is a tolerance on the condition number. tr(A) is the trace
of A. 22

3.6 Simplified Scalar Result Volume rendered images of the Fighter dataset show
the preservation of scalar values. The original dataset is shown on the left (1,403,504
tetrahedra) and the simplified version is shown on the right (140,348 tetrahedra). 25

3.7 Simplified Surface Result Views of the mesh quality on the surface of the Rbl
dataset. The original dataset is shown on the left (3,886,728 tetrahedra) and the
simplified version is shown on the right (388,637 tetrahedra). 25

3.8 Large-Scale Simplified Simulation Dataset Isosurfaces of the fluid dynamics
dataset. A very small portion of the isosurfaces is shown for the original dataset of
over a billion tetrahedra (left) and the simplified dataset of only 12 million tetrahedra
(right). The isosurfaces are shown up close using flat shading to enhance the details
of the resulting surface. Our algorithm allows extensive simplification (almost 1%)
with negligible numerical error (1.57% RMS) for the fluid dynamics dataset which is
too large to simplify with conventional approaches. 27

4.1 iRun Overview. (a) The user interacts with the UI by changing the camera from
which our system predicts future camera positions. (b) Our octree traversal algorithm
selects the octree nodes that are in the frustum, determines the appropriate LOD, and
arranges the nodes in visibility order. (c) The geometry cache keeps the working-set
of triangles while a separate thread is used to fetch additional geometry from disk.
(d) Finally, the geometry is sent to the renderer for object-space sorting followed by
a hardware-assisted image-space sorting and compositing which is performed using
a modified version of the HAVS algorithm. 29

4.2 iRun Visibility Sorter Pseudo-code for visibility sorter based on the camera dis-
tance in iRun. 31

4.3 iRun LOD Traversal Pseudo-code for the octree traversal algorithm. 32

4.4 A Snapshot of iRun Refining the LOD The image on the left is rendered as the
user would see it from the current camera position. On the right is a bird’s-eye view
of the same set of visible nodes. Different colors indicate different levels-of-detail.
The geometry cache is limited to only 64MB of RAM in this case. 32

4.5 Distributed Rendering with iRun (a) with a thumbnail client, the client receives
thumbnails from the render-servers and composites them and (b) with a full client,
the client accesses and renders the geometry directly. 36

4.6 Effects of Geometry Cache Size in iRun iRun visualizes the Turbo Jet model
consisting of over 10 millions tetrahedra with multiple levels-of-detail. The geometry
cache size of (a), (b) and (c) is 512MB while (d) is 1.5GB. (a) In interactive mode,
iRun only displays 40K triangles. (b) In still-rendering mode, most of the geometry
cache is used. (c) The user zooms in to a particular region. (d) The geometry cache
size is tripled. 38

4.7 Geometry Cache Statistics The difference between the displayed nodes of the
geometry cache and the ones being fetched during interactions of the Turbo Jet at 2
fps. 39

4.8 Distributed Volume Rendering The bullet dataset rendered with a single ma-
chine versus a distributed rendering with four clients. 40

5.1 Hadoop Architecture Data transfer and communication of a typical MapReduce
job in Hadoop. Data blocks are assigned to several Maps, which emit key/value pairs
that are shuffled and sorted in parallel. The reduce step emits one or more pairs. 45

5.2 MapReduce Isosurface Extraction The map phase generates an isovalue as
key and triangle data as value. The reduce phase simply outputs the isosurface as
a triangle soup to file. 47

5.3 MapReduce Rasterization The map phase rasterize each triangle and emits the
pixel coordinates as value, and its color and depth as value. The reducer emits the
smallest depth value for each location. 48

5.4 MapReduce Mesh Simplification The first map phase generates the bin coordi-
nate of a vertex as key and a quadric error measure along the three triangle indices
as value. The first reduce emits the representative vertex for each triangle. A second
map and reduce is applied since multiple current reduce phases are not currently
supported. 48

ix

5.5 Hadoop Baseline Results Hadoop baseline test evaluates data transfer costs. In
the local cluster we achieve rates up to 428MB/s . 51

5.6 Isosurface Extractions with MapReduce Isosurface results using the MapRe-
duce framework for the PPM Richtmyer-Meshkov instability and Skull datasets. 53

5.7 Surface Rendering with MapReduce Rendering results for the St. Matthew
(left), Atlas (right). 54

5.8 Volume Rendering with MapReduce Volume rendering of the earthquake dataset
(SF1) using a 100MP image. Table shows volume rendering statistics for other
tetrahedral meshes. The Bullet dataset with 36 million tetrahedra is rendered in 4min
and 19s. 55

5.9 Comparisons of Simplification with MapReduce Simplified meshes using
volumes from 83 to 10243 using decimation rates under 5%. 57

6.1 Parallel Dataflow Architecture for Multicore Platforms The overall archi-
tecture of our system. The execution process is triggered by the first request of
any pipeline module. The scheduler will distribute resources and schedule the next
execution of the whole pipeline. Each module is allocated with a specific sum of
resources (of CPU and GPU). Inputs will be converted into the appropriate medium
for resource before entering actual computation. 61

6.2 A Simple Rendering Pipeline . 63

6.3 Scheduler Assigments Streaming priority assignments by our scheduler 63

6.4 Gaussian Image Pipeline (a) using VTK; (b) using ours . 68

6.5 Gaussian Image Pipeline Results CPU usage from 1 to 8 threads 69

6.6 Gaussian Image Pipeline Results Strong scaling plot (top) and efficiency plot
(down) . 70

6.7 ViSUS Performance with Our System Two ViSUS pipelines performing: (a)
the 12-Month Average, (b) Multi-View selective rendering and (c) the scalability plot. 72

6.8 Streaming Simplification with Our System Streaming simplification of tetra-
hedral meshes under our system (a) with data-parallelism and (c) with a complete
parallelism . 73

7.1 HyperFlow Architecture Overview . 77

7.2 Scheduling Logic of HyperFlow Pseudo-code for the main strategy of the VPE
scheduler. 82

7.3 Execution and Parallelism in HyperFlow Processing two data blocks, part one. . 85

7.4 Execution and Parallelism in HyperFlow Processing two data blocks, part two. . 86

7.5 Topology of Micro-benchmarks . 88

7.6 Snapshot of the Micro-benchmark running with eight input flows and eight
VPEs, at 2

3 of the total execution time. The first four inputs are completely processed
at this point, as the first four flows on every module are inactive. 88

x

7.7 Micro-benchmarks Gantt Charts Gantt charts and resource utilization when
processing 8 input flows. Top half shows the Gantt chart for the complete execution
of each benchmark, with one horizontal bar for each VPE. A green state corresponds
to the execution of a module; yellow represents an idle state; red represents the end
of execution. Bottom half shows the resource utilization plot (ratio of active VPEs /
VPEs available.) . 89

7.8 Micro-benchmark Performance for HyperFlow Micro-benchmark simulation
with 1, 2, 4 and 8 threads (green, red, blue and orange bars, respectively) and 1000
flows. 90

7.9 Edge Detection Result Top: input composed of 624 images, each approximately
6MP for (a) and 3MP for (b) in resolution. Bottom: composition of input images
after edge detection pipeline. 92

7.10 Edge Detection Pipeline Edge detection pipeline on approximately 4GB of image
data. Speedup compared to a system with 1 CPU and 0 GPUs. 93

7.11 The Modified Multigrid Solver . 95

7.12 Map-Reduce Example in HyperFlow (a) HyperFlow pipeline definition (left)
and how it should be executed with high efficiency, i.e., modules are desired to run in
parallel while the rest have to be sequential since it uses global shared resources. (b)
Performance Results. Mapping is the most time consuming phase since it has to per-
form both word parser and accumulate word counts for each text block. Fortunately,
it can be parallelized with very little effort in HyperFlow. 96

7.13 Collision Detection Scene 105 objects are contained in a 20×20×2 regular grid
of spaces. Each object is colored differently according to the space where it is inserted. 99

7.14 OpenMP vs. HyperFlow Comparison for collision detection. 100

7.15 Gantt Charts for the Parallel Broad-phase Collision Detection The green
states correspond to the execution of the broad-phase algorithm, blue is the constraint
solving and integration phase, and yellow represents idle or unrelated computations. . . 100

7.16 Data Communication Diagram in HyperFlow for the Isocontouring Pipeline . . . 101

7.17 Pipeline Structure in HyperFlow for the Isocontouring Pipeline 102

7.18 HyperFlow vs. Ghost [44] for parallel computation of an isosurface. The speedup
of both methods is measured relative to the wall clock time of HyperFlow running
on a single processor. No Mem HF refers to the same HyperFlow implementation
without memory accesses. 104

8.1 Node VPE Computing resources on remote machines are utilized with tasks as-
signed from Node VPE of local nodes. 107

8.2 Distributed Scheduling Without Persistent Module . 108

8.3 Implicit and Explicit Data Parallelism Two types of data-parallelism that can be
supported in HyperFlow: (a) implicit and (b) explicit. 109

8.4 Distributed Scheduling with Persistent Module The stars specify persistent
modules. 109

xi

LIST OF TABLES

2.1 Summary of Current Visualization Dataflow Systems . 9

3.1 Analysis of Mesh Layout . 15

3.2 Dataset Statistics . 15

3.3 Priority-Queue (P) vs. Randomized (R) Approach . 20

3.4 Implementation Improvements . 20

3.5 Performance of Linear Solvers . 23

3.6 In-Core and Streaming Simplification Results . 24

4.1 Preprocessing Results . 36

5.1 Performance Results for Isosurface Extractions . 53

5.2 Performance Results for Surface Rendering . 54

5.3 Simplification with MapReduce . 56

6.1 Running Time and Efficiency Ratio of CPU Usage Between VTK and Our System
for a Simple Gaussian Pipeline. 70

6.2 Timing for ViSUS . 73

6.3 Simplification Time for Achieving 10% Resolution . 74

7.1 Performance Results for Streaming Multigrid Gradient-Domain Image Editing 95

7.2 Timing Results for the Word Count Pipeline 83-Million Words 98

7.3 Large Iso-Surface Extraction Using Ghost [44] and HyperFlow 103

ACKNOWLEDGEMENTS

I would like to thank Prof. Cláudio Silva deeply for offering me tremendous guidance and sup-

port throughout both my undergraduate and graduate years. I consider myself to be very fortunate

to get an opportunity to work with him during the past seven years. He has given me countless

experiences to become a researcher that I could not have gained anywhere else. He has been greatly

patient with me and my “random disappearing”. I hope that I did not give him too many troubles.

I would like to thank all of my committee members: Prof. Cláudio Silva, Prof. Juliana Freire,

Prof. Charles Hansen, Prof. Valerio Pascucci and Prof. João Comba, for their valuable comments

and insightful discussions to make this dissertation possible.

I would like to thank Prof. Cláudio Silva, Prof. Juliana Freire and the entire VisTrails team for

giving me an opportunity to work with such a talented group of researchers. It has been my honor.

I would like to thank Louis Bavoil, Steve Callahan, and Carlos Scheidegger, whom I have

learned so much from during my early years in the VGC group. I also want to thank Brian Summa,

Daniel Osmari, Luiz Scheidegger and Jonathan Bronson for working hard with me through many

projects.

I would like to thank Nick Rathke and the IT team at SCI for picking up his phone at midnight

and Liz Jordan for granting me sodas after hours to keep me up during deadlines.

I would like to thank Emanuele Santos, Linh Ha, Hoa Nguyen, Anh Vo, Huong Nguyen, Trang

Pham, and Khiem Nguyen for supplying me with many home-made meals. They were delicious.

Without them, I would have only lived on instant noodles.

I would like to thank Gustavo and Manu for many running sessions altogether. I also want to

thank Luciano Barbosa, Lauro Lins, Karane Vieira, Tiago Quieroz and the Brazillian “gang” for

great friendships.

I would like to thank D.A., N., L., C., V., T., H., and S.B for being there for me.

I would like to thank my buddy Wang Bung Bu just because he is my best friend.

With all my heart, I would like to show my deepest gratitude to my family: my dad, my

mom, my sister and recently my brother-in-law and my niece. My parents have been supporting

me unconditionally with love and much more for the past 26 years. I hope my dissertation could

somehow express my appreciation, though only a fraction of it, to them.

CHAPTER 1

INTRODUCTION

The recent popularization of commodity multicore CPUs and multi-GPU units has opened many

alternatives for the design and implementation of efficient visualization and data analysis algo-

rithms. To do this, one typically needs to manually design a solution that distributes the processing

work among CPU cores and GPU units, an approach that can be very cumbersome in terms of

development time. The ability to combine the processing power of CPUs and GPUs in a more

automatic and extensible fashion requires algorithms to encapsulate tasks into high-level modules

capable of being executed in two or more kinds of fundamentally different processing elements.

This raises an immediate challenge, since CPUs and modern GPUs behave very differently from

one another. Also, this heterogeneous integration requires an underlying infrastructure to control

execution and data-transfer between modules efficiently.

In order to assist developers in these new architectures, libraries and frameworks have been

created with capabilities of abstracting native threads and GPU stream processors in execution

as well as decomposing programs into task graphs, that can be mapped efficiently to different

processing elements at run-time. Among these are Intel Threading Building Blocks [42], AMD

Stream SDK [5], HMPP [17], StarPU [6]. StarPU and AMD Stream SDK are also capable of

scheduling executions on both CPUs and GPUs simultaneously.

On the other hand, existing pipeline models used in scientific and visualization applications,

such as AVS [86], SCIRun [73], and VTK-based systems such as Paraview [50], VisIt [19], Vis-

Trails [8] and DeVIDE [11], already decompose computing tasks into independent modules and

transparently manage data communication inside a pipeline. However, these systems were designed

around the assumption of a homogeneous processing model, based only on multicore CPUs. Even

the current parallel implementations fail to take advantage of the available shared-memory architec-

ture to increase performance.

Unfortunately, these systems cannot utilize existing parallel frameworks directly because of their

differences in execution models. Current parallel frameworks make use of task graph execution,

which is a workflow-based architecture, whereas visualization systems are mostly dataflow-based.

Since workflows require more constraints in pipeline topology as well as execution mechanism than

2

dataflow, simply transforming pipelines in these systems into task graphs will not work.

Moreover, most current systems also assume, to a large extent, that the data can be maintained in

memory, or worse, that multiple copies of the data could be stored across different dataflow modules.

These assumptions can cause scalability problems when dealing with large data. Streaming data

structures are often used in this case, though most current systems do not include this support. A

full revision of the streaming data structures and algorithms is necessary, besides the execution

model, in order to extend current systems to use the processing power of both CPUs and GPUs.

1.1 Dissertation Objectives
In this dissertation, we present a parallel dataflow architecture that treats all processing elements

in a heterogeneous system as first rate computational units, including multicore CPUs and GPU

units, along with a number of large-scale visualization experiments that have helped us determine

crucial requirements for such framework:

• Parallel Constructs: the framework supports building pipelines with all three fundamen-

tal types of parallelism: task-, data- and pipeline- parallelism, and providing methods for

specifying which of them should be incurred on demand.

• Heterogeneous Deployment: pipelines built with the framework should be able to run on

machines with different configurations ranging from a single machine with multiple CPUs

and/or GPUs to a cluster of machines.

• Streaming: large datasets are supported through the use of streaming data structures with all

types of parallelism.

• Extensible API: the framework API has to be flexible enough such that new hardware con-

figurations can be added without difficulty.

As part of this dissertation, we have built HyperFlow, a parallel dataflow architecture for efficient

parallel executions on heterogeneous systems. It includes an adaptive execution scheduler that

assigns tasks for different processing elements such as CPUs and GPUs, thus minimizing load

balancing problems without added effort by pipeline developers. HyperFlow also supports classical

parallel constructions such as Map/Reduce templates, among others.

1.2 Dissertation Structure
The rest of the dissertation is organized as follows. Chapter 2 reviews current parallel pro-

gramming environments and visualization systems. It also provides a background on dataflow

3

architecture. Next, Chapter 3, 4 and 5 describe our experiments with large-scale visualizations

in three applications: streaming simplification of tetrahedral meshes, interactive rendering of large

unstructured grids and visualizations with MapReduce, respectively. Chapter 6 presents our initial

design of a parallel dataflow architecture for multicore machines. Chapter 7 introduces HyperFlow,

our design for multiple CPUs and GPUs systems. Then, Chapter 8 discusses options for extending

HyperFlow to distributed environments. Finally, Chapter 9 concludes the dissertation along with

future work.

1.3 Remark
Many of the results presented in this dissertation have been published in journals and/or pro-

ceedings of conferences. In particular, Chapter 3, Chapter 4 and Chapter 6 are based on [87], [88],

and [89], respectively.

CHAPTER 2

BACKGROUND AND RELATED WORK

Parallel rendering and visualization has been the focus of a large body of work [75, 83, 4, 62, 61].

Even a cursory review is beyond the scope of this chapter. Therefore we point the reader to [18, 47]

for a complete introductory survey. In this chapter, we will review design choices of dataflow

architecture and provide an overview of current visualizations systems.

2.1 Dataflow Architecture
Following the pioneering work of Haber and McNabb [38], many leading visualization systems

mentioned in the previous section (e.g., [51, 86, 73, 19, 8, 11]) have been based on the notion of a

dataflow network, which is often called a pipeline. Modules (nodes of the network) are processing

elements while connections between them represent data dependencies. Inputs for a module may or

may not be independent of the others. Thus, a level of coordination is required between the modules

and their data dependencies during executions. In the simplest form, this is implemented statically

in the algorithm at the module level. However, as dataflow systems become more complex, this

coordination is typically assigned to a separate component called the executive. The executive is

responsible for all coordination, instructing the module when and on which data it should operate.

In this approach, algorithms can be implemented based purely on the computational task required

without consideration for the topology of the pipeline.

2.1.1 Executive Policy and Scope
Executives can be classified based on their updating scope, centralized vs. distributed, and

policy, pull vs. push (or demand- vs. event-driven as stated in [78]). A centralized executive

operates globally and is connected to every module to track all changes to the network, as well as

handling all requests and queries in the pipeline. This approach gives the system the advantage of

having control over the entire execution network, thereby allowing it to be easily distributed across

multiple machines. However, this centralized control leads to high overhead in the coordination

and reduces the scalability of such systems especially when operating on complex pipelines. In the

distributed executive scheme, each module contains its own executive, which is only connected to its

immediate upstream and downstream neighbors. This approach does not suffer the same scalability

5

issues as the centralized scheme. However, this myopic view of the network makes distributing

resources or coping with more complicated executing strategies a much more difficult problem.

With respect to an updating policy, in a pull model a module is executed only when one of its

outputs is requested. If a module’s input is not up-to-date, it will demand or pull the corresponding

upstream module for data. Therefore only modules that are needed for the actual computation will

be executed, avoiding wasteful calculations. However, since a request is dependent on all upstream

modules to be updated before starting computation, the module that initiates the request will be

locked longer than its computing time. In contrast, for a push model modules are updated as soon

as an event occurs, e.g., a change in its input. All modules that are dependent on the requested

module’s output are then computed. This results in a shorter locking period, which is equivalent

to the computation time for each module. Nevertheless, this approach has a key disadvantage of

redundancy. Modules compute and generate data even when they will not be used. Figure 2.1

illustrates the classifications for executives outlined here.

Centralized Push Model

E
New Event

(a)

Centralized Pull Model

E

Data Request
(b)

Distributed Push Model

E
New Event

E

E E

E

(c)

Distributed Pull Model

E

E

E E

E

Data Request
(d)

Module

Message

Data Dependency

Executive

Figure 2.1: Executive Classification Executives are classified based on their updating scope and
policy (a) a centralized push model handling (b) a centralized pull model handling (c) a distributed
push model handling a data request (d) a distributed pull model

6

2.1.2 Parallelism
There are three fundamental types of parallelism in dataflow execution. The first form of

parallelism is task-parallelism. This scheme allows independent branches of the networks to run

in parallel each using its own thread. Task-parallelism requires pipelines with many independant

modules in order to maximize concurrent executions. Figure 2.2a shows an example where modules

A and B are independant of C. Therefore A and B are allowed to be run concurrently with C.

The second form of parallelism is pipeline-parallelism: pipelines are partitioned into subnet-

works operating on different tasks. During execution, each network would be allocated its own

threads and each is computed concurrently on streams of the data. However, pipeline-parallelism is

only applicable to separable or streamable data structures. In addition, partitioning of the pipeline

into subnetworks must be proportional to the computing resources (e.g., the number of cores) in

order to maximize the performance. This is not scalable since this division is typically done by

hand. Figure 2.2b, is an example of streaming pipeline parallelism between two modules.

The last common form of parallelism is data-parallelism. In this scheme, the data are divided

into independant pieces to be processed in parallel. At the end of execution, data are collected

and merged into a single result. This is an extremely useful method for large datasets that must be

processed out-of-core and and is highly scalable to clusters of machines. However, this performance

gain is maintained only if there is one merge operation in the end. Otherwise, data must be

redistributed multiple times causing a large degradation of performance. In practice, a single merge

is the usual case for rendering pipelines. Figure 2.2c illustrates the use of data-parallelism, where

the pipeline AB is duplicated multiple times to work on the separate pieces of the streaming data.

A

B

C

D

Piece #2

Piece #1

A

B

Merge

A

B

A

B

(a) (b) (c)

Streamable Data Structure

Concurrency Execution

Figure 2.2: Dataflow Parallelism The three fundamental types of parallelism in the dataflow
architecture (a) Task Parallelism (b) Pipeline Parallelism and (c) Data Parallelism.

7

2.1.3 Dataflow vs. Workflow
The term workflow is sometime used interchangeably with dataflow in many literatures. Though

they both refer to a set of processes with data paths describing how data should be moved among

them, they have two main differences in pipeline topology and execution strategy.

Pipeline Topology: a workflow is required to be a directed acyclic graph (DAG) while dataflow

is not. As in Figure 2.3a, a pipeline expressed in dataflow is allowed to have feedback connections,

e.g.,from the Viewer to the Fetch module. In a workflow, the same feedback connection has to be

implemented and triggered manually by the developer at run-time.

Execution Strategy: in a workflow, the execution order of modules is usually fixed based on the

dependency of data connections. Each time a workflow is executed, every module is also executed

exactly once. This is considered to be a task-driven approach comparing to the data-driven one of

dataflow, where only modules that receive input data, either as a result of an upstream execution or

programmatically commands, will be triggered for execution. Figure 2.3b illustrates this difference.

On the left, the execution order for the shown workflow is fixed: Fetch, Filter A, Filter B and

Viewer. On the right, depending on whether module Filter A and Filter B produce any output data,

the Viewer module will or will not be executed accordingly.

2.2 Visualization Systems
Kitware’s Visualization ToolKit (VTK) [51] is considered to be the de facto standard visu-

alization API and is used by thousands of researchers and developers around the world. The

underlying architecture has undergone substantial modifications over the years to allow for the

Filter A Filter B

Fetch

Viewer

Filter A Filter B

Fetch

Viewer

Filter A Filter B

Fetch

Viewer

Filter A Filter B

Fetch

Viewer

1

2 3

1

2 3

4

1 2

3 4

Work�ow
(DAG)

Data�ow
Work�ow

(DAG)
Data�ow

(a) (b)

Executed module Connection with/without data

Figure 2.3: Dataflow vs. Workflow Two main differences between dataflow and workflow: (a)
pipeline topology and (b) execution strategy.

8

handling of larger and more complex datasets (e.g., time-varying, AMR, unstructured, high-order).

However, its execution model has a number of limitations with respect to parallelism. First, it only

supports concurrency execution at a module level, which means that no matter how many threads

an algorithm is implemented to run in, the whole network has to be updated serially (that is, one

module at a time). Moreover, by default, only a small subset of VTK, such as those inherited from

vtkThreadedImageAlgorithm, can run multithreaded. This poses a limitation on the performance

and scalability for many applications. While much effort [54, 9] has been put into extending VTK’s

execution pipeline over the years, it is still challenging and problematic to build highly-parallel

pipelines using the existing pipeline infrastructure. This is partly due to the fact that VTK makes use

of a demand-driven execution model while some pipelines, in particular those that need streaming

and/or time-dependent computations, fit more naturally in an event-driven architecture.

Ahrens et al. [2, 1] proposed parallel visualization techniques for large datasets. Their work in-

cluded various forms of parallelism including task-parallelism (concurrent execution of independent

branches in a network), pipeline-parallelism (concurrent execution of dependent modules but with

different data) and data-parallelism. Their goals included the support for streaming computations

and support for time-varying datasets. Their pioneering work led to many improvements to the VTK

pipeline execution model and serve as the basis for ParaView [50].

ParaView is designed for data-parallelism only, where pipeline elements can be instantiated

more than once and executed in parallel with independent pieces of the data. Specifically, a typical

parallel execution in ParaView involves a pipeline instantiating one or multiple processes based

on the data input. ParaView must then rely on MPI to distribute the processes to cluster nodes to

finish the computation. However, ParaView does not support a hybrid MPI/multithreaded model;

for multicore architectures MPI is also used for creating multiple processes on the same node. This

may impose substantial overhead due to the additional expense of interprocess communication.

A related system is VisIt [19]; an interactive parallel visualization and graphical analysis tool

for viewing scientific data. Though the pipeline topology in VisIt is fixed and relatively simple, it

introduced the notion of contracts between modules, which are data structures that allow modules

to negotiate with other modules on how to transfer data. This method has proven to be very useful

for optimizing many operations on the dataflow network. Recent versions of the VTK pipeline

incorporate many ideas that were originally developed for VisIt and ParaView.

DeVIDE [11] is a cross-platform software framework for the rapid prototyping, testing and

deployment of visualization and image processing algorithms. It was one of the first systems to

fully support a hybrid execution model for demand- and event-driven updating policies. However,

it does not target the parallel/high performance perspective of pipeline execution.

9

Table 2.1 summarizes the feature set for the systems discussed above.

2.3 Heterogeneous Programming Frameworks
There exist several proposals of programming languages and environments to allow combined

computation on CPUs and GPUs, such as the Brook [12] programming language, designed for

general-purpose computation using GPUs[72]. At the time of its proposal, GPUs were programmable

mainly through graphics APIs. Brook introduces a streaming architecture that exposes the GPU as a

parallel programmable unit, composed of kernels (programs) that operate on streams (data). Similar

to Brook, the Scout [64] programming language was designed with specific data constraints and a

target application in the field of visualization and data exploration. Only regular grid structures are

supported in Scout, which are directly mapped to OpenGL textures. Glift [55] is an abstraction layer

and generic template library for representing complex random-access data structures (e.g., Stacks,

Quadtrees and Octrees) on the GPU. Glift components were designed to support data access both

on the CPU and GPU using a streaming computation model. With the introduction of the CUDA

[70] programming language by NVIDIA (and subsequently OpenCL[53]), the full infrastructure of

the GPU was made available for general purpose computation in a single system.

Support for heterogeneous systems is described in several works. Instead of forcing applications

to be rewritten into a streaming processing format, HMPP [32, 10] is a programming environment

that enhances CUDA programs with a set of compiler directives, tools and software runtime that

support multicore CPU parallel programming. HMPP offers a dynamic linking mechanism that

allows the GPU to be used as a co-processor in a way that preserves legacy code. The CUDASA

programming language [68] extends CUDA to allow distributed computation on multiple GPUs

in a local system or across machines on a network. CUDASA introduces abstraction layers with

different levels of parallelism. In particular, a bus layer allows manual task delegation to CPU and

Table 2.1: Summary of Current Visualization Dataflow Systems

Executive Parallelism Streaming
Scope Policy Async. Data Task Pipeline Memory

Update
VTK Dist. Pull X Shared Serial

ParaView Dist. Pull X X Dist. Serial
VisIt Dist. Pull X X Dist. Serial

DeVIDE Cent. Pull/Push Serial
SCIRun Cent. Push X Shared N/A
VisTrails Cent. Pull N/A

10

GPU cores in arbitrary combinations, while a network layer adds support for clusters of multiple

interconnected computers. Shared memory across network nodes relies on the MPI Remote Mem-

ory Access (RMA) protocol. It lacks support for improved load balancing and distributed memory

accesses. FastFlow [3] introduces a low-level programming framework based on lock-free queues

(no memory fences) to support streaming applications. It allows multiparty communication in

multicore architectures, with support for cyclic graphs of thread streaming networks, and is specially

designed for fine-grained computations.

Some recent work discusses more advanced scheduling algorithms for controlling parallel ap-

plications. Jimenez et al. [46] introduce a predictive user-level scheduler for a CPU/GPU heteroge-

neous system. They discuss and evaluate several scheduling algorithms that improve performance

of of functions that have previously been profiled during execution.

Unfortunately, current programming environments either make use of task-graphs or a similar

DAG-based approach in their execution models or only providing a low-level scheduling API, and

thus, cannot be extended to current dataflow systems without major modifications.

CHAPTER 3

STREAMING SIMPLIFICATION OF

TETRAHEDRAL MESHES

In this chapter, we present our experiment with streaming data structures and algorithms in the

context of unstructured grid simplification. Simplification techniques have been a major focus of

research for the past decade due to the increasing size and complexity of geometric data. Scientific

simulations and measurements from fluid dynamics and partial differential equation solvers have

produced datasets that are too large to visualize with current hardware. Thus, approximations which

maintain a volumetric mesh are necessary to achieve a level of interactivity that is necessary for

proper analysis through visualization techniques such as isosurfacing or direct volume rendering.

This experiment also shows the importance of streaming in handling large-scale datasets, thus,

guiding us to a generalized streaming data structure that can optimize both performance and memory

footprint.

Although significant work has been done in simplifying triangle meshes, relatively little has

been done with tetrahedral meshes. Most of the work in tetrahedral simplification falls into two

categories: edge-collapse methods and point sampling methods. These algorithms assume that the

entire mesh can be loaded into main memory. However, due to the high memory overhead of storing

the mesh connectivity in addition to the geometry, there are limitations on the size of the dataset

that can be simplified in this manner.

We present an algorithm that streams the data from disk through memory and performs the

simplification on a localized portion of the entire mesh. Our streaming algorithm requires only one

pass to simplify the entire mesh. Thus, the layout of the mesh is of great importance to produce

high quality results. We perform a reordering of the tetrahedral cells and store them on disk using

a streaming tetrahedral mesh format. This format provides concurrent access to coherently ordered

vertices and tetrahedra. It also minimizes the duration that a vertex remains in-core, which limits

the memory footprint of the simplification.

Our tetrahedral simplification incrementally works on overlapping portions of the mesh in-core

(see Figure 3.1). We use the quadric-error metric to perform a series of edge collapses until a

target decimation is reached. This results in a simplification algorithm that can efficiently simplify

12

Figure 3.1: Streaming Simplification Streaming simplification performed on a tetrahedral mesh
ordered from bottom to top. The portion of the mesh that is in-core at each step is shown in green.

extremely large datasets. In addition, through the use of carefully optimized algorithms, linear

solvers, and data structures we show that significant improvements in speed and stability can be

achieved over previous techniques.

3.1 Streaming Mesh Layout
Traditional object file formats consist of a list of vertices followed by a list of polygonal or poly-

hedral elements that are defined by indexing into the vertex list. Dereferencing such a mesh, i.e., ac-

cessing vertices via their indices, requires the whole vertex list to be in memory since elements

are generally not assumed to reference vertices in any particular order; an element can arbitrarily

reference any vertex in the list. Furthermore, streaming such a mesh implies buffering all vertices

before the first element is encountered in the stream. A logical progression for large meshes is to

store them in a streaming mesh representation that interleaves the vertices and elements and stores

them in a “compatible” order. This representation allows a vertex to be introduced (added to an

in-core active set) when needed and finalized (removed from the active set) when no longer used.

Isenburg and Lindstrom [43] provide a streaming mesh format for triangle meshes that extends

the popular OBJ file format. We use their format with straightforward additions to handle tetrahedral

meshes. This includes extending the vertices to four values 〈x,y,z, f 〉 that represent the position in

3D space and a scalar value. In addition, we provide a new element type for a tetrahedral cell that

indexes four vertices. This format allows us to finalize a vertex when it is no longer in use by using

a negative index into the vertex list, which is backwards compatible with the OBJ format. Figure 3.2

shows an ASCII example of the streaming tetrahedral format.

An important consideration with streaming meshes is the ability to analyze the efficiency of a

mesh layout. Isenburg and Lindstrom developed several techniques for visualizing properties of the

mesh to determine the effectiveness of the layout. We use similar tools to measure tetrahedral mesh

quality. An important property is the front width, or the maximum number of concurrently active

vertices. An active vertex is one that has been introduced, but not yet finalized. The width of a

streaming mesh gives a lower bound on the amount of memory required for dereferencing (and thus

13

1
2
3
4

1 2 3 4

5
6

standard
v -1.0 0.0 0.0
v 0.0 0.0 -1.0
v 0.0 1.0 0.0
v 0.0 0.0 0.0
v 0.0 0.0 1.0
v 1.0 0.0 0.0
c 1 2 3 4
c 1 3 4 5
c 2 3 4 6
c 3 4 5 6

streaming
v -1.0 0.0 0.0
v 0.0 0.0 -1.0
v 0.0 1.0 0.0
v 0.0 0.0 0.0

v 1.0 0.0 0.0

c 1 2 3 4
v 0.0 0.0 1.0
c -5 3 4 5

c -5 3 4 6
c -4 -3 -2 -1

1
2
3
4

1 2 3 4

5
6

(a) (b)

Figure 3.2: Mesh Format Layout diagrams with cell indices on the horizontal and vertex indices
on the vertical axis. A vertex is active from the time it is introduced until it is finalized, as indicated
by the horizontal lines. (a) A standard format for tetrahedral meshes based on the OBJ format. (b) A
streaming format that interleaves vertices with cells. Vertex finalization is provided with a negative
index (i.e., relative to the most recent vertex).

processing) the mesh. Another important property of the mesh is the front span, which measures the

maximum index difference (plus one) of the concurrently active vertices. A low span allows a faster

implementation because optimizations can be performed that achieve the best performance when

the span is similar to the width. Low span makes for efficient indexing in the file format, bounds the

width, and for simplification purposes, ensures that vertices do not become stagnant in the buffer,

which would prevent all incident edges from being collapsed. The efficiency of our layout depends

on quantifying these properties. Thus we provide analysis on different layout techniques so that we

can choose the most streamable layout for a given dataset.

One simple mesh layout is to sort the vertices on a spatial direction, in particular one that crosses

the most tetrahedra. Wu and Kobbelt [91] use this technique for triangle mesh simplification. This

can be accomplished for large meshes by performing an out-of-core sort on the vertices [58] and

writing them into a new file. An additional file is created to contain a mapping of the old ordering

to the new one. Next, the tetrahedral cells are written to a new file and reindexed according to the

mapping file. A sort is then performed on the file containing the tetrahedral cells based on the largest

index of each cell. Finally, the vertex file and the cell file are read simultaneously and interleaved

into a new file by writing each cell immediately after the vertex corresponding to the cell’s largest

index has been written. Spatial layouts work especially well when considering meshes that have a

dominant principal direction.

Other techniques may be desirable if the mesh does not have a dominant principal direction,

such as a sphere. An approach to handle this type of data is to use a bricking method similar to

the one proposed by Cox and Ellsworth [29] in which the vertices are ordered into a fixed number

14

of small cubes for better sequential access. A similar approach is to arrange the vertices using a

Lebesgue space-filling curve (i.e., z-order), which provides better sequential access in the average

case. This arrangement can be generated by creating an out-of-core octree [22] of the vertices and

traversing them in-order. The interleaved mesh is then written to a file in the same manner described

above for spatial sorting. The results of the layout produced by bricking and z-order traversal are

similar. When streamed they provide a more contiguous portion of the mesh on average, but the

front width and span are typically much larger than sorting spatially.

Another approach used for laying out the mesh on disk is spectral sequencing. This heuristic

finds the first nontrivial eigenvector (the Fiedler vector) of the mesh’s Laplacian matrix and was

shown by Isenburg and Lindstrom [43] to be very effective at producing low-width layouts. They

provide an out-of-core algorithm for generating this ordering for streaming triangle meshes, which

we have extended to handle tetrahedra. This method works particularly well for curvy triangle

meshes, but tetrahedral meshes are generally less curvy and more compact. Still, in most cases this

ordering results in the lowest width, which is ideal for minimizing memory consumption.

A final approach is to create a topological layout, which starts at a vertex on the boundary and

grows out to neighboring vertices. To grow in a contiguous manner, we use a breadth-first traversal

with optimizations to improve coherence [43]. Instead of a traditional FIFO priority queue, we

assign priority using three keys. First, the oldest vertex on the queue is used in the same way that it

would be in standard breadth-first algorithms. However, if multiple vertices were added to the queue

at the same time, a second and third key are used to achieve a more coherent order. The second key

is boolean, and gives preference to a vertex if it is the final one in a cell that has not been processed.

Finally, the third key is to use the vertex that was most recently put on the queue, which is more

likely to be adjacent to the last vertex. These sort keys guarantee a layout that is compact [43], such

that runs of vertices are referenced by the next cell, and runs of cells reference the previous vertex

(e.g., as in Figure 3.2b). In practice, this traversal can be accomplished out-of-core by breaking the

mesh into pieces. Using this approach, we were able to minimize the front span of the datasets in all

of our experimental cases. This is ideal because having a span and width that are similar allows us to

exploit optimization techniques described in the simplification algorithm. Yoon et al. [94] propose

a layout based on local mesh optimizations which reduce cache misses. This approach applied to

tetrahedra would also give a compact representation as with our breadth-first layout and could be

used to achieve similar results.

Table 3.1 shows the front width and span for five different datasets (their statistics are specified

in Table 3.2) produced by the layout techniques described above. Spectral sequencing proves to be

the superior choice when low width and thus memory efficiency is required. Breadth-first layouts

15

Table 3.1: Analysis of Mesh Layout

Dataset Spatial Sort Z-Order Spectral Breadth-First
Width Span Width Span Width Span Width Span

Torso 3,118 20,784 7,256 122,174 2,894 13,890 5,528 6,370
Fighter 3,894 110,881 9,382 215,697 3,916 28,638 16,629 19,523
Rbl 2,814 5,270 10,232 371,269 2,291 21,764 3,206 3,495
Mito 19,876 33,524 10,202 642,550 6,745 44,190 10,552 11,498
SF1 16,898 65,921 48,532 1,958,212 12,851 131,152 30,258 33,378

Table 3.2: Dataset Statistics

Dataset Vertices Tetrahedra
Torso 168,930 1,082,723
Fighter 256,614 1,403,504
Rbl 730,273 3,886,728
Mito 972,455 5,537,168
SF1 2,461,694 13,980,162

are not as memory-efficient, but as we will see can be processed fast. Note that unlike [45] we do

not require a face-connected order and we do not require that each vertex be finalized before it can

be inserted into the in-core mesh. This allows us to avoid local reordering of the tetrahedra or the

vertices.

3.2 Tetrahedral Simplification
3.2.1 Quadric-Based Simplification

To achieve high-quality approximations, we use the quadric error metric proposed by Garland

and Zhou [36]. This metric measures the squared (geometric and field) distances from points to

hyperplanes spanned by tetrahedra. The volume boundaries are preserved using a similar metric on

the boundary faces and by weighting boundary and interior errors appropriately.

The generalized quadric error allows the flexibility of representing field data by extending the

codimension of the manifold. Given a scalar function f : D ⊆ R3 → R defined over a domain D

represented by a tetrahedral mesh, we can represent the vertices at each point p as 〈xp,yp,zp, fp〉,

which can be considered a point on a 3D manifold embedded in R4. Thus, by extending the quadric

to handle field data, the algorithm intrinsically optimizes the field approximation along with the

geometric position.

The quadric error of collapsing an edge to a single point is expressed as the sum of squared

distances to all accumulated incident hyperplanes, and can in n dimensions be encoded efficiently as

16

a symmetric n×n matrix A, an n-vector b, and a scalar c. It is sufficient to component-wise add these

terms to combine the quadric error of two collapsed vertices. Finding the point x that minimizes

this measure amounts to solving a linear system of equations Ax = b. Once x is computed, we

test whether collapsing to this point causes any tetrahedra to flip [20], i.e., changes the sign of their

volume, in which case we disallow the edge collapse. Because A is not necessarily invertible, it is

important to choose a linear solver that is numerically stable.

3.2.2 Streaming Simplification
Combining streaming meshes with quadric-based simplification, we introduce a technique for

simplifying large tetrahedral meshes out-of-core. We base our streaming algorithm on [45] and [43],

but make several general improvements and provide a list of optimizations that compared to a less

carefully engineered implementation results in dramatic speed improvements.

First, unless already provided with streaming input, we convert standard indexed meshes and

optionally reorder them for improved streamability. Then, portions of the streaming mesh are loaded

incrementally into a fixed-size main memory buffer and are simplified using the quadric-based

method. Once the in-core portion of the mesh reaches the user-prescribed resolution, simplified

elements are output, e.g., to disk or to a downstream processing module. Thus input and output

happen virtually simultaneously as the mesh streams through the memory buffer (see Figure 3.3).

Figure 3.3: Streaming Simplification Buffer Example of a buffer moving across the surface
of a tetrahedral mesh sorted from left to right. As new tetrahedra are introduced, the tetrahedra that
have been in-core the longest are removed from memory.

17

To ensure that the final approximation is the desired size, two control parameters have been

added: target reduction and boundary weight. Target reduction is the ratio between the number of

tetrahedra in the output mesh and the number of tetrahedra in the original mesh. Alternatively, this

parameter can be expressed as a target tetrahedral count of the resulting mesh. The boundary weight

prevents the shape of the mesh from changing throughout the simplification. We use a fixed value

of 100 times the maximum field value in the data for the weight in our experiments. Similar to [36],

the scalar field is always normalized to the geometry range before actual simplification begins.

Because we only keep a small set of tetrahedra in memory, we do not know the entire mesh

connectivity. Thus, we keep the boundary between the set of tetrahedra that are currently in memory

and all remaining elements—tetrahedra that have not yet been read or that have been output—fixed

to ensure that the simplified mesh is crack-free. We call this boundary the stream boundary, which

consists entirely of faces from the interior of the mesh. We can identify the stream boundary faces

as they are read in by utilizing the finalization information stored in the streaming mesh. A face of

the current in-core mesh is part of the stream boundary if none of its three vertices are finalized. We

disallow collapsing any edge that has one or both vertices on the stream boundary.

Due to the stream boundary constraint, if we read in one portion of the mesh, simplify it, and

write it out to disk in one phase, our output mesh will have unsimplified areas along the stream

boundaries. This results in an approximation that is oversimplified in areas and under-simplified

in others. To avoid this problem, we follow the algorithm proposed by Wu and Kobbelt [91].

Their algorithm consists of a main loop in which READ, DECIMATE, and WRITE operations are

performed in each iteration. The READ operation introduces new elements until it fills the buffer.

Next, DECIMATE simplifies the elements in the buffer until either the target ratio is reached or the

buffer size is halved. Finally, in their method the WRITE operation outputs the elements with the

largest error to file.

As in [43], we improve upon [91, 45] by ensuring, to the extent possible, that the relative order

among input elements is preserved in the output stream, with the caveat that tetrahedra whose

vertices have not yet been finalized (i.e., are on the input stream boundary) must be delayed.

Therefore, the output typically retains the coherence of the input. An error-driven output criterion,

on the other hand, can considerably fragment the buffer and split off small “islands” that remain in

the buffer for a long time without being eligible for simplification, and thus unnecessarily clog the

stream buffer. Furthermore, such an output stream generally has poor stream qualities, which affects

downstream processing. The front width (i.e., number of active vertices), for example, is particularly

important for tetrahedral meshes, for which each active vertex affects on average four times as many

elements as in a triangle mesh, and therefore more adversely affects memory requirements and

18

processing delay. Furthermore, we relax the requirement that the stream of tetrahedra (triangles)

advance in a face (edge) adjacent manner [45], as this is of no particular value to us, and we allow

any coherent ordering of mesh elements. Finally, using the more streamable layouts and simpler

streaming mesh formats and API from [43], we gain considerably in performance and memory

usage over [45].

3.3 Implementation Details and Optimizations
Since our method processes different mesh portions of bounded size sequentially, a statically

allocated data structure is more efficient than dynamic allocations, which collectively increase the

memory footprint. The size for this buffer should be O(width) depending on the width of the input

mesh. However, in practice, we are able to simplify even a 14 million tetrahedra dataset using only

20MB of RAM (see Section 3.4).

In our implementation, we extended Rossignac’s corner table [76] for triangle meshes to tetra-

hedral meshes. The original corner table requires two fixed-size arrays V and O indexed by corners

(vertex-cell associations) c, where V [c] references the vertex of c and O[c] references the “opposite”

corner of c.

In the case of tetrahedral simplification, the most common query is to find all tetrahedra around

a vertex. Therefore, we replace the O array with a link table L of equal size, which joins together all

corners of a given vertex in a circular linked list. We additionally store with each vertex an index to

one of its corners.

We store the mesh internally as three fixed-size arrays of vertices, tetrahedra, and corners

(i.e., the links L). Each vertex contains a pointer to one corner and the quadric error information

(A,p,ε) using a parameterization that explicitly represents the vertex geometry and scalar data in

p. In Figure 3.4, only p and vidx are stored out-of-core while the rest are computed on-the-fly.

This data structure employs 69 bytes per vertex and 37 bytes per tetrahedra. The quadrics for the

tetrahedra are calculated when we read in a new set of tetrahedra, and are then distributed to the

vertices. For each finalized vertex, we compute boundary quadrics for all incident boundary faces

(if any) that have no other finalized vertices, and distribute these quadrics to the boundary vertices.

Garland and Zhou [36] use a greedy edge collapse method and maintain a priority queue for

the edges ordered by quadric error. Forsaking greediness, we obtain comparable mesh quality by

using a multiple choice randomized approach [91, 30] with eight candidates per collapse. There are

several advantages of using randomized selection. One is that we no longer need a priority queue

or explicit representation of edges. Instead an edge can be found by randomly picking a tetrahedron

and then randomly selecting two of its vertices. Another advantage is that the randomized technique

can be further accelerated by exploiting information readily available through our quadric represen-

19

VERTEX

float[10] A quadric matrix
float[4] p position and field value
float ε quadric error at p
int idx index to input/output stream
int corner vertex-to-corner index
bool deleted
bool written

TETRAHEDRON

int[4] vidx vertex indices
int[4] link corner links
bool deleted
int idx position in input stream

Figure 3.4: QEM Data Structure Data structures used for our quadric-based simplification.

tation. Table 3.3 illustrates the performance of the randomized approach over the priority-queue

based approach. Both algorithms simplified the models to 10% of their original resolutions. The

randomized results were collected as an average of 3 runs on the same input with different random

seeds. Intuition would suggest that the results generated by the priority-queue approach would

have smaller error because it always picks the edge with the smallest error to collapse at each step.

However, this is not optimal in many cases. A series of minimal edge collapses can lead to a

locked state where the edges with the smallest error cannot be collapsed without flipping tetrahedra.

In practice, the problem is more likely to occur in the homogeneous regions of a dataset, which

contains edges with zero error. The priority-queue approach will greedily simplify this region as

much as possible first, leaving it in a locked state. As a result, many neighbor regions (containing

edges with small error) may not get simplified because it would violate the flipping constraint. On

the other hand, the randomized approach tends to spread the simplification over the whole model,

resulting in significantly less locked state. This explains why the maximum error of the Torso dataset

using the priority queue approach was very high compared to the randomized approach. In general,

the randomized approach produces comparable quality to a priority queue, while demonstrating

superior performance.

Before we output a tetrahedron, we must ensure that its four vertices are output first. Once a

vertex is output, we mark it as not being collapsible in future iterations. To enhance the performance,

we use a lazy deletion scheme, where all vertices and tetrahedra to be deleted are initially marked. At

the end of each WRITE phase, we make a linear pass through all vertices and tetrahedra to remove

marked elements and compact the arrays. Since we do not allocate additional memory during

simplification, keeping deleted vertices and tetrahedra does not increase the memory footprint.

20

Table 3.3: Priority-Queue (P) vs. Randomized (R) Approach

Model Mean RMS Max Time
Torus P 0.08% .0.13% 0.56% 0.31s

R 0.06% 0.10% 0.59% 0.13s
SPX P 1.37% 2.56% 22.60% 0.52s

R 1.53% 2.19% 15.96% 0.30s
Torso P 0.00% 0.02% 1.12% 55.98s

R 0.00% 0.00% 0.01% 24.11s
Fighter P 0.06% 0.13% 2.28% 79.03s

R 0.08% 0.16% 3.46% 29.89s

Storing large datasets on disk in ASCII format can adversely affect performance because con-

verting ASCII numbers to an internal binary representation can be surprisingly slow. We have

extended the ASCII stream format in Figure 3.2 to a binary representation. Because our program

spends over 30% of the time on disk I/O, this optimization results in a nonnegligible speedup. For

example, on the SF1 dataset it improves overall performance by 17%.

Since we only maintain a small portion of the mesh in-core, we require a way of mapping

global vertex indices to in-core buffer indices. Usually a hash map is used, but with our low-span

breadth-first mesh layout, this hash map can be replaced by a fixed-size array indexed using modular

arithmetic. We move occasional high-span vertices that cause “collisions” in this circular array to

an auxiliary hash [43].

With all of the optimizations described above, our simplifier can run at high speed without any

dynamic memory allocation at run time. The performance and memory summary can be found in

Table 3.4. The results are for simplifying the Fighter dataset (1.4 M tetrahedra) completely in-core

with 1GB of RAM.

Table 3.4: Implementation Improvements

Improvements
Time Memory
(sec) (MB)

Initial Implementation 212.95 310
QEF + CG 132.68 282
Multiple Choice + Corner Table 38.35 130
4D Normal, Floats 35.99 78
Final / Binary I/O 22.10 78

21

3.3.1 Numerical Issues
Great care has to be taken when working with quadric metrics to ensure numerical stability while

retaining efficiency. To minimize quadric errors, a positive semidefinite system of linear equations

must be solved, for which numerically accurate but heavy-duty techniques such as singular value

decomposition (SVD) [56, 52] and QR factorization [48] have been proposed. However, even

constructing, representing, and evaluating quadric errors require that special care be taken. We

here outline an efficient representation of quadric error functions that leads to numerically stable

operations, improved speed, and less storage.

The standard representation [36] of quadric errors is parameterized by (A,b,c), and is evaluated

as

Q(x) = xTAx−2bTx+ c (3.1)

Typically the three terms in this equation are “large,” but sum to a “small” value, resulting in a loss

of precision. One can show that the roundoff error is proportional to ‖A‖‖x‖2. Furthermore, in

addition to this quadric information, it is common to store the vertex position (and field value) p

that minimizes Q separately. Lindstrom [57] suggested an alternative representation that removes

this redundancy:

Q(x) = (x−p)TA(x−p)+ ε (3.2)

where A is the same as in the standard representation and

Ap = b

pTAp+ ε = c

This parameterization (A,p,ε) provides direct access to the minimum quadric error ε and the

minimizer p. This not only saves memory but also results in a more stable evaluation of Q,

as the roundoff error is now proportional to ‖A‖‖x− p‖2, and we are generally interested in

evaluating Q(x) near its minimum p as opposed to near the origin. Another significant benefit of this

representation is that it provides a lower bound εi+ε j on Qi+Q j when collapsing two vertices vi and

v j. Using randomized edge collapse [91], we can thus often avoid minimizing Qi +Q j if the lower

bound already exceeds the smallest quadric error found so far. In this chapter, this representation is

used explicitly to speed up the algorithm, reduce in-core storage, and improve numerical robustness

rather than as a means of compressing quadric information for out-of-core storage.

Our quadric representation also lends itself to an efficient and numerically stable iterative linear

solver. To handle ill-conditioned matrices A, we have adapted the well-known conjugate gradient

(CG) method [37] to work on semidefinite matrices (see Figure 3.5). As in SVD, we provide a

tolerance κmax on the condition number κ(A), and preempt the iterative solver when all remaining

22

SOLVE(A, x, b, n, κmax)
1 r = b−Ax negative gradient of Q
2 p = 0
3 for k = 1, . . . ,n iterate up to n times
4 s = rTr
5 if s = 0 then exit solution found?
6 p = p+ r/s update search direction
7 q = Ap
8 t = pTq
9 if st ≤ tr(A)/(nκmax) then exit insignificant direction?

10 r = r−q/t update gradient
11 x = x+p/t update solution

Figure 3.5: Conjugate Gradient Solver Conjugate gradient solver for positive semidefinite
systems Ax = b. On input x is an estimate of the solution, n = 4 is the number of linear equations,
and κmax is a tolerance on the condition number. tr(A) is the trace of A.

conjugate directions are deemed “insignificant” for reducing Q. The effect of this is similar to

zeroing small singular values in SVD. Using our quadric representation, we conveniently initialize

the CG solver with the guess x = (pi +p j)/2. Whereas CG methods are typically used to quickly

approximate solutions to very large systems using only a few iterations, our method can be consid-

ered “direct” in the sense that we solve for each of the n (i.e., 4) components, although in the Krylov

basis rather than in the Euclidean basis as done by the Cholesky method. We never require more

than n iterations, and only in the rank-deficient case do we perform fewer than n iterations.

A final word of caution: The computation of generalized quadrics presented in [36] computes A

= I - N, whose null space null(A) = range(N) is spanned by the tetrahedron, via subtraction, which

due to roundoff error can leave A indefinite, i.e., with one or more negative eigenvalues. This causes

Q to have a “saddle” shape with no defined minimum, and can cause numerical instability. Instead,

we compute a 4D “volume normal” using a generalization of the 3D cross product to 4D.

n = det

e1 e2 e3 e4
v1x v1y v1z v1s

v2x v2y v2z v2s

v3x v3y v3z v3s

where ei is the i-column of the 4×4 identity matrix and v1, v2 and v3 are three vectors from one of

the tetrahedron’s vertices to the others. The outer product of this normal with itself gives a positive

semidefinite A for a tetrahedron.

Because of our attention to numerical stability, with κmax = 104 we are able to use single

precision floating point throughout our simplifier, even for the largest meshes. Since the 4D quadric

information requires 15 scalars per vertex, this saves considerable memory and improves the speed.

23

3.4 Results
3.4.1 Stability and Error Analysis

We have described a CG method for solving the linear equations that arise when minimizing

the quadric error. The choice of solver is important because degenerate tetrahedra and regions of

near-constant field value can cause singularity. For testing purposes, we constructed a dataset by

subdividing a tetrahedron into hundreds of smaller tetrahedra by linear interpolating the vertices

and field data. Obviously, these small tetrahedra all lie on the hyperplane spanned by the original

tetrahedron. Thus they are solutions to the linear equations. We then picked a solution as a target for

each collapsed edge. We experimented with several linear solvers as shown in Table 3.5. The results

are for simplifying the Fighter dataset (1.4 M tetrahedra) completely in-core. We experimented with

Cholesky factorization, the least square QR factorization [37], and CG.

Cholesky with pivoting provides stable solutions for solving Ax = b if A is positive definite.

However, in order to solve this linear system when A has rank-deficiency (the semidefinite case),

we must solve the under-constrained least square problem. Unfortunately, solving this using normal

equations requires us to be able to perform Cholesky factorizations on matrices with arbitrary

dimensions less than 4× 4. This defeats the purpose of optimizing our simplification for working

only with 4× 4 matrices. Thus, our implementation uses SVD to handle rank-deficiency matrices

detected by the Cholesky method. As a result, this method yields the fastest solution when A is

positive-definite but it becomes slower compared to CG when handling rank-deficient matrices.

Like Cholesky, QR does not handle the problem of rank-deficiency. Nevertheless, the imple-

mentation for solving the least square problem using QR factorization is much simpler than using

Cholesky with normal equations since it does not explicitly require a general representation of

matrices with arbitrary dimensions. We use the least square version of QR as suggested in [37].

Using all of our solvers, we were able to simplify our subdivided tetrahedron to its original

shape with small error in both field and geometry. To compare the correctness of their solutions,

we recorded norm-2 residuals of computed solutions to 15,000 linear systems using all 3 methods

while simplifying the fighter dataset. Denote by eqr, ech and ecg the sum of all norm-2 residuals of

computed solutions x̂ (i.e., ‖Ab− x̂‖2) using QR, Cholesky and CG, respectively. Given eavg =

Table 3.5: Performance of Linear Solvers

Dataset QR Cholesky CG
SPX 0.57s 0.30s 0.35s
Blunt 16.47s 9.88s 7.72s
Fighter 46.11s 30.57s 29.89s

24

1
3(eqr + ech + ecg), relative errors of solutions computed by QR, Cholesky and CG can be computed

as re{qr,ch,cg} = e{qr,ch,cg}/eavg. Our experiment found reqr to have the smallest error with 96%,

followed by rech with 99%. Our CG approach obtained a comparable result with rech of 105%.

Overall, QR gives the most optimal solution in terms of error, but it is approximately twice as

slow as the others. On the other hand, while Cholesky is a good choice for both efficiency and

accuracy, its implementation is quite complicated. Therefore, we chose CG over the others for its

simplicity and performance while still maintaining comparatively optimal solutions.

To estimate the error in the simplified mesh we use two different methods. The first method is

to measure the error on the surface boundary of the mesh using the tool Metro [23]. The second

method is to measure the error in the field data using a similar approach to Cignoni et al. [21]. We

sample the domain of the simplified dataset at points inside the domain of the original one. These

points are not only vertices of the input but also interpolated ones inside each tetrahedron. The error

is then computed by the differences between their scalar values. Our implementation differs because

it ignores points outside the domain of the simplified mesh since these points become part of the

surface boundary error. Table 3.6 shows these measured error estimations. Field error percentages

are in relation to the range of the field and surface error percentages are in relation to the bounding

box diagonal. Figure 3.6 shows an example of the quality of the resulting field and Figure 3.7 shows

an example of the quality of the resulting surface.

Table 3.6: In-Core and Streaming Simplification Results

Number Number Max Field Error Surface Error
Dataset of Tets of Tets Time RAM Max RMS Max RMS

Input Output (sec) (MB) (%) (%) (%) (%)
In-core
Torso 1,082,723 108,271 14.88 57 0.012 0.000884 0.120 0.013360
Fighter 1,403,504 140,348 15.46 78 4.845 0.280266 0.038 0.000352
Rbl 3,886,728 388,668 59.10 212 0.020 0.002574 0.025 0.000055
Mito 5,537,168 553,711 47.13 285 0.045 0.007355 0.001 0.000008
SF1 13,980,162 1,398,013 191.69 709 5.626 0.262335 0.036 0.000811
Streaming
Torso 1,082,723 108,270 19.07 20 0.019 0.000879 0.161 0.001226
Fighter 1,403,504 140,345 20.87 20 4.549 0.299081 0.102 0.000470
Rbl 3,886,728 388,671 95.54 20 0.025 0.002833 0.036 0.000089
Mito 5,537,168 553,716 73.58 20 0.045 0.007614 0.044 0.000009
SF1 13,980,162 1,398,012 246.15 20 23.287 0.472869 0.169 0.004150
SF1 13,980,162 1,398,017 244.42 50 5.834 0.315583 0.050 0.001394

25

Figure 3.6: Simplified Scalar Result Volume rendered images of the Fighter dataset show the
preservation of scalar values. The original dataset is shown on the left (1,403,504 tetrahedra) and
the simplified version is shown on the right (140,348 tetrahedra).

Figure 3.7: Simplified Surface Result Views of the mesh quality on the surface of the Rbl
dataset. The original dataset is shown on the left (3,886,728 tetrahedra) and the simplified version
is shown on the right (388,637 tetrahedra).

26

3.4.2 Performance
All timing results were generated on a 3.2 GHz Pentium 4 machine with 2.0 GB RAM. For

the streaming experiments, we limit the operating system to only 64 MB RAM by using the Linux

bootloader. Table 3.6 shows the results of simplifying a collection of datasets to 10% of their original

size using our streaming algorithm and the same implementation optimized for in-core execution.

Laying out the meshes in a stream efficient manner is a one-time operation and can be performed

in-core for all the datasets we tested. Even the largest dataset (14 million tetrahedra) required only

about 40 minutes to layout using our Breadth-First approach.

We were able to achieve streaming simplification with only a slight increase in time and error

compared to an in-core implementation. The streaming technique has the advantage of a smaller

memory footprint. With our algorithm, we were able to simplify 14 million tetrahedra while only

using 20 MB RAM. Due to the large size of the SF1 dataset, certain parts of the stream were not

able to be simplified accurately, resulting in a larger error. By increasing the memory slightly, the

quality of the simplification is greatly improved and approaches the in-core quality. This behavior

is not due to the randomization algorithm since the large buffer size always produces better quality

outputs even with random seeds. Instead, the quality is improved because each set of candidates has

a wider range to select their targets. Consider a set of expensive edges that are larger than the buffer

size, any edge collapse will result in a large error no matter how random the target is. However, if

we increase the buffer size such that the buffer is larger than the expensive edges, randomized edge

collapses will take those edges that are not so expensive into account, thus improving the quality of

the output.

3.4.3 Large-Scale Experiment
Although extremely large meshes exist, it is difficult to obtain unclassified access to them. To

stress our algorithm on current PC hardware and to demonstrate the scalability of the technique, we

performed streaming simplification on a huge fluid dynamics dataset on a Xeon 3.0GHz machine.

The dataset was created from sampling slices of a 20483 simulation and consists of over one billion

tetrahedra that use 18 GB of disk space when stored in the binary format. The tetrahedra were

laid out in the order in which they were sliced, which is comparable to sorting by axis. An in-core

approach to simplifying this dataset would require a machine with 64 GB RAM. We were able to

simplify the data using only 829 MB RAM to 12 million tetrahedra (1.2%) in 10 hours on our test

machine. Because error estimations were not possible with the entire dataset in-core, we computed

the field error on subregions of the mesh separately to verify the results. In the regions that were

measured, there was 10.85% maximum and 1.57% RMS field error. Figure 3.8 shows an isosurface

extracted from the original and simplified fluid dynamics dataset.

27

Figure 3.8: Large-Scale Simplified Simulation Dataset Isosurfaces of the fluid dynamics
dataset. A very small portion of the isosurfaces is shown for the original dataset of over a billion
tetrahedra (left) and the simplified dataset of only 12 million tetrahedra (right). The isosurfaces are
shown up close using flat shading to enhance the details of the resulting surface. Our algorithm
allows extensive simplification (almost 1%) with negligible numerical error (1.57% RMS) for the
fluid dynamics dataset which is too large to simplify with conventional approaches.

3.5 Proposition
The use of streaming meshes for simplification reduces the memory footprint of a large mesh

considerably. Nevertheless, the streaming format is general enough to work on meshes of other

types, e.g., hexahedra. It would be interesting to take advantage of the coherent streaming format

to perform other visualization techniques fast in an out-of-core fashion, or simply improving the

performance by increasing coherency with lower memory footprint.

CHAPTER 4

INTERACTIVE RENDERING OF LARGE

UNSTRUCTURED GRIDS

In this chapter, we present iRun, a system for interactively volume rendering large unstructured

grids on commodity PC clusters. This work helps us determine crucial requirements for a large-scale

data-parallel visualization system. Since iRun is implemented on top VTK, many limitations of

current visualization systems, such as VTK, are also revealed to us.

Interactive rendering of arbitrarily large datasets is a fundamental problem in computer graphics

and scientific visualization, and a critical capability for many real applications. Interactive visualiza-

tion of large datasets poses substantial challenges (see survey by Silva et al. [81]). Current systems

for rendering large datasets employ many of the elements proposed by Clark [24] including the use

of hierarchical spatial data structures, level-of-detail (LOD) management, hierarchical view-frustum

and occlusion culling, and working-set management (geometry caching). Systems along the lines

of the one envisioned by Clark have been used effectively in industrial applications for scenes

composed primarily of polygonal geometry.

For more complex scenes, such as those composed of tetrahedral elements, the problem is not

as well studied and can be more difficult for several reasons. First, rendering tetrahedra is not

natively supported by current graphics hardware. Thus, efficient algorithms for handling this type

of data robustly are required. Second, tetrahedra must be projected in visibility order to accurately

composite transparency. This requires special care to traverse the out-of-core hierarchy in the correct

order. Finally, visibility techniques such as occlusion culling are not practical because the opacity of

the volume is controlled by the user. iRun addresses these issues while still maintaining interactivity

on extremely large dataset.

The visualization pipeline may be broken down into four major stages: retrieval from storage,

processing in main memory, rendering in the Graphics Processing Unit (GPU), and display on the

screen. The performance of each of these stages is limited by several potential bottlenecks (e.g., disk

or network bandwidth, main memory size, GPU triangle throughput, and screen resolution). iRun

uses out-of-core data management and speculative visibility prefetching to maintain a working-set

of the geometry in memory. Our rendering approach uses GPU-assisted volume rendering with a

29

dynamic set of tetrahedra and uses an out-of-core LOD traversal. Finally, our system was imple-

mented in VTK [51] and allows distributed rendering for high-resolution displays. Using a single

commodity PC, we show how our system can render datasets consisting of 36 million tetrahedra

while maintaining interactive frame rates.

4.1 Interactive Out-of-Core Volume Rendering
iRun interactively renders large unstructured grids in several stages, as illustrated in Figure 4.1.

First, a preprocessing step prepares the data for hierarchical traversal. Second, our algorithm

interactively traverses the out-of-core data structure and keeps a working-set (geometry cache) of

the geometry in memory by using visibility culling, speculative prefetching, and LOD management.

Finally, the contents of the geometry cache are rendered using a hardware-assisted visibility sorting

algorithm. This scales to multiple PCs for improved image quality or large display capability. The

iRun design inspired by iWalk [28], however, requires a more complex solution for volume render-

ing on unstructured grids. Due to many similarities in the two approaches, we defer comparisons to

Section 4.3.3.

Figure 4.1: iRun Overview. (a) The user interacts with the UI by changing the camera from
which our system predicts future camera positions. (b) Our octree traversal algorithm selects the
octree nodes that are in the frustum, determines the appropriate LOD, and arranges the nodes in
visibility order. (c) The geometry cache keeps the working-set of triangles while a separate thread
is used to fetch additional geometry from disk. (d) Finally, the geometry is sent to the renderer for
object-space sorting followed by a hardware-assisted image-space sorting and compositing which
is performed using a modified version of the HAVS algorithm.

30

4.1.1 Preprocessing
iRun utilizes an efficient and fully automatic preprocessing algorithm that operates out-of-core

for large datasets. We begin by extracting the unique triangles that compose the tetrahedral mesh.

This is done out-of-core by writing the four triangle indices of each tetrahedron into a file and using

an external sort to arrange the indices from first to last. The resulting file contains adjacent duplicate

entries for faces that are on the inside of the mesh and unique entries for boundary triangles. A

cleanup pass is performed over the triangle index file to remove duplicates and to create a similar

file that contains a boundary predicate for each triangle.

iRun employs an out-of-core, hierarchical octree [77] in which each node contains an indepen-

dent renderable set of vertices and triangles, similar to iWalk. Because the number of vertices in

a tetrahedral mesh is generally much smaller than the connectivity information, for simplicity, we

keep the vertex array in-core while creating our out-of-core hierarchy. This allows us to keep the

global indexing of the triangles throughout our preprocessing which facilitates filtering in the final

stages. Our octree is constructed by reading the triangle index and boundary predicate files in blocks

and adding the triangles one-by-one to the out-of-core octree structure.

While adding triangles to the octree, we perform triangle-box intersection to determine one or

more nodes that contain the triangle. If the triangle spans multiple nodes, we replicate and insert

it into each. This can lead to the insertion of a triangle into a node where any or all of the triangle

vertices lie outside the node. When a node reaches a preset capacity the node is split into octants

and the triangles are redistributed. The result of this phase is a directory structure representing the

octree and a hierarchy structure file that contains the octree structure information (see [28]).

A subsequent LOD propagation stage works by populating a parent node with a subset of the

triangles that are not on the boundary from each of the children. Again, the triangles are replicated

as they move up the octree to create self-contained nodes. The subset is selected based on a dynamic

LOD strategy introduced by [14]. The idea is to sample the full resolution geometry to achieve a

subset that minimizes the image error. We choose to select the triangles that are the largest to

maximize node coverage and thereby minimize image error for that node. To ensure that there are

no holes in the LOD structure, the boundary triangles are simplified to a reduced representation

(e.g., 5%) of the original and inserted into every intersecting node except the leaf nodes.

Finally, a cleanup pass on the octree is performed which inserts the referenced vertices into each

octree node and clips the triangles based on the bounding box of the node.

4.1.2 Out-of-Core Dataset Traversal
iRun uses an out-of-core traversal algorithm that has been extensively optimized for volume

rendering. For each camera received from the user interface, we apply frustum-culling on the octree

31

to find all nodes that are visible in this view and mark them as visible nodes. For polygonal meshes,

visibility algorithms such as view-frustum and occlusion culling are important for maintaining

interactive frame rates (see [26] for a recent survey). For volume rendering, occlusion culling is

not feasible due to transparency. Therefore, only view-frustum techniques [33, 27] are deployed

here.

Depending on whether or not the user is interacting with iRun, the LOD will decide which

nodes are to be rendered next. Next, everything is passed to the visibility sorter (see Figure 4.2)

and only those that have been cached in the geometry cache are used for rendering while the others

are put onto the fetching queue. iRun also does cameraxoxo prediction for each frame by linearly

extrapolating previous camera parameters. All of the nodes selected in the predicted camera will

also be put on the fetching queue.

The LOD management in iRun is a top-down approach working in a priority-driven manner.

Given a priority function P(C,N) which assigns priority for every node N of the octree with respect

to the camera C, the LOD process starts by adding the root R to a priority queue with the key of

P(C,R). Next, iterations of replacing the highest priority node of the queue with its children are

repeatedly executed until such refinement will exceed a predefined number of triangles (Figure 4.3).

In our experiments, we use two different priority functions to control the LOD of iRun. The first

is a Bread-First-Search (BFS) based function that is used during user’s interactions: PBFS(C,N) =<

l,d >, where l is the depth of N and d is the distance of the bounding box of N to the camera C. In

this case, each node’s priority is primarily determined by how far it is from the root and subsequently

by its distance to the camera when the nodes are on the same level. Briefly, our goal is to evenly

distribute data of the octree on the screen to improve the overall visualization of the dataset. An

example of this scheme is shown in Figure 4.4.

While interacting with iRun, the target frame rate can be achieved by setting a limit on the

maximum number of triangles rendered in the current frame. This number is calculated based on

SORT (Camera C, Node R, List SortedNodes)
if R is not culled

if R.Selected
SortedNodes.Push(R);

else if R.HasChildren
SC = R’s children sorted ascendingly by distances to C
for each node N in SC

SORT(C, N, SortedNodes);

Figure 4.2: iRun Visibility Sorter Pseudo-code for visibility sorter based on the camera distance
in iRun.

32

LOD (Camera C, Node R, PriorityFunction P, int MaxTri)
PriorityQueue Q;
R.Selected = true;
Q.Push(P(C,R),R);
Total = 0;
while !(Q.Empty())

Node N = Q.Pop();
if N.HasChildren

TC = the total number of triangles in N’s children
if (Total−N.NumberO f Triangles+TC)< MaxTri

Total = Total−N.NumberO f Triangles+TC;
N.Selected = false;
for i = 0 to 7

if N.Children[i] is not empty or culled
N.Children[i].Selected = true;
Q.Push(P(C,N.Children[i]),N.Children[i]);

Figure 4.3: iRun LOD Traversal Pseudo-code for the octree traversal algorithm.

Figure 4.4: A Snapshot of iRun Refining the LOD The image on the left is rendered as the
user would see it from the current camera position. On the right is a bird’s-eye view of the same set
of visible nodes. Different colors indicate different levels-of-detail. The geometry cache is limited
to only 64MB of RAM in this case.

33

the number of triangles that were rendered, and the rendering time, for the previous frame.

For increased image quality at a given view, iRun will automatically adjust itself to increase the

LOD using as much memory as possible when interaction stops. Since we want to cover as much

of the screen as possible, a priority function reflecting the projected screen area is necessary for the

LOD. We define Parea(C,N) = A, where A is the projected area of the bounding box of N onto the

screen. However, this function can be easily replaced by any other heuristic approaches, such as

those reflecting nodes scalar ranges, transfer functions, etc., to achieve the best image quality.

This approach, however, could raise a problem when the user begins interaction again and the

geometry cache is already full. Our next frame would be displayed incompletely since a lower LOD

is not available and the higher LOD is too large to be rendered at an interactive rate. To overcome

this problem, we will not flush the current data on the screen when increasing the LOD but only

when the camera has changed. The trade-off in image quality is insignificant because the amount

of memory used by this data is usually very small (e.g., 1%) when compared to the total memory of

the geometry cache.

iRun separates the fetching from the building of sets of visible nodes. If the fetching queue is

empty, the fetching thread will wait until new requests arrive. Otherwise, it will read the requested

node from disk and move it to the geometry cache. If the geometry cache is full, cached data will

be flushed using a least-recently-used scheme.

As a result, the target frame rate of iRun is guaranteed to stay the same throughout user-

interaction since the rendering process will never stall while waiting for IO. This improves interac-

tion and does not introduce any significant degradation in image quality to the system. Because none

of the visible geometry will be culled by occlusion, the amount of geometry shared between frames

is very similar–every frame will have at least as much data as the previous frame. In the worst case,

there will be at most one level of difference in LOD of the frame because of our BFS-based priority

function.

4.1.3 Hardware-Assisted Rendering
Leveraging the performance of graphics processing units (GPUs) for direct volume rendering

has received considerable attention (for a recent survey, see [82]). Shirley and Tuchman [80]

introduce the Projected Tetrahedra (PT) algorithm, which splits tetrahedra into GPU renderable

triangles based on the view direction. For correct compositing, the neighborhood information of the

original mesh is used to determine an order dependence. More recent work by Weiler et al. [90]

performs ray-casting on the mesh by storing the neighbor information on the GPU and marching

through the tetrahedra in rendering passes. As with PT, the hardware ray caster requires the neighbor

information of the tetrahedra for correct visibility ordering. A more extensible approach was intro-

34

duced by Callahan et al. [15], which operates on the triangles that compose the mesh and requires

no neighbor information. This makes immediate mode rendering, working-set management, LOD,

and preprocessing much simpler than it would be by using the tetrahedra directly. Because of this,

the algorithm has since been extended to perform dynamic LOD [14] as well as progressive volume

rendering [13] for large datasets.

An important consideration for the interactive rendering of unstructured grids is the choice in

volume rendering algorithms. Three aspects need to be considered: speed, quality, and the ability to

handle dynamically changing data. By using a hardware-assisted volume rendering system, we can

address both the speed and quality issues. In our system, we use the Hardware-Assisted Visibility

Sorting (HAVS) algorithm of Callahan et al. [15] because it combines speed, quality, and most

importantly, it does not require topological information and thus handles dynamic data.

HAVS operates by sorting the geometry in two phases. The first is a partial object-space sort

that runs on the CPU. The second is a final image-space sort that runs on the GPU using a fixed

A-buffer implemented with fragment shaders called the k-buffer. The HAVS algorithm considers

only the triangles that make up the tetrahedral mesh. Thus it does not require the original tetrahedra

or the neighbor information of the mesh. This allows us to render a subset of the octree nodes

independently without merging the geometry.

Unlike rendering systems for opaque polygonal geometry, special care needs to be taken when

rendering multiple octree nodes to ensure proper compositing. At each frame, our algorithm re-

solves the compositing issue by sorting the active set of octree nodes that are in memory in visibility

order (front-to-back). When octree nodes of different sizes are in the active set, we sort by the largest

common parent of the nodes. The original HAVS algorithm has also been modified to iterate over

the active set of nodes in one pass and perform the object-space and image-space sort on each piece

in visibility order. To ensure a smooth transition between octree nodes, the k-buffer is not flushed

until the last node is rendered.

4.1.4 Distributed Rendering
Though our algorithm can efficiently render large unstructured grids on a single commodity PC,

it was designed to be employed on a cluster of PCs in a distributed manner. Chromium [41] is a

system that was introduced to perform parallel rendering on a cluster of graphics workstations.

Distributed rendering can also be used to visualize the data on larger displays. Moreland and

Thompson [66] describe a parallel rendering algorithm that uses Chromium and an image-composite

engine (ICE-T) built with VTK for visualizing the results on a display wall.

A major distinction between iRun and Chromium is that while Chromium pushes data through

the pipeline to the render devices, iRun pulls data from a geometry-cache to the render devices. This

35

pulling approach results in a conceptually simpler framework for parallel rendering where the CPU

and GPU are tightly connected and data are fetched to the geometry-cache as needed before being

transformed into graphics primitives.

iRun can partition rendering across a distributed network. This feature is useful for driving a

display wall, where each system controls a single tile of display. This approach can further improve

performance when rendering scenes with complicated geometry.

In iRun, each display on the display wall is driven by a dedicated render-server implemented in

VTK. The portion of the display wall that a render-server will be responsible for is specified to the

render-server on startup. A skewed view frustum is calculated based on the region of responsibility,

and this frustum allows the render-server to cull the geometry to only the set visible on its display.

Each render-server has access to the full geometry, but only loads the portions that it needs or

anticipates needing.

The render-servers are coordinated by a single system that controls the camera. They receive

camera description asynchronously to the render cycle, and wait for the render cycle to complete

before updating VTK’s camera. The update mechanism is implemented as a vtkInteractorStyle

to allow for seamless integration.

The camera-server allows render-servers to establish and break TCP connections arbitrarily.

Camera descriptions are sent out periodically, regardless of whether the camera has changed, to

allow recently connected render-servers to quickly synchronize with the rest of the display wall.

Two clients have been written to run on the camera-server, both implemented in VTK. The first

(Figure 4.5a) is nearly identical to the render-servers, except that it broadcasts camera coordinates

instead of receiving them. This is accomplished by listening for the timer event which the interactor

styles use for motion updates. The camera is read inside the event handler and provided to the

broadcast code. This client has access to the same geometry and renders it on its own. It requires

an adequately functional GPU, and relies on the automatic LOD adjustment to maintain interactive

frame rates.

The second client (Figure 4.5b) is able to run on a less capable system. It also runs as a VTK

implementation, but uses VTK’s interaction styles with no geometry loaded. In this mode, the

render-servers additionally frame capture their rendered output and transmit downsampled versions

back to the camera-server. The camera server receives and assembles the snapshots asynchronously

to the render cycle, and periodically requests the message loop to execute code to display the

composite.

36

Geometry

Camera

Render

Render

Render

Render

(a) Thumbnail Client

Camera
Server

Render
Server

Render
Server

Render
Server

Render
Server

Display
Geometry
Camera Info
Thumbnails

(b) Full Client

Figure 4.5: Distributed Rendering with iRun (a) with a thumbnail client, the client receives
thumbnails from the render-servers and composites them and (b) with a full client, the client
accesses and renders the geometry directly.

Table 4.1: Preprocessing Results

Data Set Input Time (h:m:s) Output
Verts Tets Tris Size Total Clip Tris/leaf Verts Tris Size

Torso 169K 1.1M 2.2M 34MB 01:45 01:12 13K 3.2M 6.7M 158MB
Fighter 257K 1.4M 2.8M 50MB 02:27 01:28 18K 3.6M 7.8M 182MB
Rbl 730K 3.9M 7.9M 143MB 06:13 04:08 42K 7.8M 17M 410MB
Mito 972K 5.5M 11M 206MB 10:59 05:00 30K 11M 22M 538MB
Turbo Jet 1.7M 10M 20M 344MB 15:49 07:58 27K 12. 31M 697MB
Sf1 2.5M 14M 28M 516MB 37:41 25:56 58K 24M 63M 1.4GB
Bullet 6.3M 36M 62M 1.3GB 1:10:30 42:19 32K 48M 117M 2.8GB

4.2 Results
We generated all of our results on a 3.0-GHz Pentium D machine with 2.0 GB of RAM and a

500 GB SATA hard-disk with an nVIDIA 7800 GTX. Table 4.1 shows timing results and data sizes

before and after preprocessing. We were able to preprocess the largest dataset, which contained 36

million tetrahedra or 63 million triangles, in just over an hour. For all models in this chapter, we

target the output octree to have at most 10 thousand triangles per leaf. Due to the triangles added

during simplification and clipping, the final number of triangles per leaf is slightly higher. The rest

of the section will use these datasets unless otherwise stated.

In Figure 4.6, we show an example of how iRun can give users various levels-of-detail on

demand. Assume a user has a machine with approximately 512MB of RAM available for rendering,

and wants to use iRun to explore different features of the Turbo Jet dataset using a 512× 512

37

viewport. The user can use iRun to load the dataset with 512MB of RAM dedicated to the geometry

cache and a target frame rate of 5 (for example). Interactions at this frame rate only give the user a

low LOD representation of this dataset since iRun can only render as many as 40 thousands triangles

at each frame. It is almost impossible to get a coherent overview of the dataset at a resolution less

than 0.1%. Thus, the user would want to stop interactions for iRun to refine its visualization. With

more detail, the user can now select a specific region of interest to explore. For example, the user

may wish to take a closer look at the region in the center of the dataset through a zoom. This causes

the LOD to be automatically adjusted by iRun. With a full use of the geometry cache, the quality of

our image is very close to the full resolution at that same view using 1.5GB of RAM.

Figure 4.7 is a plot showing the difference between the displayed and fetched nodes while

performing interactions with the Turbo Jet as in the case study above. We selected the target frame

rate of 2 frames per second to increase the readability of the plot while the interaction speed is

fairly high (mouse-movement of over 30 pixels/frame). Our set of movements contains excessive

rotations, zooms, and translates. As shown in the figure, the total number of nodes that need to be

loaded for the next frame stays relatively low compared to those that are rendered.

For distributed rendering results, we set up four machines—with two Dual-Core AMD Opterons

on each—as clients. Our goal was to render the bullet dataset consisting of 3GB of data (117M

faces) displayed on another server. The render window on the server had a 1024×1024 viewport

and each client only rendered a subwindow of 512×512. Figure 4.8 illustrates the differences

between distributed rendering versus local rendering on a single client machine. The right image

shows the results of the distributed rendering. With the target frame rate of 10, we were able to

achieve a good volume-rendered image after filling up 24 nodes of the buffer. The frame rate of the

distributed renderer can be reported fairly as the minimum frame rate of the four clients. For this

view we achieved a frame rate of 11.62 fps. The left image shows the same dataset with the same

view rendered using only one of the clients with the same window size. By filling up only 14 nodes

of the buffer the frame rate is reduced to 2.77 fps on a single machine. This is because there are four

times as many pixels that need to be rendered at each frame. Moreover, disk accesses also increase

up to four times compared to the distributed rendering.

4.3 Discussion
4.3.1 Limitations

There are issues in our current implementation that could use improvement. First, due to

clipping and boundary triangles, node size can grow larger than desired. Bounding this limit would

be a useful feature. Another limitation is that our current LOD strategy may not be suitable for all

38

Figure 4.6: Effects of Geometry Cache Size in iRun iRun visualizes the Turbo Jet model
consisting of over 10 millions tetrahedra with multiple levels-of-detail. The geometry cache size
of (a), (b) and (c) is 512MB while (d) is 1.5GB. (a) In interactive mode, iRun only displays 40K
triangles. (b) In still-rendering mode, most of the geometry cache is used. (c) The user zooms in to
a particular region. (d) The geometry cache size is tripled.

39

0

10

20

30

40

50

60

70

80

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298

Frame

Nu
m

be
r o

f N
od

es

Displayed Nodes Prefetching Nodes

Figure 4.7: Geometry Cache Statistics The difference between the displayed nodes of the
geometry cache and the ones being fetched during interactions of the Turbo Jet at 2 fps.

40

Figure 4.8: Distributed Volume Rendering The bullet dataset rendered with a single machine
versus a distributed rendering with four clients.

41

datasets. Therefore a more automatic way of determining the LOD triangles would improve image

quality. Finally, even though the number of vertices is generally much less than the number of

tetrahedra, our current method of keeping the vertices in-core during preprocessing would not be

feasible on a PC for extremely large datasets with hundreds of millions of tetrahedra.

4.3.2 VTK
In term of coding, we found VTK to be very helpful when implementing our system. By

leveraging existing functionality provided by this framework, we were able to focus on algorithmic

instead of engineering contributions. For example, the simplification and clipping phase of the

preprocessing are all done using VTK classes. Additionally, the client-server and user interface are

built on top of VTK. However, using VTK provided the following challenges:

• Because VTK is for general use, we were forced to modify existing classes to get desired

functionality. For example, we added our own timers and modified the rendering pipeline

order. In addition, current VTK data structures for geometry are incompatible with OpenGL,

which makes using fast display structures such as triangle arrays difficult.

• VTK is not thread-safe. iRun required solving many synchronization problems among threads.

For example, one condition was occurring when the visibility sorter received the camera

slower than the rendering window, causing compositing artifacts in the resulting image.

• To manage the client-server architecture for parallel rendering, modifications to the VTK in-

teractors were necessary. Specifically, the addition of an asyncExec method to vtkRenderWi-

ndowInteractor and its derived classes was necessary to queue commands for later execution.

4.3.3 iRun vs. iWalk
iRun shares many ideas with iWalk [28]. However, due to the complexity of volume rendering

tetrahedral data, many of the algorithms presented in iWalk were not suitable for iRun. In iRun,

each node of the octree contains a self-describing vtkUnstructuredGrid of varying LODs that can

be rendered independently. iWalk only keeps triangles in the leaf nodes and depends on occlusion

culling instead of LOD to remain interactive. This also affects the traversal algorithm, which is

more sophisticated in iRun because LOD as well as screen coverage need to be considered due

to the transparent nature of the nodes. The fetching thread also works differently. iRun separates

fetching from building visible sets of nodes because of the added complexity of visibility sorting

for the nodes.

Another difference is that due to compositing problems that occur with overlapping triangles

from neighboring nodes, we require a more exact triangle-box intersection that is based on the

42

triangle, not the vertices. iRun also requires the clipping of triangles that extend beyond the node’s

bounding box to avoid incorrect visibility ordering across neighboring nodes. Unlike iWalk, we

require boundary triangles (simplified or full resolution) at each level of the tree to avoid holes in

the rendered image. Finally, we note that the implementation of both systems is completely disjoint.

4.4 Proposition
Through our experiences with iRun, we have learned that (1) interactive large-scale visualization

pipelines need both push and pull updating policy for their level-of-detail and view-dependant

features, respectively, and (2) current visualization systems such as VTK are not designed for

concurrent executions of modules (not even thread-safe) and their pipeline constructs are limited

by supporting backward-compatibility.

CHAPTER 5

PARALLEL VISUALIZATION ON LARGE

CLUSTERS USING MAPREDUCE

In this chapter, we take a first step at investigating the suitability of cloud-based infrastructure

for large-scale visualization. We have designed a set of MapReduce-based algorithms for memory-

intensive visualization techniques, and performed an extensive experimental evaluation. Our results

indicate that MapReduce offers a potential foundation for a combined storage, processing, analysis,

and visualization system that is capable of keeping pace with growth in data volume (attributable to

scalability and fault-tolerance) as well as growth in application diversity (attributable to extensibility

and ease of use).

Because MapReduce framework can be decomposed into a pair of data-parallel jobs with a

serial (shuffling) phase in between, a careful study on this topic can help us determine necessary

parallel constructs that are required in a modern dataflow architecture to efficiently support large

data visualization. We also found that common visualization algorithms can be naturally expressed

using the MapReduce abstraction. Even simple implementations of these algorithms are highly

scalable.

Cloud computing has emerged as a viable, low-cost alternative for large-scale computing and has

recently motivated both industry and academia to design new general-purpose parallel programming

frameworks that work well with this new paradigm [31, 71, 95]. In contrast, large-scale visualization

has traditionally benefited from specialized couplings between hardware and algorithms, suggesting

that migration to a general-purpose cloud platform might incur in development costs or scalability.1

The MapReduce framework [31] provides a simple programming model for expressing loosely-

coupled parallel programs using two serial functions, Map and Reduce. The Map function processes

a block of input producing a sequence of (key, value) pairs, while the Reduce function processes

a set of values associated with a single key. The framework itself is responsible for “shuffling”

the output of the Map tasks to the appropriate Reduce task using a distributed sort. The model

is sufficiently expressive to capture a variety of algorithms and high-level programming models,

1Scalability refers to the relative performance increase by allocating additional resources.

44

while allowing programmers to largely ignore the challenges of distributed computing and focus

instead on the semantics of their task. Additionally, as implemented in the open-source platform

Hadoop [39], the MapReduce model has been shown to scale to hundreds or thousands of nodes

[31]. MapReduce clusters can be constructed inexpensively from commodity computers connected

in a shared-nothing configuration (i.e., neither memory nor storage are shared across nodes). Such

advantages have motivated cloud providers to host Hadoop and similar frameworks for processing

data at scale [25, 92, 7].

These platforms have been largely unexplored by the visualization community, even though

these trends make it apparent that our community must inquire into their viability for use in large-

scale visualization tasks. The conventional modus operandi of “throwing datasets” through a (par-

allel) graphics pipeline relegates data manipulation, conditioning, and restructuring tasks to an

offline system and ignores their cost. As data volumes grow, these costs — especially the cost

of transferring data between a storage cluster and a visualization cluster — begin to dominate.

Cloud computing platforms thus open new opportunities in that they afford both general-purpose

data processing as well as large-scale visualization.

5.1 MapReduce Overview
MapReduce is a framework to process massive data on large distributed systems. It provides

an abstraction inspired by functional programming languages such as Lisp, relying on two basic

operations:

• Map: Given input, emit one or more (key, value) pairs.

• Reduce: Process all values of a given key and emit one or more (key, value) pairs.

A MapReduce job is comprised of three phases: map, shuffle and reduce. Each dataset to be

processed is partitioned into fixed-size blocks.

In the map phase, each task processes a single block and emits zero or more (key, value) pairs.

In the shuffle phase, the system sorts the output of the map phase in parallel, grouping all values

associated with a particular key. In Hadoop, the shuffle phase occurs as the data is processed by

the mapper (i.e., the two phases overlap). During execution, each mapper hashes the key of each

key/value pair into bins, where each bin is associated with a reducer task and each mapper writes

its output to disk to ensure fault tolerance. In the reduce phase, each reducer processes all values

associated with a given key and emits one or more new key/value pairs. Since Hadoop assumes that

any mapper is equally likely to produce any key, each reducer may potentially receive data from any

mapper. Figure 5.1 illustrates a typical MapReduce job.

45

DATA ON HDFS

INPUT PARTITION

SHUFFLING

SORT IN PARALLEL

OUTPUT PARTITION

DATA ON HDFS

MAP

REDUCE REDUCE

MAP MAP MAP

Figure 5.1: Hadoop Architecture Data transfer and communication of a typical MapReduce job
in Hadoop. Data blocks are assigned to several Maps, which emit key/value pairs that are shuffled
and sorted in parallel. The reduce step emits one or more pairs.

To further illustrate this model, consider the following pseudocode example to compute the

number of occurrences of the word in a corpus of text:

Map(data):

FOR word IN data

emit(word , 1)

Reduce(key , values):

count = 0

WHILE(values.has_next ())

count += values.next.value ()

emit(key ,count)

The mapper simply parses the words from the string of data and emits the word as the key and

1 as the value. The reducer will receive all (key, value) pairs for a given word and will sum their

values. After the values are summed, all the reduce emits the word and count.

MapReduce offers an abstraction that allows developers to ignore the complications of dis-

tributed programming — data partitioning and distribution, load balancing, fault-recovery and in-

terprocess communication. Hadoop is primarily run on a distributed file system, and the Hadoop

46

File System (HDFS) is the default choice for deployment. Hadoop has become a popular runtime

environment for higher-level languages for expressing workflows, SQL queries, and more [71, 40].

These systems are becoming viable options for general purpose large-scale data processing, and

leveraging their computational power to new fields can be a very promising prospect. For example,

MapReduce systems are well-suited for in situ visualization, which means that data visualization

happens while the simulation is running, thus avoiding costly storage and postprocessing com-

putation. There are several issues in implementing in situ visualization systems as discussed in

[60]. We posit that the simplicity of the implementation, inherent fault-tolerance, and scalability of

MapReduce systems make it a very appealing solution.

5.2 Visualization Algorithms Using MapReduce
In this section we describe MapReduce algorithms for three widely-used and memory-intensive

visualization techniques: isosurface extraction, rendering of large unstructured grids, and large

model simplification.

5.2.1 Isosurface Extraction
Isosurfaces are instrumental in visual data exploration, allowing scientists to study function

behavior in static or time-varying scenarios. Giving an input scalar volume, the core of extraction is

the computation of the isosurface as a collection of simplicial primitives that can be rendered using

common graphical methods. Our MapReduce-based algorithm for isosurface extraction is based on

the Marching Cubes algorithm [59], which is the de facto standard for isosurface extraction due to

its efficiency and robustness.

As Figure 5.2 illustrates, partitioning relies on the natural representation of a scalar volume

as a collection of 2D slices. The Hadoop distributed file system uses this strategy to partition

data into blocks for each mapper, but imposes some constraints. First, each partition must contain

complete slices. Second, it allows the overlap by one slice in only one direction to account for

triangles spanning across partitions. Although it may result in duplication of input data, there is

no duplication of output triangles since this overlap only occurs in one dimension. In practice, the

duplication of input data is small and has no significant effect on the performance of the system.

Each mapper computes the triangles of several isosurfaces using the Marching Cubes algorithm as

implemented in the Contour Library [16] and emits a (key,value) pair for each isovalue. The key

is the isovalue and the value is the triangle data for the each cube in binary format. The reducer

receives the data sorted and binned by isovalue. Thus, the reduce stage only needs to act as a

pass-through, writing the isosurface as a triangle soup to file.

47

Map Reduce
Collect Isosurface

Input Blocks Output Triangle Soup

Figure 5.2: MapReduce Isosurface Extraction The map phase generates an isovalue as key
and triangle data as value. The reduce phase simply outputs the isosurface as a triangle soup to file.

5.2.2 Rendering
Out-of-core methods have been developed to render datasets that are too large to fit in memory.

These methods are based in a streaming paradigm [34], and for this purpose the rasterization

technique is preferred due to its robustness, high parallelism and graphics hardware implementation.

We have designed a MapReduce algorithm for a rasterization renderer for massive triangular and

tetrahedral meshes. The algorithm exploits the inherent properties of the Hadoop framework and

allows the rasterization of meshes several gigabytes in size and images with billions of pixels.

Hadoop partitions the input “triangle soup” among mappers with the constraint that each parti-

tion must be a multiple of 36 bytes, thus avoiding the block boundary splitting a triangle. For each

triangle, the mapper computes its projection onto the image plane and its corresponding pixels. For

each pixel, the mapper outputs a (key,value) pair, with the key being the pixel location in the image

plane (x,y), and the value being the depth and color of the pixel. The MapReduce framework sorts

pixels into the proper order (row-major) to construct the final image. Pixel colors emitted by the

mapper that share the same image plane location are grouped by this sorting. The reducer emits

the smallest depth value for each pixel location, therefore accomplishing the z-buffering algorithm

automatically. In Figure 5.3, we give an overview of this algorithm. Mappers and reducers are

viewed as geometry and multifragment shaders, respectively, in two distinct phases. Note that

this parallels a graphics hardware pipeline and can be similarly extended to handle more advanced

visualizations by custom “geometry shaders” and “fragment shaders.” For example, in a volume

renderer, each reducer just needs to sorts its fragments and composite them instead of a selection

based on depth.

5.2.3 Mesh Simplification
Despite advances in out-of-core methods for rendering structured or unstructured meshes, it

may still not be feasible to use the full resolution mesh. Several mesh simplification techniques

have been proposed [35, 93, 79]. Memory usage is a key aspect of this problem, since techniques

often require storage proportional to the size of the input or output mesh. An alternative is given by

the OoCSx (improved Out-of-Core Simplification) algorithm [58], which decouples this relationship

48

Map

INPUT

Reduce

For each key (x,y) :
 Find minimum z
 Emit (x,y,c)

For each pixel:
Emit(x,y,z,c)

OUTPUT

Figure 5.3: MapReduce Rasterization The map phase rasterize each triangle and emits the pixel
coordinates as value, and its color and depth as value. The reducer emits the smallest depth value
for each location.

and allows the simplification of meshes of arbitrary sizes. This is accomplished by superimposing

a regular grid over the underlying mesh with associations between grid cells and vertices: every

grid cell that contains a vertex of the input mesh must also contain a vertex on the output mesh, and

every cell must have only one representative vertex. The problem is broken into finding all triangles

that span three unique cells, and then finding an optimum representative vertex for each cell. Only

a linear pass through the triangle mesh to hash each vertex is needed to find its representative bin

before the output of all triangle indices.

The linear pass of OoCSx is not suitable for a parallel implementation. However, if we do

not use the minimal error criteria for optimal representative vertices, we are able to implement

the algorithm using only the Map phase of Hadoop. This not only avoids the expensive sorting

and merging phases of MapReduce but also allows the simplification performance to scale directly

with the number of mappers at our disposal. We use two MapReduce jobs to implement the full

algorithm since it requires two sorting phases (see Figure 5.4). The first Map phase bins each vertex

into a regular grid to ensure that all triangles contributing vertices to a particular bin arrive on the

same node in the Reduce phase. It also computes the quadric measure vector associated with the

contributing triangle. For each triangle, three (key, value) pairs are emitted, one for each vertex.

The key is the the bin coordinate that contains the vertex, and the value is a concatenation of the

quadric measure vector with the three indices of the triangle.

Map

Reduce

INPUT

Map
Pass

Through
Sorted

Triangles

ReduceB1

B2 B3
Compute

QEM
Bin Triangles

OUTPUT

Figure 5.4: MapReduce Mesh Simplification The first map phase generates the bin coordinate
of a vertex as key and a quadric error measure along the three triangle indices as value. The first
reduce emits the representative vertex for each triangle. A second map and reduce is applied since
multiple current reduce phases are not currently supported.

49

The first Reduce phase receives the same (key, value) pair from the Map phase, but sorted and

grouped by key. It reads each unique key (bin), and uses the quadric measures of all triangles

falling into that bin to compute the representative vertex. If the indices of all vertices of a triangle

contributing to a representative vertex are unique, the Reduce phase emits the indexed triangle as

key, and the current grid cell and vertex. Thus, across all reducers, there will be exactly three

(key,value) pairs with the same key (triangle), each storing a different representative vertex and

corresponding bin as its value. Since multiple Reduce phases are currently not supported, we use

a second MapReduce job to complete the dereference. This second Map phase merely reads and

emits the data output from the first Reduce job. Keyed on triangle index, the second Reduce phase

receives the exact three bin-vertex pairs, and emit as final output the simplified mesh.

5.3 Experimental Analysis
We have performed an in-depth analysis of the algorithms presented in the previous section. We

designed our experiments to evaluate, for each algorithm, its ability to scale up and down, as well as

the overhead introduced by Hadoop. The first series of tests shows the cost of data transfer through

a MapReduce job without any computation, followed by a detailed evaluation of each individual

algorithm. By default, the number of mappers that Hadoop launches for a job is a multiple of the

number of data blocks, taking care to not exceed the actual number of blocks on its HDFS (counting

all replications). On the other hand, the number of reduce tasks can be specified. To simplify

comparison, in our tests we maximize the number of reducers to the system capacity while keeping

its ratio to the number of mappers equal to 1. The number of mappers and reducers always equal in

our experiments whenever the number of input data blocks permits.

Tests were performed on two Hadoop-based systems: a local cluster and the NSF CLuE cluster

managed by IBM [25]. The local cluster consists of 60 nodes, each with two quad-core Intel Xeon

Nehalem 2.6GHz processors, 24GB of memory and a 320GB disk. The CLuE cluster consists of

410 nodes each with two single-core Intel Xeon 2.8GHz processors, 4GB of memory and a 400GB

disk. While still a valuable resource for research, the CLuE hardware is outdated if compared to

modern clusters, since it was originally built in 2004 with both low-speed processors and limited

memory. Thus, we mostly utilize the performance numbers from the CLuE cluster as a way to

validate and/or compare with our results on the local cluster. Since the CLuE cluster is a shared

resource among multiple universities, there is currently no way to run experiments in isolation. We

made sure to run all of our experiments at dead hours to minimize the interference from other jobs.

HDFS files were stored in 64MB blocks with 3 replications.

50

5.3.1 MapReduce Baseline
To evaluate the cost incurred solely from streaming data through the system, several baseline

tests were performed. For our scaling tests, we have evaluated our algorithms’ performance only for

weak-scaling. (i.e., scaling the number of processors with a fixed data size per processor). This was

chosen over strong scaling (i.e., scaling the number of processors with a fixed total data size) since

the latter would require changing a data blocksize to adjust the number of mappers appropriately.

The Hadoop/HDFS is known for degraded performance for data with too large or small blocksizes

depending on job complexity [84]. Therefore strong scaling is currently not a good indicator of

performance in Hadoop. The weak-scaling experiments vary data size against task capacity and

proportionally change the number of mappers and reducers. An algorithm or system that has proper

weak scaling should maintain a constant runtime. To avoid biasing results by our optimization

schemes, we use the default MapReduce job, with a trivial record reader and writer. Data are stored

in binary format and split into 64-bytes record, with 16 bytes reserved for the key. Map and reduce

functions pass the input directly to the output, and are the simplest possible jobs such that the

performance is disk I/O and network transfer bounded.

The top table in Figure 5.5 shows the average cost for map, shuffle and reduce tasks, respectively,

in the local cluster. The last two columns depict the overall disk I/O throughput and data throughput

for a particular job. I/O rates were computed by dividing the total number of disk reads and writes

including temporary files over the total time, while data rates represent how much input data pass

through the job in a second. For map tasks, Hadoop was able to keep the runtime constant, since

input files are read in sequence on each node and directed to appropriate mappers. In the reducing

step, even though the amount of data is the same as to the map phase and each node writes data

to its local disk, there is also a local external sorting that incurs in overhead. Nevertheless, both

runtimes are still considerably constant, except for the jump from 64GB to 128GB. At this point,

the number of reducers guarantees each node has to host at least two reduce tasks if distributed

properly. Therefore each disk now has double the I/O and seek operations. This can be seen in the

disk I/O rates, where the throughput is optimal at 64 tasks on the local cluster with 60 disks and

drops while maintaining a relatively high speed for the larger number of tasks.

The shuffle phase of Hadoop is where weak scaling is not linear. This accounts for the data

transfer between the map and reduce phase of a job along with sorting. In Hadoop each mapper is

likely to contribute a portion of data required by each reducer and therefore is not expected to scale

well. The plot in Figure 5.5 illustrates the breakdown of the three phases. The Hadoop Overhead

Time table shows (only) the overhead of communication across the map and reduce phases. Note

that each phase takes about 15 seconds to start on our local cluster. We also include weak-scaling

51

WEAK-SCALING OF DATASIZE VS. THE NUMBER OF TASKS (on Cluster)
Datasize #Maps #Reduces Map Time Shuffle Time Reduce Time Total Time I/O Rate Data Rate

1GB 16 1 7s 18s 27s 63s 84 MB/s 16 MB/s
2GB 32 2 8s 18s 27s 66s 161 MB/s 31 MB/s
4GB 64 4 9s 24s 30s 75s 283 MB/s 55 MB/s
8GB 128 8 10s 26s 29s 78s 545 MB/s 105 MB/s

16GB 256 16 10s 32s 29s 90s 944 MB/s 182 MB/s
32GB 512 32 12s 56s 32s 130s 1308 MB/s 252 MB/s
64GB 1024 64 11s 69s 30s 153s 2222 MB/s 428 MB/s

128GB 2048 128 13s 146s 57s 320s 2125 MB/s 410 MB/s

HADOOP OVERHEAD TIME (on Cluster) WEAK-SCALING (on CLuE)
#Maps #Reduces Map Only Total Datasize Total Time I/O Rate Data Rate

16 1 15s 30s 1GB 971s 5 MB/s 1 MB/s
32 2 15s 30s 2GB 946s 11 MB/s 2 MB/s
64 4 15s 30s 4GB 986s 22 MB/s 4 MB/s

128 8 15s 30s 8GB 976s 44 MB/s 8 MB/s
256 16 15s 30s 16GB 1059s 80 MB/s 15 MB/s
512 32 15s 33s

1024 64 15s 35s
2048 128 15s 36s

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

($!"#

(%!"#

(&!"#

()*# $)*# %)*# ')*# (&)*# +$)*# &%)*# ($')*#

!
"#
$%
&#
'(
)*

#'

+%,%-).#'

/%0112'(%-3'4$#%30156'

,-.#/012# 34562#/012# 728592#/012#

Figure 5.5: Hadoop Baseline Results Hadoop baseline test evaluates data transfer costs. In the
local cluster we achieve rates up to 428MB/s

results for the CLuE cluster for comparison. The I/O rates are considerably lower than the local

performance, and, as expected, this is likely due to age of the system and the shared usage. From

the weak scaling tests we conclude that the MapReduce model can be robust when the number of

nodes scales with the data size. Little cost is incurred for using more input data, and the effective

transfer rates scale proportionally to the input data size. However, in order to ensure fault tolerance,

disk I/O is heavily involved and could bound the overall performance.

52

5.3.2 Isosurface Extraction
We tested the isosurface MapReduce algorithm on two datasets: a small skull volume (256MB)

and a larger ppm Richtmyer-Meshkov instability simulation volume (7.6GB). Since our baseline

testing has shown that the amount data produced can effect Hadoop’s performance, we performed

tests that varied the number of isosurfaces generated in a single job, since this can have a drastic

effect on the amount of data being produced. For few isosurfaces, we expect a small number of

triangles to be produced. Conversely, for many isosurfaces, more data will be output to disk than

were used for input. We keep the number of maps constant at 256, as this is the largest power-of-two

we can use without pigeon holing more than 1 mapper to a node of the CLuE cluster.

We observed that in the extraction of dozens of isosurfaces (as part of parameter exploration)

data output increases proportionally to runtime. Jobs are relatively fast for the standard case of fewer

isosurfaces, since input and output data are partitioned evenly to mappers and reducers, thus the

amount of disk I/O for input and output is relatively small (e.g., approximately 32MB per Mapper).

The runtime of this algorithm is mostly affected by the shuffling phase, where triangles emitted

from mappers exceed the available buffer and are sorted out-of-core before being transferred to the

reducers. The performance of this phase depends on the amount of temporary disk I/O used when

the mapper runs out of in-core buffer space.

In Table 5.1, the File Written column denotes the amount of temporary data produced (not the

HDFS output). For the skull data set, the algorithm runs quite fast up to 8 isosurfaces, close to

Hadoop’s overhead. When moving to 16 isosurfaces, the disk I/O starts to increase abruptly causing

the algorithm to slow down. This increase denotes the amount of temporary disk storage needed for

the Mappers to sort the data. Nevertheless, while the data increase quadratically, the run-time only

triples. For the PPM dataset, we also see similar behavior in the disk usage. The run-time increases

from 10 minutes to 28 minutes and 2 minutes to 5 minutes when the disk I/O increases from 104GB

to 252GB for the CLuE and the local cluster, respectively. Figure 5.6 shows the isosurfaces for

this dataset. The rendering for the combustion PPM dataset is achieved by chaining the map task

of our isosurface extraction with the map and reduce job of our surface rendering described in

Section 5.3.3.

5.3.3 Rendering
Performance of the rasterization algorithm is dependent on the output resolution, camera pa-

rameters and geometry size. The impact of geometry and resolution is proportional to the number

of triangles to be rasterized and fragments generated, while the impact of camera parameters is

more difficult to estimate. For instance, depending on a camera position, pixels may receive no or

multiple fragments. Hence, reducers may receive no data or several fragments to compute depth

53

Table 5.1: Performance Results for Isosurface Extractions

#Isovalues CLuE time Cluster time File Written
256M/256R 480M/480R

1 2min 55s 57s 1.78MB
2 2min 00s 57s 1.81MB
4 9min 35s 2min38S 35.26GB
8 10min 26s 2min37s 103.92GB
16 28min 29s 5min27s 252.38GB

#Isovalues CLuE time Cluster time File Written
256M/256R 480M/480R

1 2min 22s 54s 1.94MB
2 2min 00s 56s 15.83MB
4 2min 02s 56s 31.22MB
8 2min 11s 58s 3.35GB
16 6min 06s 1min27s 18.74GB

PPM Richtmyer-Meshkov instability (7.6GB)

SKULL (256MB)

Figure 5.6: Isosurface Extractions with MapReduce Isosurface results using the MapReduce
framework for the PPM Richtmyer-Meshkov instability and Skull datasets.

ordering. Figure 5.7 and Table 5.2 show rendering results and weak scaling tests with run times

and temporary disk usage. For the CLuE cluster, the cost for rendering images of 100MP or less is

insignificant compared to the Hadoop overhead. For our local cluster, this threshold is more than

1GP. For images of this size, the cluster is stretched to its limit and performance is limited by the

amount of data written to disk. There is a significant increase in the data size due to the large amount

of temporary caching by the system due to insufficient buffer space for the shuffling phase.

Figure 5.8 illustrates a volume rendering pipeline modified from our surface rendering pipeline.

Tetrahedral meshes are broken down into a triangle soup, with each tetrahedron face split into a

54

Figure 5.7: Surface Rendering with MapReduce Rendering results for the St. Matthew (left),
Atlas (right).

Table 5.2: Performance Results for Surface Rendering

 WEAK SCALING (RESOLUTION)
St. MATTHEW (13 GB) ATLAS (18 GB)

Resolution #M/R CLuE Cluster File #M/R CLuE Cluster File
time time Written time time Written

1250x1250 256/256 1min 54s 46s 33MB 273/273 1min 55s 46s 41MB
2500x2500 256/256 1min 42s 46s 147MB 273/273 2min 11s 46s 104MB
5000x5000 256/256 1min 47s 46s 583MB 273/273 2min 12s 46s 412MB

10000x10000 256/256 1min 40s 46s 2.3GB 273/273 2min 12s 46s 1.6GB
20000x20000 256/256 2min 04s 46s 10.9GB 273/273 2min 27s 47s 5.5GB
40000x40000 256/256 3min 12s 1min08s 53.14GB 273/273 3min 55s 55s 37.8GB
80000x80000 256/256 9min 50s 2min55s 213GB 273/273 10min 30s 1min58s 151.8GB

 WEAK SCALING (RESOLUTION AND REDUCE)
St. MATTHEW (13 GB) ATLAS (18 GB)

Resolution CLuE 256M Cluster 480M CLuE 256M Cluster 480M
#R time #R time #R time #R time

1250x1250 4 1min 13s 8 46s 4 1min 18s 8 46s
2500x2500 8 1min 18s 15 46s 8 1min 19s 15 45s
5000x5000 16 1min 18s 30 46s 16 1min 51s 30 46s

10000x10000 32 2min 04s 60 47s 32 1min 52s 60 47s
20000x20000 64 2min 04s 120 49s 64 2min 34s 120 46s
40000x40000 128 4min 45s 240 1min06s 128 5min 06s 240 55s
80000x80000 256 9min 50s 480 2min14s 256 10min 30s 480 1min41s

55

Model #Tetrahedra #Triangles Time #Fragments Bytes Read Bytes Write
Spx 0.8 millions 1.6 millions 3min 29s 9.8 billions 320 GB 473 GB

Fighter 1.4 millions 2.8 millions 2min 20s 5.3 billions 172 GB 254 GB
Sf1 14 millions 28 millions 6min 53s 16.8 billions 545 GB 807 GB

Bullet 36 millions 73 millions 4min 19s 12.7 billions 412 GB 610 GB

TETRAHEDRAL MESHES VOLUME RENDERING (on Cluster)

Figure 5.8: Volume Rendering with MapReduce Volume rendering of the earthquake dataset
(SF1) using a 100MP image. Table shows volume rendering statistics for other tetrahedral meshes.
The Bullet dataset with 36 million tetrahedra is rendered in 4min and 19s.

separate triangle. The reduce phase is modified to perform color, opacity mapping and compositing

of the fragments. The accompanying table shows results for a variety of additional meshes. As also

shown in the table, the most time-consuming image to render at 100MP is not the largest dataset

(Bullet) but the earthquake dataset (SF1). This is due to the many large (and flat) tetrahedra that

define empty regions at the bottom of the model. Scalar values of these triangles rarely contribute

to the final image, but generate a large number of fragments which cause a more expensive shuffle

phase.

56

5.3.4 Mesh Simplification
To analyze the out-of-core simplification algorithm in the MapReduce model, we use two large

triangle meshes as input: the Atlas statue (18GB) and the St Matthew statue (13GB) from the

Digital Michelangelo Project at Stanford University. In these tests, we are interested in seeing the

effects of scaling the simplifying grid size. The amount of work done in the Map phase should be

very consistent, as each triangle must always compute a quadric measure vector and bin its three

vertices. Smaller grid sizes force more vertices to coincide in any particular bin, thus changing the

grouping and potentially reducing the parallelism in the Reduce phase.

However, the decrease in performance from this should be amortized by the decreased output of

the Reduce phase, as fewer triangles will be generated. In the tables of Table 5.3 we observe that

this is exactly what occurs. Since our method must be a two pass algorithm in Hadoop, we have

included the run times for both jobs (Job 1 and Job 2). Rendered images of simplified models of the

Atlas and the St Matthew statue are also shown in Figure 5.9 with the grid sizes varying from 83

to 10243. Decimation rates for these results are all under 5% and they were all rendered using the

renderer proposed in Section 5.3.3.

5.4 Discussion
In this section, we discuss some of the “lessons learned” from our experience with MapReduce

and Hadoop. For users of visualization techniques, it is difficult to know when the results or

workload will push beyond the cluster limits and severely increase runtimes. It was clear from

Table 5.3: Simplification with MapReduce

CLuE time ATLAS (18 GB) St MATTHEW (13 GB)

#Gridsize #Maps/
#Reduces

Job 1
Time

Job 2
Time

Output
Size

Job 1
Time

Job 2
Time

Output
Size

8 ^3 256/256 5min 45s 52s 22 KB 5min 45s 52s 23 KB
16^3 256/256 3min 54s 49s 98 KB 3min 54s 49s 105 KB
32^3 256/256 3min 51s 49s 392 KB 3min 51s 49s 450 KB
64^3 256/256 3min 40s 49s 1.6 MB 3min 40s 49s 1.9 MB
128^3 256/256 4min 12s 49s 6.4 MB 4min 12s 49s 7.5 MB
256^3 256/256 3min 50s 49s 26 MB 3min 50s 49s 30 MB

Cluster time ATLAS (18 GB) St MATTHEW (13 GB)

#Gridsize #Maps/
#Reduces

Job 1
Time

Job 2
Time

Output
Size

Job 1
Time

Job 2
Time

Output
Size

8 ^3 377/377 58s 56s 22 KB 54s 55s 23 KB
16^3 377/377 58s 55s 98 KB 54s 54s 105 KB
32^3 377/377 55s 54s 392 KB 51s 52s 450 KB
64^3 377/377 57s 54s 1.6 MB 55s 55s 1.9 MB
128^3 377/377 55s 58s 6.4 MB 52s 52s 7.5 MB
256^3 377/377 55s 55s 26 MB 55s 55s 30 MB
512^3 377/377 55s 55s 102 MB 55s 52s 119 MB

1024^3 377/377 55s 57s 399 MB 55s 53s 461 MB

57

(a) 83 (b) 163 (c) 323 (d) 643 (e) 1283 (f) 2563 (g) 5123 (h) 10243

Figure 5.9: Comparisons of Simplification with MapReduce Simplified meshes using
volumes from 83 to 10243 using decimation rates under 5%.

our experiments that keeping the number of maps and reduces below the maximum task capacity is

the first step towards avoiding such pathological cases. While nodes can run multiple tasks, we find

that increasing the number of nodes in proportion to the data size provides the most reliable and

consistent scalability, suggesting that the overhead to manage additional nodes is not prohibitively

expensive.

Additional tasks may improve performance in certain cases, but should not be a default assump-

tion. The results from our exploratory implementations are encouraging and match the scalability

we expected, up to a limit. When the size of the output data is unpredictable, as in the case of

isosurface extraction, memory requirements can quickly exhaust available resources, leading to

disk buffering and ultimately increasing runtime. Scalability, in our experience, is only achieved

for data reductive tasks — tasks for which the output is smaller than the input. Most visualization

tasks satisfy this property, since they typically render (or generate) data that are smaller than the

input mesh or volume. It should also be pointed out that this cost is insignificant when compared

to today’s standard practice of transferring data to a client, and running a local serial or parallel

algorithm. Indeed, the cost of transferring the data to a local server alone dwarfs the cost of any

such MapReduce job.

For those interested in developing visualization algorithms for MapReduce systems, MapRe-

duce algorithms was relatively simple. However, as with any highly-parallel system, optimization

58

can be painstaking. In the case of MapReduce, we found that the setup and tuning of the cluster

itself were just as important, if not more important, than using the right data format, compressor,

or splitting scheme. To analyze the suitability of existing algorithms to the MapReduce model,

attention should be paid to where and how often sorting is required. As the model only allows

a single sort phase per job, multipass algorithms can incur significant overhead when translated

naı̈vely into MapReduce. Specifically, a MapReduce implementation will rarely be competitive

with state-of-the-art methods in terms of raw performance, but the simplicity and generality of the

programming model is what delivers scalability and extensibility. Further, the degree of parallelism

in the Reduce phase is determined by both the intended output of the algorithm, as well as the

distribution of data coming from the Map phase. Careful consideration of the hashing method may

or may not have a dramatic effect on the algorithm performance.

We summarize below observations and conclusions we made in our work with the Hadoop

system:

• Results from our scaling tests show Hadoop alone scales well, even without introducing

optimization techniques.

• Considerations about the visualization output size are very important. Visualization tech-

niques should decrease or keep relatively constant the size of the data in the pipeline rather

than increase it. MapReduce was not designed to handle enormous intermediate datasets, and

performs poorly in this context.

• From a qualitative standpoint, we found the MapReduce model easy to work with and imple-

ment our solutions. Optimization, in terms of compression and data reader/writers required

thought and experimentation. Configuring job parameters and cluster settings for optimal

performance was very challenging. We feel that this complexity is always inherent in a large

distributed environment, and therefore is acceptable. Further, this work can potentially be

performed once per cluster, and the cost can therefore be amortized over many MapReduce

jobs.

• The inability to chain jobs makes multijob algorithms such as the mesh simplification slightly

cumbersome to execute, and more difficult to analyze. Projects such as Pig [71] and Hive

[85] that offer a high-level yet extensible language on top of MapReduce are promising in

this regard.

• The Hadoop community could greatly benefit from better progress reporting. Uneven distri-

bution of data across reducers may result in display of near completion (e.g., 98%) when in

59

fact the bulk of the work remains to be completed. This is problematic if the user does not

know a priori what a good reducer number should be, and arbitrarily chooses a high value.

• While at any particular time, job runtimes are fairly consistent, they vary as a whole from

day to day. This is most likely due to the state of the HDFS and movement of replicated

data. Being aware of these effects is important in order to make meaningful comparisons of

performance results. On that note, all data within any one table were generated within a short

time span.

5.5 Proposition
The analysis performed in this chapter has shown that the MapReduce model provides an

alternative approach to support large-scale exploratory visualization for data that are online on

the cloud . The fact that data transfer alone is more expensive than running such a job in-situ is

sufficient justification, and will become more evident as datasets grow in size. The availability of a

core set of visualization tools for MapReduce systems will allow faster feedback and learning from

new and large datasets. Additionally, as these systems continue to evolve, it is important for the

visualization community to periodically reevaluate their suitability. Here, we provide a baseline for

such a comparative analysis. We have shown how three visualization techniques can be adapted

to MapReduce. Clearly, many additional methods can be adapted in similar ways, in particular

memory-insensitive techniques or inherently parallel techniques. What remains to be investigated is

how to combine visualization primitives with conventional data management, query, and processing

algorithms to construct a comprehensive scalable visual analytics platform. This requires a flexible,

yet efficient, parallel data-flow architecture to support the design as well as executions of these tasks.

CHAPTER 6

INITIAL DESIGN FOR MULTICORE SYSTEMS

As Chapter 3 and Chapter 4 have already shown the importance of streaming capability and a

comprehensive updating policy for large-scale visualization pipelines, in this chapter, we propose

the design of a flexible dataflow scheme aimed to leverage the two features on multicore platforms.

Our system supports a unified execution model for both demand-driven and event-driven models.

It also includes a resource scheduler that exploits the shared memory architecture to dynamically

allocate computing resources (i.e., the number of threads to use with a particular module) for optimal

performance. We also demonstrate the flexibility of our system by integrating support for general

streaming data. This allows our system to scale to massive data. Our implementation is on top of

a popular visualization toolkit (VTK) and provides backward compatibility. Due to VTK’s wide

acceptance in the scientific community, our system has the potential to provide an immediate and

significant impact to the field.

Specifically, the highlights of our system are the following:

• A new scheme for executing pipelines on multicore hardware.

• A unified data-flow model integrating pull and push policies into an API that allows for

flexible and dynamic execution strategies

• An adaptive scheduling strategy for dynamic load balancing

• A data-flow control strategy that combines the benefits of both the distributed and centralized

execution controls

• A streaming framework built on top of our system that adds support for both structured and

unstructured data

• A complete implementation and seamless integration into a widely-used visualization system

A diagram outlining an overview of our system is shown in Figure 6.1. Our system is based on

a distributed executive scheme with a centralized resource-aware scheduler to efficiently distribute

resources. Each local executive can perform both the Pull and Push functions. Each module also

61

SCHEDULER RESOURCES

Trigger,
Execute &
Feedback

Distribute

RE
SO

U
RC

ES

INPUT

PERFORM
COMPUTATION

OUTPUT

Demand-Driven Requests
Pulling Data

Event-Driven Requests
Pushing Data

Module

Message

Data
Dependency

Executive

Our Uni�ed Model

New Event

E
E

E

E E

E

Data Request

E

E

Figure 6.1: Parallel Dataflow Architecture for Multicore Platforms The overall architecture
of our system. The execution process is triggered by the first request of any pipeline module. The
scheduler will distribute resources and schedule the next execution of the whole pipeline. Each
module is allocated with a specific sum of resources (of CPU and GPU). Inputs will be converted
into the appropriate medium for resource before entering actual computation.

contains a resource specification indicating the number of threads its algorithm can utilize at run-

time. This information is used by the scheduler.

6.1 Execution Model
In our framework, a pipeline execution starts with an explicit update request of a module.

Depending on a module’s update policy, i.e., pull or push, its upstream or downstream modules

will then be executed accordingly. This process repeats until all modules are updated. However,

instead of statically assigning each module with a fixed update policy like other systems, we allow

the policy to be dynamically set. This can be done at the module implementation level with the

supplied API’s Pull(M, R) and Push(M, R) functions. M and R are optional arguments where M

indicates the list of target modules to be updated and R is any additional information that needs to

be passed. By default, M is set to all immediate upstream and downstream modules for Pull and

Push respectively.

For example, consider the simple pipeline in Figure 6.2. Data are read through the DataAccess

module and passed to the DataProcess module before being rendered by the Viewer module.

Although simple, this pipeline is common in a progressive rendering system, where changes to

the viewport caused by user interaction require a series of data requests ranging from the coarsest

to finest level-of-detail (LOD). These new requests would be made to the DataAccess module and

62

can be implemented using a pull policy as follows:

renderRequested()

LOD = C // the lowest resolution of LOD

while (LOD>0)

Pull(<Viewer>, LOD)

LOD = LOD - 1

Often certain applications would like to refresh a display whenever new data are available

(e.g., viewing data as they are downloaded from an external device). In this case, a push policy

can be easily introduced to the pipeline to trigger a new data event:

newDataArrived()

Push(<DataAccess>)

In the case of streaming data, Push offers higher efficiency due to its support for both task

and pipeline parallelism. When Pull is called, the function only returns after all the upstream

modules are updated. This, in effect, locks the modules in a dataflow to a selected piece of the

stream data. On the other hand, Push will return as soon as the scheduler determines that there are

idling threads from the available resources. This allows a module to load new data after it sends its

data downstream. Therefore multiple Push calls made sequentially can operate independently on

separate stream-data-blocks.

Data duplication is avoided whenever possible since copying and allocating memory could

substantially degrade the whole pipeline performance. This can be especially detrimental in a

shared-memory system, where multiple cores have the ability to access memory simultaneously.

In order to prevent write-before-read issues, modules are locked for scheduling upon entering its

execution loop and stay locked until all output data has been flagged for release by downstream

modules. By default, at the end of each compute() method, a module releases its input automati-

cally. However, we allow API users to override this default by manually releasing the data earlier or

delaying release by using the ReleaseInputs() method. When computing heavy modules, it would

be advantageous to copy data locally and release the input to allow upstream modules to process

new data. For instance, in the same example on Figure 6.2, if both reading the data in DataAccess

and processing the data in DataProcess are time-consuming, DataProcess can copy its input locally

and release, allowing DataAccess free to read the next data block.

DataProcess::compute()

// copy input data to local memory

63

ViewerDataAccess DataProcess

Figure 6.2: A Simple Rendering Pipeline

...

this->ReleaseInputs();

// process the copied data in local memory

...

6.2 Scheduler
The scheduler is responsible for both scheduling and distributing computing resources (threads)

to modules in a pipeline. When a module executive is asked to execute its algorithm, instead of

performing the computation right away, it submits the execution to the scheduler’s queue. The

scheduler, depending on the number of available threads, will execute the algorithm at an appropri-

ate time with the appropriate resources.

When executing modules of a network concurrently, a scheduler with a simple FIFO queue will

not guarantee the order and data dependencies of the pipeline. For our scheduler, we use a priority

queue partially keyed by the module’s topological order. This also ensures that there is only one

update for a single request in a push model. For example, in the pipeline in Figure 6.3, a regular

FIFO queue would push modules (1), (2), (3), (5), (4) and then (5) again, but with the priority queue

the execution of (5) would be postponed until after (4) completes.

However, topological order alone still has problems in regard to streaming. If multiple threads

are available, relying primarily on topological order may run the risk of all threads being allocated

to the modules loading the data, counteracting the benefits of streaming. For example, if (1) is a

streaming data reader, after it processes the first data piece, it passes the data down to the contour

ContourFilter

Topological Rank

Data-Block and
Priority Rank

ContourFilter

SubDivision

DataSetReader

RenderWindow

Renderer

1

2

3

4

6

5

7 8

9

10

Figure 6.3: Scheduler Assigments Streaming priority assignments by our scheduler

64

filters (2) and (3) which are now in the scheduling queue. Then, the reader will move to the second

piece of data, putting itself again on the queue. Because (1) has lower order than (2) and (3) it will

be executed again. Our solution is to use not only the topological order as priority key but also use

the data block number, e.g., streaming piece. Internally, if modules do not specify the data block

number as they submit an execution to the queue, a global counter is used. With this approach,

the scheduler will attempt to move a single data-block as far down the network as possible before

processing the next piece.

Scheduling strategy Our flexible scheme handles any scheduling strategy. For testing, we have

implemented a heuristic strategy based on time statistics. At the time of rescheduling, the scheduler

transverses the whole pipeline starting at the sink modules and distributes resources among the

branches. Since a module can only be executed if its inputs are up-to-date, the scheduler minimizes

the difference in input computation time for each module. At run-time, modules are scheduled

and allocated with resources proportional to the accumulated computation time from its source

modules in the pipeline. If a module has more than one source, the scheduler distributes resources

proportionally to the arrival time of the previous request. In a single branch, subpipelines can be

executed concurrently with resources distributed evenly. The scheduling can be summarized as:

Module.Time: the accumulated time from a source

function ScheduleResource(Module A, Resources Total):

UpstreamModules = FindUpstreamModulesFrom(A);

if UpstreamModules is empty:

A.AssignResource(Total)

return

TotalLastUpdateTime = 0

for module in UpstreamModules:

TotalLastUpdateTime += module.Time

for module in UpstreamModules:

ScheduleResource(module, Resource *

module.Time / TotalLastUpdateTime)

The above scheduler can address both task-parallelism and pipeline-parallelism. Data-parallelism

can be added by manually duplicating pipeline elements.

6.3 Streaming Computation
Streaming algorithms are inherently useful in visualization pipelines, though they are still under-

represented in current dataflow systems due to the lack of a general streaming framework. Our

system intrinsically supports streaming. Since both Pull() and Push() only return when target

modules are able process more data, streaming algorithms can simply be expressed as a sequential

program. Below are two scenario usages of streaming:

With Pull():

65

for (i=0; i<numPieces; i++)

R = i // Set the piece number

this->Pull(<Upstream Modules>, R)

With Push():

while (!this->EndOfStream())

this->ReadData()

this->Push()

There are two basic differences between the push and pull models for streaming: (1) a push is

triggered at source modules while a pull is triggered from sinks and (2) only the push model can

take advantage of pipeline-parallelism since the pull model requires that all upstream modules be

locked during an update. Therefore, even though both models are easy to use with streaming, push

is encouraged since it can achieve higher performance at the cost of more memory usage.

Our system also extends streamable data structures beyond the standard structured grids by

generalizing the streaming mesh format. The streaming mesh format was originally designed for

triangular meshes by interleaving its geometry with connectivity. It introduced the notion of final-

ized and unfinalized vertices. A vertex is finalized if it will not be used by any other element later

in the stream, thus, it is safe to remove it from the buffer. Our generalized streamable data structure

is considered as a single stream that can be segmented with overlapping regions. The dimensions

of overlapping regions are defined by the finalization of the stream element itself, i.e., unfinalized

elements cannot be processed and will remain in the buffer. However, we have also extended the

definition of finalization. Instead of just allowing the data structures to decide which elements are

finalized, the algorithm is also allowed to flag elements as unfinalized. For example, an image filter

may set a neighborhood outside the portion being processed as unfinalized. The interface for this

class of streamable data structure consists of two main methods that can be subclass-ed into other

needs:

class StreamableData:

void setData(POINTER *data)

POINTER *getData(pos)

void next(pos);

void finalizeData(pos)

where pos is the relative position of the data to the current position of the stream, e.g., pos=0 is

the current position. setData() and getData() are used to set and retrieve the data associated with

a position. next() shifts the current stream position, which can be treated as moving the current

66

sliding window of the stream. finalizeData() flags a certain piece of data as finalized, i.e., it can be

discarded to free memory.

6.4 Framework Implementation
We have implemented our framework on top of VTK, inheriting a robust software infrastructure

along with existing algorithms for testing. We have also added three new classes into VTK’s Filter-

ing package without any other modifications to the existing source code: vtkComputingResources,

vtkExecutionScheduler, and vtkThreadedStreamingPipeline.

vtkComputingResources holds information on computing resources, i.e., the minimum, maxi-

mum and the preferable number of threads. Each instance of vtkAlgorithm may include a vtkCom-

putingResources object if it can run with more than one thread. executions as well as distributing

threads to pipeline modules. There is a static global scheduler for the whole system. However, our

framework permits the existence of multiple instances of vtkExecutionScheduler. Each instance

can work separately using its own specification of vtkComputingResources indicating how many

threads it is managing.

These classes are not designed to be used directly by module developers, though they are the

building blocks for the implementation of vtkThreadedStreamingPipeline.

vtkExecutionScheduler::Schedule() takes a collection of executives as input and schedules

their execution. This method first creates a dependency graph from the input modules, then assigns a

topological order to them. Since functions can be called while modules are currently being executed,

the newly created dependency graph could be merged with the current running dataflow network if

it exists. The combined graph is then placed in the priority queue. However, no module execution

will be explicitly triggered by this function. Instead, the scheduler’s secondary thread checks the

queue and decides which, if any, modules need to be executed. Before a module becomes active for

execution, this secondary thread would also assign the number of threads allocated for the module

based on the default scheduling strategy.

vtkThreadedStreamingPipeline inherits from the vtkCompositeDataPipeline class and is

therefore fully backwards-compatible with original VTK pipelines. For our framework, we reimple-

mented the ForwardUpstream method and added Pull() and Push() functions to interface with our

execution model. Note that all of our systems multithreaded features can be turned on/off through a

global flag set by the method SetMultiThreadedEnabled() of this class.

As previously discussed, both Pull() and Push() can accept optional arguments M and R. In

VTK, these are set be a subclass of vtkCollection and vtkInformation, respectively.

When Pull() is called on a module, it performs a search on the dataflow network to collect all of

the upstream modules on which the module depends. It then passes them to the Schedule method

67

of the global scheduler. A call to WaitUntilDone() is also made to guarantee that the control only

returns when all the scheduled upstream modules have been executed.

On the other hand, Push() does not need to look beyond its immediate downstream modules to

pass to the scheduler. After the modules are passed, a call to WaitUntilRelease() is then made. This

will block the control until the scheduler allocates the resources to get more data.

6.5 Applications
VTK has been the subject of a large body of streaming research and therefore is an apt system

for both implementation and comparison to our framework. We have selected imaging as the

primary focus for testing since VTK only fully supports multithreaded processing and streaming

in its imaging framework. While our initial implementation and testing uses VTK, our framework

by is general by design and can be easily extended to other systems. All tests were performed on a

machine consisting of 2 Intel Nehalem Xeon w5580 processors with a total of 8 cores and 24GB of

DDR3 RAM. This is the maximum number of cores that we can get for a shared-memory system

using the fast DDR3 memory.

6.5.1 Multicore Image Processing
The VTK image processing pipeline is capable of multithreaded processing, but only at the

module level. We compare this existing functionality to the full pipeline parallelism of our frame-

work. Using VTK’s default multithreaded pipeline enables the system to maximize performance

by utilizing all available cores on a per module basis. For the processing of massive imagery, this

performance gain is outweighed by the necessary high memory footprint and poor data locality in

each thread. For such images, VTK provides the ability to perform out-of-core streaming of image

data (using the vtkImageDataStreamer class), which alleviates the problems outlined above for the

standard system. Specifically, it requires a smaller memory footprint and retains high cache co-

herency. This functionality is unfortunately demand-driven, which can block pipeline-parallelism,

and is only applicable for subclasses of vtkThreadedImageAlgorithm. Our pipeline does not

suffer from the problems inherent in VTK’s default or streaming pipeline, exploits parallelism, has

low memory requirements and high locality. To test the performance of the system on imaging

pipelines, we have constructed three simple, yet computationally expensive, examples.

Gaussian smooth pipeline: VTK’s imaging modules, such as Gaussian smooth and blender,

can be configured to run multithreaded using all available cores on a machine. Thus, it is pos-

sible to achieve maximum performance with pipelines that only contain these types of modules.

Unfortunately, in practice these modules will only be a small portion of a typical pipeline. For

testing, we construct a simple smoothing pipeline that consists of both threadable and unthreadable

68

modules. The pipeline takes two images, then smoothes and blends them together. See Figure 6.4

for a diagram of the pipeline. Here, SingleThreadedSmooth cannot utilize more than one thread

to increase performance. Using the default VTK model of serial execution of modules, the per-

formance would not be optimal in a multithreaded environment since there would be idling threads

when SingleThreadedSmooth is running. In this case, the more threads available to the system, the

worse its efficiency is. On the other hand, our framework can handle this situation by promoting task

parallelism, i.e., having SingleThreadedSmooth run concurrently with the others. This difference

is shown in the CPU usage graph in Figure 6.5. VTK first runs all multithreaded image filters, then

executes the single threaded smoothing module only when the multithreaded modules have finished.

In contrast, our framework after a time-collecting phase load balances and keeps all cores busy. The

strong scaling test in Figure 6.6 clearly shows our execution model is superior to VTK’s default

threaded model. Table 6.1 provides the actual running details including the efficiency ratio of CPU

usage. The tests were used with two synthetic images of 200 megapixels in size.

12-month average pipeline: For this example, we show the per-pixel average of 12 months

of satellite imagery (1 image per month) from NASA’s Blue Marble Project [69]. Each image

from this data set is 3.7-gigapixel. Therefore we must employ out-of-core data access. For this

implementation, we use the ViSUS library which is based on the hierarchical z-order scheme as

outlined in [74]. In practice, we have found this method inherently provides a hierarchical structure

and exhibits good data locality in both dimensions. This allows our system to have fast data access

and intelligent partitioning of the image for processing.

vtkImageGaussianSmooth

vtkImageGaussianSmooth

vtkImageReader

vtkImageWriter

vtkImageBlender

SingleThreadedSmooth

vtkImageDataStreamer

vtkImageReader

vtkImageGaussianSmooth
StreamGenerator

vtkImageGaussianSmooth

vtkImageReader

vtkImageWriter

vtkImageBlender

StreamGenerator

SingleThreadedSmooth

StreamMerger

vtkImageReader

(a) (b)

Figure 6.4: Gaussian Image Pipeline (a) using VTK; (b) using ours

69

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

10

20

30

40

50

VTK: 39.5s

Ours: 24.12s

4-Thread

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Ours: 39.6s

VTK:
53.2s

2 Thread-1-Thread

0

2

4

6

8

10

12

14

16

1 4 7 10 16 22 28 34 40 46 52 58 64 70 76

CP
U

 U
sa

ge
 (%

)
CP

U
 U

sa
ge

 (%
)

CP
U

 U
sa

ge
 (%

)

Time (s)

Time (s)

Time (s)

Ours: 77.3s

VTK: 76.3s

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ours: 17.9 s

VTK: 33.6s

8-Thread

Ours VTK
Time (s)

CP
U

 U
sa

ge
 (%

)

Figure 6.5: Gaussian Image Pipeline Results CPU usage from 1 to 8 threads

70

0

10

20

30

40

50

60

70

80

90

1 2 4 8

Ti
m

e
(s

)

Thread Count

Scalability of Running Time between Ours vs. VTK

Linear Scaling

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8

Effi
ci

en
cy

 (%
)

Thread Count

Efficency Plot between Ours vs. VTK

Ours

Ours VTK

VTK

Figure 6.6: Gaussian Image Pipeline Results Strong scaling plot (top) and efficiency plot
(down)

Table 6.1: Running Time and Efficiency Ratio of CPU Usage Between VTK and Our System for a
Simple Gaussian Pipeline.

1 thread 2 threads 4 threads 8 threads
Time Eff. Time Eff. Time Eff. Time Eff.

VTK 76s 100% 53s 80.0% 39s 59.4% 33s 41.8%
Ours 77s 100% 39s 85.9% 24s 87.6% 17s 77.7%

71

We demonstrate the performance of our system versus VTK’s streaming system by processing

the per-pixel average of the 12 months of data. See Figure 6.7a for a diagram of the pipeline.

This average is view dependent. Therefore the system only needs to process the pixels visible on

the screen. Each module operates on a hierarchical resolution from our data access and data are

displayed progressively as it is available. Even with this simple operation and reduction to visible

pixels, our fully parallel system significantly outperforms VTK’s current framework achieving a

near-optimal scalability with an 8 times speedup when moving from 1 to 8 cores. The strong

scalability graph and the numbers can be found in Figure 6.7c and Table 6.2.

Multi-visualization pipeline: For this example, we have deepened the 12 month average pipeline

to incorporate more image processing modules, increase the data dependency between them, and

increase the asymmetry of the pipeline. Like the previous example, we are accessing 12 images,

one for each month from NASA’s Blue Marble Project [69]. Also, we have employed the same

data access scheme from the previous example and all operations are purely view dependent on a

per-pixel basis.

The first stage of the pipeline involves the conversion of our data sources from 8-bit RGB to

their grayscale floating-point representation. After the image is converted, a per-pixel average is

computed for all images. This average is streamed to a module that computes the standard deviation.

The average is also streamed to another module, which computes the image that is closest in terms

of the L2 norm of the difference between the original data and the average. This will give the user

the best representative month for the given viewing window. The standard deviation is fed to an edge

detection module. This will give the user the areas of greatest change in deviation from the average.

Finally, the standard deviation, the edges of the standard deviation, the average, and the pixel data

from the best representative month are streamed to the progressive renderer for visualization. The

standard deviation, standard deviation edge map, and average are also down-sampled in this process

for display. The average is rendered as a height field quad mesh with the standard deviation and

edge map as a texture on the mesh. Each module operates on a resolution at a time of the image

hierarchy given by our data access from coarse to fine. Data are rendered in a progressive manner

as it is completed. See Figure 6.7b for a diagram of the pipeline. Since there are only 4 parallel

independent execution paths in this pipeline, our system was able to scale in performance to only

4-core. After that, the performance stays at that optimal peak. Table 6.2 illustrates these results

with timing numbers. In the scalability plot in Figure 6.7c, we observe a slight super linear speedup

probably due to a coherent disk cache when multiple threads access data simultaneously.

72

ProgressiveRenderer

...DataAccess DataAccess DataAccess

Average1 image

12 images

(a)

ProgressiveRenderer

GrayScale GrayScale GrayScale

Average

Standard
Deviation

Di�erence
L2 Norm

Edge
Detection

Downsample Downsample Downsample

...DataAccess DataAccess DataAccess

...

1 image 12 images(b)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 8

Ti
m

e
(s

)

0

5

10

15

20

25

1 2 4 8

Ti
m

e
(s

)

Number of Threads Number of Threads

Scalability of ViSUS under our system

Ours Linear Scaling(c)

Figure 6.7: ViSUS Performance with Our System Two ViSUS pipelines performing: (a) the
12-Month Average, (b) Multi-View selective rendering and (c) the scalability plot.

73

Table 6.2: Timing for ViSUS

1 thread 2 threads 4 threads 8 threads
12-Month Avg. 20.5s 10.3s 5.4s 2.7s

Multi-View 88.1s 40.7s 18.9s 18.7s

6.5.2 Streaming Tetrahedral Mesh Simplification
To test and demonstrate the flexibility in extending our framework to include unstructured

streaming capabilities, we modified the implementation of streaming tetrahedral mesh simplification

technique from Chapter 3. Given the current infrastructure of VTK without our scheme, this would

not be possible. There is no streamable data structure for unstructured grids in VTK. In order to

implement streaming simplification in VTK, a mapping of a portion of the output to the portion of

the input meshes is necessary. This can only be done after the actual computation. Finally, VTK’s

streaming pipeline only supports streamable data with a predetermined number of sections, while

the algorithm only defines the end of a stream on the fly.

In our system with the generalized streaming scheme extension, we are able to construct and

execute the corresponding pipeline as shown in Figure 6.8. The streaming algorithm consists of

3 main processing units: UpdateQuadrics builds the quadric metrics for vertices of the meshes,

SimplificationBuf combines new streams of data into the current buffer and readies the data to

be processed by Decimate, which performs an edge collapse operation. The system also exploits

several locations of data-parallelism in the pipeline.

UpdateQuadrics UpdateQuadrics UpdateQuadrics

TetStreamMerger

TetStreamingMesh

UpdateQuadrics UpdateQuadrics UpdateQuadrics

Simpli�cationBufSimpli�cationBuf

Decimate

Simpli�cationBuf

Decimate

Simpli�cationBuf

DecimateDecimate

TetStreamMerger

TetStreamingMesh

(a) (b)

Figure 6.8: Streaming Simplification with Our System Streaming simplification of tetrahe-
dral meshes under our system (a) with data-parallelism and (c) with a complete parallelism

74

Figure 6.8a shows a pipeline with no added concurrency execution except for the pipeline-

parallelism from our scheduler. The original version of the application is highly optimized for a

single module. One would assume a degradation in performance if the single module is executed

in sections without any changes to the code. Due to the increase in performance inherent in our

system, it can negate this degradation and achieve a similar benchmark.

To exploit data-parallelism, we can change the pipeline to allow our streaming source to send

data to multiple modules. This type of data-parallelism is possible due to the fact that TetStream-

ingMesh utilizes the finalization property of streaming meshes to protect boundary cells across

pieces. Figure 6.8b shows a manual tweak to the pipeline to create a data-parallel pipeline with three

UpdateQuadrics. The three modules are working on different portions of the meshes. However, as

we see in Table 6.3 the building of quadrics is not the main bottle neck of this application. Therefore

we still do not gain much in performance. Nonetheless, there is still a slight improvement.

In Figure 6.8c, we have converted the pipeline to have complete parallelism; duplicating all

three processes into three concurrent executions. As we can see in Table 6.3 there is a significant

improvement over the original pipeline due to the parallelism. Unfortunately such an extremely

parallel implementation of this algorithm can reduce the quality of the simplified mesh since there

are too many boundary constraints.

Even though an optimal streaming pipeline for this particular algorithm was not found in testing,

we feel that this provides an example of our system’s ability to facilitate experimentation with

streaming and parallelism with little effort.

6.6 Discussion
In this chapter, we propose new techniques for exploiting multicore architectures in the context

of visualization dataflow systems. Specifically, we offer a robust, flexible and lightweight unified

data-flow control scheme for visualization pipelines. This unified scheme allows the use of pull

(demand-driven) and push (event-driven) policies in a single pipeline while also combining the

Table 6.3: Simplification Time for Achieving 10% Resolution

Streaming Simplication of Tetrahedral Meshes
Models (Tets) Original Streaming Quadric Pipeline

Duplicates Duplicates
Torso 1.0M 5.8s 5.8s 5.1s 1.3s

Fighter 1.4M 7.5s 6.7s 5.4s 1.6s
Rbl 3.8M 29.7s 26.1s 22.3s 6.2s

Mito 5.5M 36.4s 28.8s 27.6s 7.1s

75

positive attributes of both centralized and distributed executive strategies. Moreover, we offer a

system that is flexible enough to support a general streaming data structure. As our results in the

previous section show, along with the companion video, our new parallel execution strategy offers

significant benefits over both multicore, serially-executed visualization pipelines and pipelines that

are computed in streaming modes.

Although we have shown significant improvements on a state-of-the-art 8-core machine, this

should only be a lower bound on the performance increase possible. We have designed this scheme

with scalability as a primary consideration. We hope to expand this scheme to utilize all available

processing resources, including GPUs running in distributed mode. In existing dataflow systems,

GPUs are relegated to back-end rendering tasks (based on OpenGL). Despite their proven su-

periority in terms of raw performance, it is not possible to use available GPUs to perform any

of the computations in existing dataflow architectures. In fact, using GPUs to perform dataflow

computations is not trivial since a modern GPU requires on the order of 1000 to 10,000 threads

to achieve peak performance and the design of the existing supported data structures makes this

very difficult. Once the system is expanded to use both CPUs and GPUs on a single machine, the

flexible design of interconnects across modules would allow us to proceed to execute pipelines on

a cluster with minimum efforts. However, a new scheduling strategy must be implemented in order

to take full advantages of both shared and distributed architecture, i.e., minimizing data transfers.

Obviously, exploiting multiple GPUs either in a single machine or in the cluster of machines is not

feasible with current architectures. In the next chapter, we introduce HyperFlow, a parallel dataflow

architecture that can take advantage of both CPUs and GPUs to increase the system performance

through various parallel constructs.

CHAPTER 7

HYPERFLOW: AN EFFICIENT DATAFLOW

ARCHITECTURE FOR SYSTEMS WITH

MULTIPLE CPUS AND GPUS

One limitation of the parallel dataflow architecture proposed in Chapter 6 is that resources

(e.g., threads) are created and destroyed every time a module is executed, thus creating a large

overhead. Also, the proposal is not suitable to a multi-GPU system because modules are allocated

with a fixed context to run, and thus, it is unintuitive and cumbersome for kernels to execute on

a specific device inside a given module implementation. In addition, there is no coherency and

synchronization across threads, with no support for favoring data blocks to stay on the same thread

or GPU device. This is one of the requirements found in such pipelines mentioned in Chapter 5.

Moreover, since the framework is implemented inside VTK, it also bears a major limitation of

VTK (for backward compatibility), that is the over-complication in execution path and pipeline

structure. In this chapter, we propose a light-weight dataflow architecture, that is designed to

support streaming at different levels of granularity, with data structures that can be “packed” and

“unpacked” according to the processing elements that will perform the computation on each stream.

We addressed the short-comings of the architecture proposed in Chapter 6 by introducing the notion

of Virtual Processing Elements (VPE), Task-Oriented Modules (TOM) and a scheduling mechanism

that controls the assignment of tasks to elements.

7.1 HyperFlow Architecture
In this section we describe HyperFlow, our framework for parallel execution of dataflows on

heterogeneous systems. Figure 7.1 shows a high-level description of the HyperFlow architecture.

At the application developer level, our framework provides a C++ template API that dynamically

allows construction and execution of scientific pipelines. By design, HyperFlow separates module

specification (i.e., its input and output ports) from implementation, thus allowing pipelines to be

constructed without prior knowledge of the underlying system’s computational resources. Thus, a

single module may have more than one implementation and depending on the system it runs on, the

77

TOM

TOM

TOM

TOM

TOMTOM

Task-Oriented Module (TOM)

Task Impl.
Resource

Specs

process()

Task Impl.
Resource

Specs

process()

Task Impl.
Resource

Specs

process()

Execution Engine

Flow

User API

Low-Level API

Flow Construction
and Destruction

Runtime System
Con�guration

Flow Execution
Scheduling

Pipeline
Update

VPE
CPU/GPU
Context

VPE
CPU/GPU
Context

Virtual Processing Elements

Load Balancer

Flow Cache

VPE Scheduler

HARDWARE

Figure 7.1: HyperFlow Architecture Overview

most appropriate one(s) will be executed. This is one of the main advantages of HyperFlow over

other dataflow systems.

Three abstraction levels can be identified in the HyperFlow architecture. At the highest level,

pipelines are defined as interconnected Task-Oriented Modules (TOMs), and executed as a set

of token-based data instances called Flows. Immediately below this, the Execution Engine (EE)

manages Flows and prepares them for execution. Finally, at the lowest level, a scheduler distributes

tasks to Virtual Processing Elements (VPEs), which form an abstraction layer over the actual

computing resources available in the system. We detail these components in the sections that follow.

7.1.1 Pipeline Construction Using Task-Oriented Modules
A pipeline in HyperFlow consists of a set of interconnected Task-Oriented Modules (TOMs).

Each TOM defines and holds parameters needed for a specific computational task, such as the

number of input and output ports. To allow the same pipeline to be executed across a wide range of

different computational resources transparently, TOMs do not explicitly store the task implementa-

tion. Instead, they store a list of task implementation objects, which are dynamically scheduled to

78

perform the actual computation on a given set of inputs. This separation of task specification and

implementation is one of the main differences between HyperFlow and similar systems. The re-

quirement for the execution of a TOM in a given system is that it should have a task implementation

that matches the system resources (e.g., CPUs or GPUs).

The HyperFlow API is composed of a set of C++ classes and functions that exposes various

ways to construct scientific pipelines to the developer. The base class to manage all ports and

implementation objects is called TaskOrientedModule. Developers who wish to build their own

modules should instantiate or extend this class. Listing 7.1 demonstrates the basic interface of

TaskOrientedModule and shows a simple example on how to construct a pipeline in HyperFlow.

The SourceImpl, FilterImpl and SinkImpl classes must inherit from another important HyperFlow

class, TaskImplementation, which is used as the base class to specify task implementation objects.

7.1.2 Pipeline Execution Using Flows
Similar to token-based hardware dataflow architectures, HyperFlow executes pipelines by send-

ing instruction tokens to processing units for execution, and sending data tokens back as results. The

fundamental data container is called a flow, which passes between connected TOMs in the pipeline.

Each flow contains a data reference along with its meta information, such as source and destination

modules, to control and track pipeline executions. Flows are ordered for execution using priority

ranks that are based on their time steps or could be defined by users.

Execution is triggered when a flow is sent to a pipeline module. Flows are classified as waiting,

live, or dead depending on their status (waiting for execution, executing, and finished, respectively).

After a module completes execution, new flows might be generated for subsequent modules in the

pipeline to process.

HyperFlow execution is similar to traditional dataflow architectures, with the exception that it

does not restrict pipelines to be directed acyclic graphs (DAGs). While other systems make use of

DAGs to guarantee the module execution order, it comes at a cost of limited pipeline parallelism

and static execution. HyperFlow, on the other hand, supports dynamic execution, without DAG re-

striction for enabling pipelines with feedback communication. In order to determine when a module

is ready to execute, HyperFlow maintains a flow cache that holds incoming flows temporarily until

all of the input data arrive, and then trigger the module execution.

7.1.3 Virtual Processing Elements (VPEs)
One of the main features of HyperFlow is the ability to schedule pipeline modules for execution

across heterogeneous computing resources such as GPUs and CPUs in a transparent way. In order

to manage different computational resources, we introduce the fundamental concept of Virtual

79

1class TaskOrientedModule {

2public:

3 TaskOrientedModule(int numberOfInputPorts ,

4 int numberOfOutputPorts);

5 void addImplementation(TaskImplementation* impl);

6 static void connect(

7 TaskOrientedModule* srcModule , int srcPort ,

8 TaskOrientedModule* dstModule , int dstPort

9);

10 // Additional parameters if subclassed

11 ...

12};

13

14// Construction of the pipeline

15TaskOrientedModule Source(0, 1, "Image Reader")

16Source.addImplementation(new SourceImpl ());

17

18TaskOrientedModule Filter(1, 1, "Gaussian Blur")

19Filter.addImplementation(new FilterImpl ());

20

21TaskOrientedModule Sink(1, 0, "Viewer")

22Sink.addImplementation(new SinkImpl ());

23

24TaskOrientedModule :: connect (&Source ,0,&Filter ,0);

25TaskOrientedModule :: connect (&Filter ,0,&Sink ,0);

Listing 7.1: Task-Oriented Module Interface public interface of the TaskOrientedModule
class, and example showing how to construct a simple pipeline using the HyperFlow architecture.

Processing Elements (VPEs), which are abstract layers that manage execution contexts of specific

computing resources.

VPEs are designed as a service that waits for tasks to be executed when a resource becomes

available. Once this happens, a VPE first verifies if all input data are properly transferred to their

current context, since data may reside in different, mutually inaccessible, memory areas, such as

CPU and GPU memory. In HyperFlow, we assume that each VPE, regardless of their underlying

hardware, has access to main CPU memory. Therefore, a data-transfer path between potentially

very different VPEs is always possible. This does not imply that all memory transfers must be made

through host memory, since users are free to implement their own efficient data transfer routines by

extending the class Data, which is described in more detail in section 7.1.6.

By default, HyperFlow defines two types of VPEs: CPU Threads and CUDA Devices, which

map to individual CPU threads and CUDA-enabled hardware, respectively. The architecture also

naturally supports customizable VPEs, since users can extend the VirtualProcessingElement class,

allowing potentially arbitrary computing resources to be transparently integrated into HyperFlow.

Among others, the two main functions that need to be implemented in VPE subclasses are enterEx-

80

ectution() and leaveExecution(), responsible for configuring and finalizing execution contexts,

respectively. For the case of CPU Threads, for instance, this is where thread affinity is enforced.

7.1.4 Execution Engine
The main control model of HyperFlow is the Execution Engine (EE), which is responsible for

assigning flows for execution and controlling the execution of VPEs. At runtime, the EE initializes

a set of VPEs that are mapped to the corresponding computing resources available. By default,

HyperFlow supports a quick configuration of VPEs using the number of CPUs and GPUs available.

The EE manages all flows passing through the system, as well as the status of all VPEs. A

polling thread is the main control module of the EE, which waits in a nonblocking way for either a

waiting flow to be generated in the TOMs, or a resource VPE to become available. Once a waiting

flow is generated, the EE dispatches it to the VPE scheduler for execution. This polling thread also

instructs the VPE scheduler when a VPE resource becomes available.

Tracking flows during execution allows the EE to maintain a proper execution order with precise

memory management regardless of pipeline topology. In HyperFlow, an individual Flow can be

created using the following API call:

Flow *createFlow(Flow *refFlow=NULL);

If a reference Flow is supplied to this function, the new Flow will share the same identification and

data as the reference. Once a Flow is created, it can be sent to the VPE scheduler using the method

sendFlows(). All Flows sent in the same call to this method are assigned the same identification,

and thus executed with the same priority. The interface for sendFlows() is:

void sendFlows(int n, Flow *flows , RETTYPE ret , bool all);

The value of ret is used to determine when this function should return, and can be either

RET IMMEDIATELY, RET ON DEPLOY or RET ON FREE. RET IMMEDIATELY deter-

mines that the function should just add the Flows to the scheduler queue and return immediately,

while RET ON DEPLOY makes the function return only when Flows have been assigned to VPEs.

Finally, RET ON FREE forces the function to wait until Flows have been completely executed

and their resources freed. The final argument determines if these return conditions should be met

by all Flows or just one of them. This allows developers to write streaming applications exploiting

different levels of parallelism depending on the application. To illustrate this, we show below how

a typical streaming application can be constructed in HyperFlow:

while <data is coming > do {

Flow *flow = engine ->createFlow(data);

engine ->sendFlows(1, &flow , RET_ON_DEPLOY , true);

}

81

Typically, initial modules in a pipeline have no input ports. Nevertheless, they need to be

executed to generate Flows that will trigger the execution of the entire pipeline. This is done in

HyperFlow by sending an empty Flow to the initial modules, which can be done conveniently using

another EE method, sendUpdate().

The EE also provides different types of waiting conditions that allow client-customized exe-

cution. Some examples include waitForAllDone() and waitForAvailable(), which causes the EE

to stop processing until all currently live flows finish or a VPE becomes available. This allows

synchronization points to be added to pipeline execution, a feature valuable for debugging purposes.

7.1.5 VPE Scheduler
The VPE scheduler is responsible for managing and scheduling waiting flows for execution

on available VPEs. Internally, it maintains two priority queues of flows: a waiting queue which

contains flows generated by the EE, and a live queue of flows currently executing. Flows sent from

the EE are initially added to the VPE waiting queue and sorted by their identification number, which

defines the flow execution order. While it is possible to order all flows statically before execution, it

also requires the system to keep the pipeline topology statically as a DAG. HyperFlow only needs to

look at the source and destination module of each flow to determine this order. Moreover, the static

ordering will limit the parallelism in execution, in particular the pipeline parallelism, when there is

more than one data piece streaming through the system.

Flow identification also allows the scheduler to cache input flows for determining when a module

has all of its input ready. Since flows typically arrive at their destination modules asynchronously,

the scheduler can only dispatch input flows when the last one arrives at their destination module.

This cache is stored as a hash map keyed by a pair of destination modules and the flow identification.

Just before the VPE scheduler assigns a flow to a task implementation, it checks whether the

VPE associated with the flow origin can be reused to execute the destination module. This is to

increase memory coherency as well as avoiding expensive memory transfer between CPUs and

GPUs. If the same VPE could not be used, a data transfer is needed. In this case, the scheduler will

first tell the source VPE to convert the flow data to the main CPU host memory. The VPE has to

be responsible for this conversion instead of the VPE scheduler because it is not always possible

for the VPE scheduler to access the internal memory context of each flow due to driver regulation.

After the conversion is completed, newly converted flows will be passed on to the destination VPE

for further processing. The fact that HyperFlow automatically takes care of this conversion process

in a thread-safe manner allows GPU code to not worry about thread migration issues. For instance,

in CUDA, GPU memory that is allocated inside a thread can only be used or freed on that same

thread. Thus, in order to perform computation across two GPUs, users have to normally go into the

82

first GPU thread and copy the data to main memory. Then in the second thread, another copy has

to be performed to transfer the data to the second GPU thread. Since HyperFlow always performs

data transfer in this fashion, this is no longer a problem. Figure 7.2 shows the pseudo-code of the

main procedure of the VPE scheduler.

7.1.6 Memory Transfer
HyperFlow supports execution on different devices (such as CPUs and GPUs, for instance)

interchangeably, which requires the transfer of data objects between devices. For this purpose, we

enforce that all data objects must inherit from the predefined Data class. This class implements

Algorithm: scheduleNext (List VPEs)

W ← priority queue of waiting flows;
R← priority queue of live flows;
C← flow input cache;
foreach f in W do

C =C⊕ f ;
if ∃g ∈ (W ∪R) : C[f .id] 6≡ all inputs of g then

remove f and continue;
end
I← findImplementation(f.sourceVPE, f.dstModule);
if ∃I then

R⇐ (f .sourceVPE, I,C[f .id]);
remove f and continue;

else
if there is another flow to schedule then

continue;
end

end
foreach V in V PEs do

I← findImplementation(V , f .dstModule);
if ∃I then

R⇐ (V, I,C[f .id]);
remove f and continue;

end
end

end
Algorithm: findImplementation (V PE V, TOM M)

if ∃I ∈M.implementations: V can process I then
return I

end

Figure 7.2: Scheduling Logic of HyperFlow Pseudo-code for the main strategy of the VPE
scheduler.

83

reference-counted objects that are required to be copied on write by default. Thus, tasks are

encouraged to read from but not to write to input data. This allows HyperFlow to pipe a single output

data to multiple module inputs simply as references to the same Data object. This approach has two

advantages: one is the obvious smaller memory footprint, since multiple references to the same

object use much less space than copies of this object. Also, the copy-on-write approach implies

that HyperFlow has no read-after-write or write-after-write hazards, typical of many concurrent

programming approaches. However, for a pipeline that passes a large amount of data, data copy can

be very expensive. In this case, users may override the Data class to not follow this approach. This

means that data access policy has to be handled with great care by module implementations to avoid

the above hazards.

A data object in HyperFlow must define two properties: its medium and conversion proce-

dure. Currently there are two types of data mediums in HyperFlow, DM CPU MEMORY and

DM GPU MEMORY, which specify the main memory and GPU device memory, respectively.

The purpose of the conversion procedure, createInstance(DMTYPE medium), is to allow the

engine to request a new data object with a specific type of medium that is equivalent to the original

data. This allows data to be passed between different VPEs in a customizable manner. As was

discussed previously, we require that all Data objects implement at least a conversion to and from

main CPU memory, to ensure that there will always be at least one data-transfer path between any

pair of VPEs. An example demonstrating the implementation of this conversion method is shown

in Listing 7.2.

Similar to data creation, data deletion in HyperFlow must necessarily run on the original context

in which the Data object was created. Therefore, when a Data object reaches zero references, the

EE schedules the VPE to release its data resources, instead of releasing the memory directly.

Similar to data creation, data deletion must run on the original context in which the Data object

was created. Therefore, when a Data object reaches zero references, the EE schedules the VPE to

release its data resources, instead of releasing memory directly.

7.1.7 Classes of Parallelism Supported
HyperFlow supports a combination of the three fundamental types of parallelism present in

typical dataflow architectures. As illustrated in Figure 2.2, given a single input data block, task

parallelism focuses on assigning independent tasks (or modules) of a pipeline to different processes

(or threads). In contrast, data parallelism focuses on running the same tasks concurrently on

different data blocks.

Both types of parallelism are natively supported in HyperFlow using the default scheduling

strategy. As long as there are available VPEs, the VPE scheduler concurrently assigns flows with

84

1class DImageData : public Data {

2public:

3 DImageData(BaseImage *img , DMTYPE medium) {

4 // Store image with the medium type

5 // ...

6 }

7 virtual Data* createInstance(DMTYPE targetMedium) {

8 // Convert from CPU Image to CUDA Image

9 if (this ->medium == DM_CPU_MEMORY &&

10 targetMedium == DM_GPU_MEMORY) {

11 CUDAImage *newImage = new CUDAImage ();

12 cudaMemcpy(newImage , this ->image , cudaMemcpyHostToDevice);

13 return new DImageData(newImage , DM_GPU_MEMORY);

14 }

15 // Convert from CUDA Image to CPU Image

16 else if (this ->medium == DM_GPU_MEMORY &&

17 targetMedium == DM_CPU_MEMORY) {

18 CPUImage *newImage = new CPUImage ();

19 cudaMemcpy(newImage , this ->image , cudaMemcpyDeviceToHost);

20 return new DImageData(newImage , DM_CPU_MEMORY);

21 }

22 // Use default transfer methods for CPU -CPU , etc.

23 else

24 return Data:: createInstance(medium);

25 }

26};

Listing 7.2: Data definition in HyperFlow Example of how an interchangeable data structure
could be defined in HyperFlow.

different ids or without any upstream/downstream relations (independent flows). Since independent

tasks and distinct input data blocks produce independent flows, HyperFlow can interchangeably

coordinate between task and data parallelism. Because flows with smaller ids have higher priority on

the waiting queue, HyperFlow favors task parallelism over data parallelism. This allows HyperFlow

to maintain a small memory footprint with better cache behavior, as an individual data block travels

as far down the pipeline as possible before new data blocks are processed.

The third class of parallelism is pipeline parallelism focusing on partitioning a pipeline into

subnetworks that are capable of operating on different data blocks concurrently. This is similar

to data parallelism but without replicating modules. Since HyperFlow automatically instantiates

modules as part of the data-parallelism paradigm to utilize all computational resources, each module

may have more than one instance at any time, thus not strictly enforcing pipeline parallelism. In

this case, pipeline parallelism is rather promoted to “streaming” data parallelism, where threads

are only required to execute different data-blocks on a subnetwork. However, if a group of task

implementations is not reentrant, i.e., cannot be run with multiple instances, data will be passed

85

through that subnetwork with true pipeline parallelism. Currently, HyperFlow allows users to

specify a task implementation to be not reentrant by using an internal mutex locking mechanism.

An example of a 12-step pipeline running with various types of parallelism is shown in Fig-

ure 7.3 and Figure 7.4. A flow between modules A and B is identified by (A,B), and is colored

green for the first data block and orange for the second. The execution happens as follows: (1)

first (green) flow (/0,A) is generated and goes to the waiting queue; (2) then (orange) flow (/0,A)

is generated and goes to the waiting queue, while green flow moves to the live queue and triggers

execution of module green A in the VPE; (3) orange flow moves to the live queue and triggers orange

A to execute concurrently with green A in the VPE; (4) green A terminates, and generates green,

A

D

B C

W - WAITING LIST

R - RUNNING SET

VPE

A

D

B C

W - WAITING LIST

R - RUNNING SET

VPE

A

(Ø,A)

(Ø,A)

A

D

B C

W - WAITING LIST

R - RUNNING SET

VPE
IDLE

IDLEIDLE

IDLEIDLE

IDLE IDLE

(Ø,A)

A

D

B C

W - WAITING LIST

R - RUNNING SET

VPE
A

(Ø,A)

(Ø,A)

A

D

B C

W - WAITING LIST

R - RUNNING SET

VPE
A

(Ø,A)

(A,C)

A

D

B C

W - WAITING LIST

R - RUNNING SET

VPE
C

(A,C)

(1)

(2)

(3)

(4)

(5)

(6)

(Ø,A)

A

(Ø,A)

(Ø,A)

(Ø,A)

(Ø,A)

IDLE

A

(Ø,A)

(A,C)(A,B)

(A,B) (A,C)

IDLEIDLE

(A,C)(A,B)

B

(A,B)

C

(A,C)

(A,C)(A,B)(B,D)

(A,B) (A,C)

(B,D)

(Ø,A)

(Ø,A)

Figure 7.3: Execution and Parallelism in HyperFlow Processing two data blocks, part one.

86

(A,C)

A

D

B C

W - WAITING LIST CACHE

R - RUNNING SET

VPE
C

(A,C)

C

(A,C)

B

(A,B)

(B,D)

(A,C)(A,B)

A

D

B C

W - WAITING LIST CACHE

R - RUNNING SET

VPE

C

(A,C)

(A,C)

A

D

B C

W - WAITING LIST CACHE

R - RUNNING SET

VPE

IDLE D

(C,D)

(C,D)

A

D

B C

W - WAITING LIST CACHE

R - RUNNING SET

VPE

(B,D)

IDLE

A

D

B C

W - WAITING LIST CACHE

R - RUNNING SET

VPE

IDLE IDLE IDLE

A

D

B C

W - WAITING LIST CACHE

R - RUNNING SET

VPE

(7)

(8)

(9)

(10)

(11)

(12)

IDLE

IDLE

C

(A,C)

B

(A,B)

(B,D)

(A,C)(A,B)

(C,D)

(C,D)

(B,D)

(C,D)

D

(C,D)

(B,D)
(B,D)

IDLE

(B,D)(C,D)

D

(C,D)

(B,D)

(C,D)

IDLE

(C,D)

Figure 7.4: Execution and Parallelism in HyperFlow Processing two data blocks, part two.

(A,B) and (A,C) flows; (5) green (A,B) and (A,C) become live and trigger execution of green B

and C modules; (6) orange A terminates, and generates orange (A,B) and (A,C). green B terminates

and generates green (B,D); (7) orange (A,B) and (A,C) become live and trigger execution of B and

C; green (B,D) moves to the cache since D can only execute when green (C,D is live; (8) green C

terminates and generates green (C,D); (9) orange B terminates and generates orange (B,D); green

(C,D) becomes live, and along with green (B,D) in the cache trigger D to execute; (10) orange

C terminates and generates orange (C,D); orange (B,D) moves to the cache; (11) orange (C,D)

becomes live, and along with orange (B,D) in the cache trigger D to execute; green D terminates;

(12) orange D terminates. Task parallelism and data parallelism are in effect at steps (5,7) and (3,7),

87

respectively. Pipeline parallelism occurs at steps (5,9), and the flow cache is used in (7-11).

7.2 Synthetic Applications
We demonstrate the potential of HyperFlow through a set of synthetic and real applications.

In this section we focus in a set of micro-benchmarks designed to stress test both computational

performance and data bandwidth. Experiments were conducted on two systems: (A) an Intel Quad

Core i7 @ 2.67 GHz (8 HT cores), 6 GB of RAM; 3 GPUs: 2x GeForce GTX 295 with 1 GB each,

1x Tesla C1060 with 4 GB; (B) 16x Intel Xeon with 6 cores @ 2.67 GHz (96 cores), 1 TB of RAM.

7.2.1 Micro-Benchmarks
Micro-benchmarks were designed to evaluate scheduling as well as data handling strategies.

The idea is to implement modules that keep the computational device occupied just like a regular

implementation, without the need of informing actual code. To allow different pipeline configu-

rations, we designed a framework that generates benchmark programs from a description of basic

network topology and module description.

Each module contains a list of implementations, which are parametrized by an expression

describing execution time as a function of the inputs of a module, and input/output ratio for each

execution. This description consists of a python script that allows to procedurally generate arbitrar-

ily large networks. Figure 7.5 illustrates the main benchmark classes used: asymmetric, split-join,

and scan.

The asymmetric benchmark is used to stress unbalanced computation, where data reach the

destination much earlier through one path, causing many flows to be queued up at the final module.

It is desirable that flow scheduling in the longer path is not affected by this bottleneck. This

benchmark is parametrized by the number of modules on the longest path.

The split-join benchmark model pipelines that divide the input into independent sequences of

computation. This benchmark is parametrized by its length and width. This benchmark has the

highest degree of parallelism up until the last module, which merges the pieces back together. A

linear benchmark that models a typical streaming pipeline can be seen as a subset of this benchmark.

The scan benchmark model the typical parallel operation by the same name, using the number of

reduction steps as parameter.

7.2.2 Performance Results
We conducted several experiments using a great variety of micro-benchmarks, and list below the

main results obtained. To evaluate the performance of the scheduler, we extracted execution traces

88

(a) asymmetric (b) split-join (c) scan

Figure 7.5: Topology of Micro-benchmarks

containing start and finish times for each module execution. We investigated these data using two

types of visualization.

The first visualization illustrates the animation of flows passing through the micro-benchmark

pipelines. Figure 7.6 shows the visualization of the scan pipeline running in HyperFlow. An

animated Gantt chart is displayed at the bottom, showing when each VPE is active processing a

flow.

The second visualization is shown in Figure 7.7, where a Gantt chart of the complete execution

is presented, aligned with a plot of the computing resources utilization. All the benchmarks pre-

Figure 7.6: Snapshot of the Micro-benchmark running with eight input flows and eight VPEs,
at 2

3 of the total execution time. The first four inputs are completely processed at this point, as the
first four flows on every module are inactive.

89

(a) asymmetric with length = 10 and 57.4% average utilization.

(b) split-join with width = 6, length = 8 and 78.9% average utilization.

(c) scan with levels = 4 and 83.4% average utilization.

Figure 7.7: Micro-benchmarks Gantt Charts Gantt charts and resource utilization when
processing 8 input flows. Top half shows the Gantt chart for the complete execution of each
benchmark, with one horizontal bar for each VPE. A green state corresponds to the execution of
a module; yellow represents an idle state; red represents the end of execution. Bottom half shows
the resource utilization plot (ratio of active VPEs / VPEs available.)

sented have the same module parameters, and were executed with 8 input flows. The asymmetric

benchmark shows a lower average utilization due to the simplicity of the pipeline, causing a lower

workload.

Figure 7.8 illustrates performance results for micro-benchmarks running with 1000 flows. Sim-

ulations with 10 and 100 flows produced similar graphs.

7.3 Real-Case Applications
In this section we report results in four distinct applications, which allow to evaluate several

aspects of HyperFlow.

90

0

1

2

3

4

5

6

7

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of CPUs
(a) asymmetric benchmarks with length = 2,4,8,16,32,64

0

1

2

3

4

5

6

7

8

9

2,
2

2,
4

2,
8

4,
2

4,
4

4,
8

8,
2

8,
4

8,
8

2,
2

2,
4

2,
8

4,
2

4,
4

4,
8

8,
2

8,
4

8,
8

2,
2

2,
4

2,
8

4,
2

4,
4

4,
8

8,
2

8,
4

8,
8

2,
2

2,
4

2,
8

4,
2

4,
4

4,
8

8,
2

8,
4

8,
8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of CPUs and length
(b) split-join benchmarks with width, length = 2,4,8

Figure 7.8: Micro-benchmark Performance for HyperFlow Micro-benchmark simulation
with 1, 2, 4 and 8 threads (green, red, blue and orange bars, respectively) and 1000 flows.

91

7.3.1 High Throughput Image Processing
The first application to illustrate HyperFlow is a simple edge detection framework capable of

dealing with multiple images concurrently (see Figure 7.9). The pipeline starts with an image

source, which loads several images on the fly and stream them to a Task Oriented Module that

performs a Gaussian blur over the image. The VPE scheduler creates multiple instances of this

TOM to handle incoming images, both on the CPU and GPU.

The next step in this pipeline consists of a blending operation that returns the difference between

the original image and the blurred version. This module is also a TOM with implementations both

on the CPU and the GPU. The combined image is streamed to a threshold operator that computes

the image accumulated histogram and discards pixels whose accumulated frequency fall outside a

given range (we set this range to be between 95% and 100% of the total accumulated histogram

value). Finally, the pipeline sends images into an inversion TOM. The main form of parallelism in

this pipeline is the streaming data-parallelism.

Figure 7.10a and Listing 7.3 illustrates how simple it is to integrate an existing code into

HyperFlow. Listing 7.3 shows the function used for image inversion, as well as a small class

that wraps around this function to provide a specific implementation to the image inversion TOM.

Figure 7.10b and Figure 7.10c reports the execution times for different system configurations.

7.3.2 Multigrid for Gradient-Domain Operations
Gradient-based methods, though computationally expensive, have become a fundamental piece

of any advanced image editing application. Given a guiding gradient field constructed from one

or multiple source images, these methods attempt to find a smooth image that is closest in a least

squares sense to a guiding gradient. This typically requires the solution to a 2D Poisson problem and

often multigrid methods are used. As a first step in a multigrid system, the mesh is coarsened. The

Poisson equation can be solved in a coarse-to-fine manner. One full iteration, from fine to coarse

and back, is typically called a V-cycle. Kazhdan and Hoppe [49] have implemented this V-cycle

in a streaming fashion for large panoramas. The source code for this system is available online

and very well optimized for a single core machine without any trivial parallelism due to strict data

dependencies. Relaxation steps, which comprise almost half of the total runtime, must be performed

in a specific order in both restriction phase and prolongation phase.

We demonstrate a similar pipeline based on HyperFlow with a simple modification in the

multigrid solver that allows relaxation steps to be updated in parallel automatically at runtime.

Figure 7.11 shows the modified multigrid solver in our system. Instead of performing temporally

blocked relaxation in a single streaming operation (as shown on the right), the Gauss-Seidel itera-

tions are separated and chained together (as shown on the left). Hence, pipeline parallelism can be

92

(a) Salt Lake City Panorama

(b) Vancouver Overlook

Figure 7.9: Edge Detection Result Top: input composed of 624 images, each approximately
6MP for (a) and 3MP for (b) in resolution. Bottom: composition of input images after edge detection
pipeline.

93

(a) Image-based edge detection pipeline

0

2

4

6

8

10

12

2,0 2,1 2,2 2,3 4,0 4,1 4,2 4,3 8,0 8,1 8,2 8,3

Sp
ee

du
p

Number of CPUs and GPUs

0

5

10

15

20

25

2 4 8 16 32 64

Sp
ee

du
p

Number of CPUs

(b) System A results

0

2

4

6

8

10

12

2,0 2,1 2,2 2,3 4,0 4,1 4,2 4,3 8,0 8,1 8,2 8,3

Sp
ee

du
p

Number of CPUs and GPUs

0

5

10

15

20

25

2 4 8 16 32 64

Sp
ee

du
p

Number of CPUs
(c) System B results

Figure 7.10: Edge Detection Pipeline Edge detection pipeline on approximately 4GB of image
data. Speedup compared to a system with 1 CPU and 0 GPUs.

94

1void invert_cpu(const Image &in , Image &out)

2{

3 int width = in.width();

4 int height = in.height ();

5 out = Image(in);

6 for (int i = 0; i < width; ++i)

7 for (int j = 0; j < height; ++j)

8 out.data(i,j) = ~in.data(i,j);

9}

10// ...

11class ICPUImageInvert : public TaskImplementation {

12public:

13 // ...

14 virtual int process(ExecutionContext *ctx ,

15 TaskData *input , TaskData *output)

16 {

17 Flow *inFlow = input ->flows [0];

18 DImageData *inData = inFlow ->data;

19 DImageData *outData = new DImageData ();

20 invert_cpu(inData ->asImage (), outData ->asImage ());

21

22 Flow *flow=ctx ->createFlowForOutputPort (0, inFlow);

23 flow ->data=outData;

24 output ->addFlow(flow);

25 return 0;

26 }

27 // ...

28};

Listing 7.3: Wrapping functions into HyperFlow Image inversion function and class wrapper
to transform the function into an implementation that will be added to a TOM.

95

Gauss-Seidel
Iteration 2

row

Gauss-Seidel
Iteration 1

row

Gauss-Seidel
Iteration k

TIME

STREA
M

Figure 7.11: The Modified Multigrid Solver

triggered automatically by HyperFlow as rows of images are streamed through this solver. However,

since each iteration of the update also has its own streaming buffer, rows needs to be copied among

iterations. This results in a higher memory footprint and bandwidth. Thus, there is a trade-off

between concurrency and memory usage in this pipeline.

Table 7.1 shows performance timings for the modified pipeline in HyperFlow. Though the

original implementation was very well optimized, it is shown that the performance can still be

improved by a simple transformation into HyperFlow. However, the amount of parallelism here

depends directly on the number of iterations involved. Due to the small number of iterations needed

by the application, i.e., 5, and the additional data copies between iterations, HyperFlow was only

able to achieve the maximum of 1.4x speedup.

7.3.3 Map/Reduce Word Count
We use the word count of MapReduce example to demonstrate the flexibility of HyperFlow.

Though simple, this example requires a careful design of the dataflow architecture to run efficiently.

As shown in Figure 7.12a, the pipeline starts by reading in a document from disk, which is then

Table 7.1: Performance Results for Streaming Multigrid Gradient-Domain Image Editing

Image Original HyperFlow Speedup
PNC3 39.78s 31.68s 1.26x

Edinburgh 73.73s 55.06s 1.34x
Red Rock 126.41s 90.06s 1.40x

96

Read Docs

OUTPUT

Tokenize
MAP MAP

Count Word

Combine

Combine

Sort

Partition

Sum

Write

INPUT

MAP

SHUFFLE

REDUCE

OUTPUT

SHUFFLE

MAP

REDUCE REDUCEREDUCE

INPUT

(a) MR pipeline

Number of CPUs

Ti
m

e
(s

)

(b) Performance

Figure 7.12: Map-Reduce Example in HyperFlow (a) HyperFlow pipeline definition (left) and
how it should be executed with high efficiency, i.e., modules are desired to run in parallel while the
rest have to be sequential since it uses global shared resources. (b) Performance Results. Mapping
is the most time consuming phase since it has to perform both word parser and accumulate word
counts for each text block. Fortunately, it can be parallelized with very little effort in HyperFlow.

broken into as many chunks as the number of available mappers. Mappers execute independently

and ideally in parallel. Each of them consists of a word tokenizer that breaks its input into words,

counts them and outputs a list of tuples with the format (word, count). In the shuffling phase, all

mapper outputs are combined (through concatenation) into a single list of (word, count). Following

this step, we sort the list by words, and subsequently group sort lists and partition then to all

reducers. Each reducer sums up all word counts and sends the final result to the writer, which

writes them sequentially to the output file.

Two execution scenarios need to be addressed: (1) an upstream module, which executes se-

quentially, but generates output for concurrent execution downstream and (2) a downstream module

which can only be executed sequentially and has to collect flows from upstream modules executed

in parallel. Scenario (1) occurs when data are moved from the reader to mappers, as well as from

the shuffling phase to reducers. This is necessary to enable data parallelism in the Map and Reduce

phases. Scenario (2) happens when the execution comes back from the Map and Reduce to the

Shuffling and Writer.

Fortunately, HyperFlow supports both scenarios with great simplicity. For scenario (1), in order

to create a data parallelism from a module to another where there is only one port connection, the

upstream can generate multiple flows with unique identifications. When the scheduler processes

these flows, it separates them as distinct executions and triggers task implementations separately

97

for each one of them. For scenario (2), it limits the task implementations of a module to be run in

sequential (which can be done through a lock of the TOM), accumulate all data and only execute if

all the above flows have arrived. Listing 7.4 shows the implementations of both scenarios through

the Reader and Combine modules.

The results for executing the Map-Reduce pipeline in HyperFlow are reported in Table 7.2 and

Figure 7.12. All module implementations are only done in CPU but one can extend Map and Reduce

functions to use CUDA devices as needed. Input to the algorithm is a collection of 500 e-books

consisting of over 83 millions words that are publicly available through the Gutenberg Project [65].

1class IReader: public TaskImplementation {

2 virtual int process(ExecutionContext *ctx ,

3 TaskData *input , TaskData *output) {

4 Data *data[N];

5 ... // Read input file and place them into data[]

6 for (int i=0; i<N; i++) {

7 // We are creating flows with unique ids

8 Flow *flow = ctx ->createFlowForOutputPort (0);

9 flow ->data = data[i];

10 output ->addFlow(flow);

11 }

12 return 0;

13 }

14};

15class MCombine: public TaskOrientedModule {

16public:

17 int numberOfMappers;

18 SafeCounter doneCount;

19 Mutex mutex;

20 ListOfData data;

21};

22class ICombine: public TaskImplementation {

23 virtual int process(ExecutionContext *ctx ,

24 TaskData *input , TaskData *output) {

25 MCombiner *M = (MCombiner *)ctx ->module;

26 // Locking resource to accumulate

27 M->mutex.lock();

28 M->data.push_back(input ->flows[0]->data);

29 M->mutex.unlock ();

30 if (M->doneCounter ->increase () < M->numberOfMappers)

31 return -1;

32 ... // Process data in module ->data

33 return 0;

34 }

35};

Listing 7.4: Mixing Sequential and Parallel Execution Reader module enable data-parallel
execution to downstream modules, e.g., Mappers, while Combine module collect upstream parallel
execution to begin a sequential process.

98

Table 7.2: Timing Results for the Word Count Pipeline 83-Million Words

#CPU Cores Read Map Shuffle Reduce Write
1 0.23 37.95 3.35 0.36 0.16
2 0.23 19.33 3.39 0.23 0.16
4 0.23 9.82 3.33 0.22 0.17
8 0.23 5.27 3.36 0.22 0.17

7.3.4 Broad-Phase Collision Detection
To demonstrate how HyperFlow can be easily integrated into existing software we modified

the Open Dynamics Engine (ODE), an open source physics engine, to parallelize the broad-phase

collision detection phase.

Collision detection is often performed in two steps: broad-phase and then narrow-phase. The

broad-phase step corresponds to querying a spatial data structure (called a “space” in ODE) for pairs

of objects (represented only by their bounding geometries) that are potentially intersecting. Only

those pairs go through narrow-phase collision tests, which compute the exact intersections that are

later used for contact constraints.

Unless some application-specific optimizations are employed, the broad-phase collision detec-

tion step tends to take up a significant part of the physics simulation time. We created a simple

parallel implementation using a regular grid subdivision. Each grid cell contains one space to store

objects completely inside it, and a “border space” to contain objects that are partially inside the cell.

As the objects move around they are removed from one space and inserted into another. An object

can only exist in one space at time, a condition easily satisfiable when completely inside a grid cell.

Objects on the cell’s border are present in multiple border spaces, so we choose only one of them

to hold the object. We base this choice on an arbitrary total ordering of the border spaces (such as

their position in memory.)

The collision detection algorithm is as follows: for each grid cell, in parallel, we check for

(a) collisions completely inside the cell, (b) collisions completely inside the cell’s border, and (c)

collisions between each object in the border and cells (and their borders) that overlap with the given

object. Each of those collision tests are independent, but we parallelized only the top-level for to

keep the granularity of the task coarse, minimizing the synchronization required to merge all the

collision results.

This algorithm was implemented using both HyperFlow and OpenMP; the later offers less guar-

antees than HyperFlow, thus having smaller coordination and synchronization overhead, serving

as an optimal baseline for comparison. We tested both implementations by randomly placing 105

objects on a 20× 20× 2 grid (Figure 7.13). The comparison speedup between HyperFlow and

99

Figure 7.13: Collision Detection Scene 105 objects are contained in a 20×20×2 regular grid
of spaces. Each object is colored differently according to the space where it is inserted.

OpenMP is given in Figure 7.14, which shows that the performance becomes similar as the number

of CPUs increases. Figure 7.15 shows a section of the Gantt charts of both implementations, zoomed

into two time steps of the simulation. The overhead incurred in the HyperFlow scheduling is visible,

but the performance still similar to OpenMP.

7.3.5 Isocontouring Structured Grids
We conclude our evaluation by considering a less load balanced problem: data-parallel isosur-

face computation. As input we use the RMI data set from LLNL [44]: a 2,048× 2,048× 1,920

regular grid of single-byte values totaling 8 GB of data. This data set was partitioned into blocks

of size 128× 128× 64 voxels, with each block mapped to a separate flow. Because some blocks

contain no isosurface while others may be quite dense, a static assignment of blocks to processors

can introduce considerable load imbalance, something that HyperFlow avoids.

The contouring computation cannot process each block independently, because contours must

be extracted also between voxels residing in adjacent blocks. Figure 7.16 illustrates (using a 2D

analogy) the data communication needed between adjacent blocks, here shown in blue. The red

and green thin blocks correspond to shared block “edges”; yellow blocks are shared corners. Note

in particular that this duplication of block boundary voxels adds a considerable number of thin

layers as additional flows processed by HyperFlow. These flows and data dependencies are further

100

0

1

2

3

4

1 2 4 8

Sp
ee

du
p

Number of CPUs

HyperFlow OpenMP

Figure 7.14: OpenMP vs. HyperFlow Comparison for collision detection.

(a) parallel collision detection in OpenMP with 8 threads.

(b) parallel collision detection in HyperFlow with 8 VPEs

Figure 7.15: Gantt Charts for the Parallel Broad-phase Collision Detection The green
states correspond to the execution of the broad-phase algorithm, blue is the constraint solving and
integration phase, and yellow represents idle or unrelated computations.

illustrated by the pipeline in Figure 7.17.

We compare the performance of HyperFlow with Isenburg et al.’s [44] implementation of their

parallel streaming isocontouring algorithm—here referred to as “Ghost”—which pads each block

with a surrounding layer of ghost zones (voxels from adjacent blocks) corresponding to the red,

green, and yellow blocks in Figure 7.16. The Ghost algorithm was designed for distributed com-

putation, and therefore uses MPI for (in-memory) interprocess communication. Table 7.3 and

101

Figure 7.16: Data Communication Diagram in HyperFlow for the Isocontouring Pipeline

102

Block (0,0)

Row (0,0)

Cross
(0,0)

(Dx × Dy) modules

(Dx-1) × Dy modules

(Dx-1) × (Dy-1) modules

Dx × (Dy-1) modules

L R

Block (0,1)
D RL

Block (1,0)
D RU

Block (1,1)
D RL U

R

Row (0,1)
L R

Column
(0,0)

Column
(0,1)

Figure 7.17: Pipeline Structure in HyperFlow for the Isocontouring Pipeline

103

Table 7.3: Large Iso-Surface Extraction Using Ghost [44] and HyperFlow

Procs HyperFlow
Process Time Total Time Total Time

1 177.88s 179.51s 157.71s
2 90.66s 92.24s 78.26s
4 45.61s 47.19s 39.23s
8 23.12s 24.77s 19.88s
16 11.64s 13.27s 10.06s
32 5.89s 7.50s 4.93s
64 3.07s 4.85s 2.79s
128 1.70s 5.83s 3.23s
256 3.37s 8.12s 4.99s
22 7.63s
44 3.73s
66 2.76s
88 2.45s
132 3.23s
154 3.45s
48 4.46s 6.23s
96 2.41s 5.67s
160 1.90s 6.29s

GHOST

Figure 7.18 summarize the execution time for both methods. As is evident, both methods achieve

near-linear speedup up to 64 processors, with HyperFlow consistently outperforming Ghost. We

conjecture that this result is due in part to better load balancing in HyperFlow, which contrary to

Ghost performs a dynamic rather than static allocation of tasks, as well as MPI overhead in Ghost.

7.3.6 Saturation of Memory Bandwidth
As Table 7.3 shows that the performance of the implementations using Ghost [44] and Hyper-

Flow did not scale for more than 64 processors (or 88 in HyperFlow), we believe that it was caused

by the saturation of memory bandwidth of the system. In order to verify our explanation, we have

performed three additional experiments.

First, we take computation out of the implementation in HyperFlow, e.g., no triangles were

generated, only traversing through the dataset. This resulted in a similar speedup curve like the

full implementation with HyperFlow. Thus, we can eliminate load balancing as a cause of the

unscalability here.

Second, we take memory accesses out of the implementation in HyperFlow, e.g., no traversal of

the grid, though there were still noop computations. This is shown as No Mem HF in Figure 7.18.

104

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

sp
ee

du
p

processors

Linear Speedup No Mem HF HyperFlow [ILC10]

Figure 7.18: HyperFlow vs. Ghost [44] for parallel computation of an isosurface. The speedup
of both methods is measured relative to the wall clock time of HyperFlow running on a single
processor. No Mem HF refers to the same HyperFlow implementation without memory accesses.

As expected, the implementation was able to achieve almost a linear speedup up to 256 cores. This

indicates that memory accesses were the bottleneck in this application.

Finally, we measure the memory bandwidth of our application to see if it matches the system

maximum bandwidth. The sustained bandwidth of our system was measured using Stream [63]

and reaching about 500GB/s at its peak. For our application, the memory bandwidth was measured

by counting the number of memory transactions (64-bit each) during its execution and dividing

the total throughput by the execution time. The measurement was done through PAPI [67]. As

expected, the result shows that our implementation in HyperFlow reaches almost the system peak

bandwidth using 64 to 90 cores.

We conclude that, in this application, HyperFlow has achieved a linear speedup up, only be-

ing limited by the saturation of the memory bandwidth due to the memory access pattern of the

application.

105

7.4 Discussion
Pipeline developers often spend a considerable amount of time tweaking workflows to make

sure they optimally utilize available resources, which requires manually writing modules to run

either on the CPU or the GPU. This approach has a serious portability drawback, since the same

pipeline, when executed on a different system, might not run with the same efficiency, or even not

run at all (if the target machine lacks the necessary computational resources). We addressed this

problem with the concept of a TOM, in which tasks may have more than one implementation. Each

implementation specifies its required computational resources, which allowed EE to distribute the

pipeline computation to maximize efficiency and minimize resource idle time.

The HyperFlow architecture is based on a set of abstractions designed to enforce a clean sep-

aration between module specification and implementation. This allows developers to construct

efficient, high-level pipelines without prior knowledge of the computing resources available at

execution time. For example, in HyperFlow the exact same pipeline can be executed on machines

with different numbers of CPU cores and GPU devices, with the VPE scheduler automatically

distributing computation to minimize resource idle time. This abstraction is straightforward in

HyperFlow by building/compiling individual tasks into Callable Objects, such as CPU function

pointers and GPU kernels. The VPE scheduler places these into appropriate execution contexts,

such as CPU masks or individual GPU devices. It is important to observe that to support Pipeline

Parallelism, Callable Objects need to be reentrant. In our current implementation, Callable Objects

are simply compiled as function pointers. To allow HyperFlow to run across a distributed system,

these Objects need to be compiled into stand-alone executable files that can be sent over the network,

in such a way that execution can be performed on each cluster node.

Although the examples discussed in this chapter include VPEs defined only for CPU threads

and GPU devices, HyperFlow is designed to allow arbitrary VPEs, with no inherent limitation on

the kind of computing resource that can be integrated into the architecture. Therefore, it is possible

to define VPEs that exploit many other computational resources, such as Web Services or Cloud

Computing servers, among others.

CHAPTER 8

FUTURE WORKS

In this chapter, we discuss potential extensions to HyperFlow to support distributed environment

as future work. We also would like to experiment our system with higher computation complexity.

8.1 Remote Computing Resources and VPE
The current implementation of HyperFlow proposed in Chapter 7 only supports two types of

computing resources: local threads and GPU devices. In order to run distributedly, new resources

have to be defined to map to remote processing elements. A possible solution is to take current

thread and GPU device resources and make them pointing to remote threads and remote GPU

devices. This will create a uniformity in resource specification. Both local and remote processing

elements would be specified with the same interface, if from a pipeline developer’s perspective.

However, customized jobs may require a task to run on a specific node and such configuration

would not be specified in this manner. Moreover, allowing local nodes to specify remote threads

and GPU devices will also complicate the scheduler’s logic. A more sophisticated solution would

be adding a new VPE, a “node” VPE, to HyperFlow that represents remote machines. An advantage

of this approach is that each remote VPE is allowed to have its own scheduling strategy. In fact, this

is necessary for HyperFlow to efficiently utilize computing power on heterogeneous platforms. For

example, in a cluster, a node with Non-Uniform Memory Access (NUMA) may want to schedule

executions differently than a node without NUMA to gain the optimal performance. Another

advantage of having a “node” VPE is that the centralized scheduler does not have to deal with

remote resources, instead, it only needs to handshake to remote schedulers, thus simplifying much

of the scheduler’s logic.

Figure 8.1 shows a potential implementation of the Node VPE that can handle remote computing

resources as mentioned above. At runtime, when being launched from a client, this VPE will start

an instance of HyperFlow on a remote node. The remote HyperFlow will instantiate a set of VPEs

mapping to remote computing resources, and a slave node VPE, that will listen and receive tasks

from the local node VPE. Communications across machines can be very costly. Thus, it is very

undesirable for remote schedulers to report to the local scheduler each time a flow is generated for

107

Remote Host

HyperFlow HyperFlow

VPE
CPU/GPU

VPE
CPU/GPU

VPE
CPU/GPU

VPE
CPU/GPU

Startup
Client

Socket
Flows/Data

VPE
Node-Master

VPE
Node-Slave

Figure 8.1: Node VPE Computing resources on remote machines are utilized with tasks assigned
from Node VPE of local nodes.

a new scheduling. Therefore, a feasible scheduling strategy is that a node only sends its flow back

to the centralized scheduler when it cannot process a flow with its available computing resources.

However, this approach may create a problem of poor load-balancing across node. Thus, a reload-

balancing periodically may need to be implemented.

8.2 Distributed Scheduling
Since each node schedules execution independently from the others and a module may receive

data from different machines asynchronously, each module has to check whether all of its inputs

have arrived (from other machines) before execution. This can be done distributedly by extending

the flow cache of HyperFlow to check for machine ids in addition to the flow id. Unfortunately, this

flow cache has to live globally in the centralized scheduler though data transfers across machines

only need to be performed to the processing node once when all inputs are available. Figure 8.2

illustrates how the flow cache would help with a greedy scheduling strategy: (a) is a pipeline in

the middle of its execution with two flows f1 and f2 generated from the Fetch module of a local

node, assuming that f1 and f2 that have been scheduled to flowed into Filter A and Filter B on

two different machines, A and B, respectively. In (b), Filter A is done first and its result flows into

the Viewer module. However, since not all of its inputs are ready, the flow get saved to the flow

cache. It should be noted that the data still live on machine A at this point. In (c), both flows are

done, and the flow cache contains both results from Filter A and FilterB. (d) indicates that one of

the machine, e.g., B, are scheduled to run the Viewer module, data from machine A will now be

transferred to B for execution.

108

Filter A Filter B

Fetch

Viewer

f1 f2

Filter A Filter B

Fetch

Viewer

Filter A Filter B

Fetch

Viewer

Filter A Filter B

Fetch

Viewer

(a) (b) (c) (d)

Figure 8.2: Distributed Scheduling Without Persistent Module

8.3 Persistent Module
Split and merge of data are very common in large scale visualization pipelines, such as the

MapReduce framework described in Chapter 5. Though data splitting can be achieved through the

automatic construct of data-parallel in HyperFlow, there is no similar construct for merging data.

For shared memory architecture, a task implementation may use mutex and lock to simulate this

effect. However, this does not apply to distributed environment. In order to address this, we propose

to add a notion of Persistent Module to HyperFlow. For a persistent TOM, only a single instance of

its task implementation will be executed across all available VPEs in HyperFlow, including remote

ones. Figure 8.3 illustrates how persistent modules could be used to construct split and merge in

a MapReduce pipeline. Splitting is achieved with automatic data parallelism in Figure 8.3a, where

output flows from Read will be processed in parallel based on the available resource. The persistent

module Shuffle would catch all map’s output and run them sequentially on a single VPE context.

Figure 8.3b shows an explicit parallelism where all data splitting and merging are specified directly

on the pipeline. The main difference between the two pipelines is that data merging with persistent

modules are triggered many times sequentially while the same thing is achieved as a single execution

without persistent module.

Figure 8.4 shows how a persistent module would work in HyperFlow using a greedy distributed

scheduling. (a) shows a simple pipeline with a persistent module and two input flows and (b) shows

the underneath expansion of the pipeline. Both flows are run through the Fetch modules on two

different machines. In (c), they now proceed to the two Filter. Given that f1 is done before f2,

Merger will be called with f1 first as shown in (d). Then, the same instance of Merger will be

called again with f2 only when f1 has been processed.

109

Map

Read

Shu�e

Reduce

Output

MapMap Map

Read

Shu�e

ReduceReduce Reduce

Output

(a) (b)

Figure 8.3: Implicit and Explicit Data Parallelism Two types of data-parallelism that can be
supported in HyperFlow: (a) implicit and (b) explicit.

Filter

Fetch

Merge

(a) (b) (c) (d) (e)

f1 f2

Filter

Fetch

Filter

Fetch
f1 f2

Merge

Filter

Fetch

Filter

Fetch

f1 f2

Merge

Filter

Fetch

Filter

Fetch

Merge
f1

Filter

Fetch

Filter

Fetch

Merge
f2

Figure 8.4: Distributed Scheduling with Persistent Module The stars specify persistent
modules.

CHAPTER 9

CONCLUSIONS

This dissertation has presented a number of experiments in large-scale visualization, through

which to determine necessary requirements of a parallel dataflow architecture suited for those

applications. It also proposes a design that makes full use of data streaming and efficiently runs

on heterogeneous platforms.

In Chapter 3, we have presented a streaming technique for simplifying tetrahedral meshes of

arbitrary size. We describe several methods for laying out a tetrahedral mesh on disk in a coherent,

I/O-efficient format. We also show an analysis of these layouts and the effects they have on the final

simplified mesh. We provide a technique for simplifying small portions of the mesh in memory

while obtaining a smooth simplification over the entire mesh. The simplification occurs in one pass,

preserves mesh topology and scalar information, requires little memory, and runs quickly. We also

provide optimizations to traditional simplification data structures that improve speed and efficiency.

We present a linear solver that improves stability and speed of quadric-based simplification. Finally,

we provide stability and error analysis of our algorithm with results for specific examples that show

the time and memory required for processing.

Chapter 4 has introduced the iRun system, which is capable of volume rendering tens of millions

of tetrahedra at interactive rates on a commodity PC. The preprocessing required by our algorithm

occurs completely out-of-core and is light, fully automatic, and does not result in a large increase in

data size. This enables our system to start up and render the geometry immediately. We have shown

how hierarchical level-of-detail, parallel prefetching, and hardware-assisted volume rendering can

be combined to maintain interactivity in an environment where occlusion culling is not suitable.

Finally, we have shown how out-of-core volume rendering can be applied in a distributed manner to

improve mesh quality and increase display size.

In Chapter 5, we take a first step in evaluating the suitability of the MapReduce framework to

implement large-scale visualization techniques. Specifically, we implement and evaluate a rep-

resentative suite of visualization tasks (isosurface extraction, mesh simplification, and polygon

rasterization) as MapReduce programs, and report quantitative performance results applying these

algorithms to realistic datasets. Our results indicate that the parallel scalability, ease of use, ease of

111

access to computing resources, and fault-tolerance of MapReduce offer a promising foundation for

a combined data manipulation and data visualization system deployed in a public cloud or a local

commodity cluster.

From the experiences found in Chapter 3, 4, and 5, we propose new techniques for exploiting

multicore architectures in the context of visualization dataflow systems in Chapter 6. We offer a

robust, flexible and lightweight unified data-flow control scheme for visualization pipelines. This

unified scheme allows the use of pull (demand-driven) and push (event-driven) policies in a single

pipeline while also combining the positive attributes of both centralized and distributed executive

strategies. Moreover, we offer a system that is flexible enough to support a general streaming data

structure. Our new parallel execution strategy offers significant benefits over a both multicore,

serially-executed visualization pipelines and pipelines that are computed in streaming modes.

Next, in Chapter 7, we have presented HyperFlow, an improved architecture that allows pipelines

to take full advantage of modern, heterogeneous computational systems. HyperFlow is comprised of

several components carefully designed to create an efficient abstraction layer that allows developers

to design pipelines without knowing in which types of processors their modules get executed. We

introduced the concept of a Task Oriented Module, which elegantly encapsulates the difference

between task specification and implementation. Therefore, pipeline modules can have multiple

heterogeneous implementations, individually designed to take advantage of a particular type of pro-

cessor. HyperFlow automatically instantiates TOMs to minimize processor idle time and maximize

execution efficiency. Pipeline execution relies on a token-based mechanism in which Flows are sent

to processing units. We also introduced the notion of a Virtual Processing Element, an abstraction

that allows processing elements to be offered without explicitly knowing if they will be actually

implemented as a CPU thread or a GPU device.

In Chapter 8, we discuss potential extensions to HyperFlow to support cluster systems with

heterogeneous configurations. We have introduced the notion of Node VPE and persistent modules

to support distributed execution with different degree of parallelism.

As future work, we plan to implement and validate ideas in Chapter 8 to HyperFlow and test

with applications that have high computational complexity.

REFERENCES

[1] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. Law, and M. Papka. Large-scale data visual-
ization using parallel data streaming. IEEE Computer Graphics & Applications, 21(4):34–41,
July/August 2001.

[2] J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka. A parallel approach for efficiently
visualizing extremely large, time-varying datasets. Technical Report LAUR-00-1620, Los
Alamos National Laboratory, 2000.

[3] M. Aldinucci, M. Torquati, and M. Meneghin. Fastflow: Efficient parallel streaming applica-
tions on multi-core. CoRR, abs/0909.1187, 2009.

[4] J. Allard and B. Raffin. A shader-based parallel rendering framework. In IEEE Visualization
’05, pages 17–25, 2005.

[5] AMD. Stream sdk. http://developer.amd.com/gpu/atistreamsdk/.

[6] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation:
Practice and Experience, Euro-Par 2009 Best Papers Issue, 2010. Accepted for publication,
to appear.

[7] Amazon web services - elastic mapreduce. //aws.amazon.com/elasticmapreduce/.

[8] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. T. Vo. VisTrails:
Enabling interactive, multiple-view visualizations. In IEEE Visualization ’05, pages 135–142,
2005.

[9] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thompson. Time dependent pro-
cessing in a parallel pipeline architecture. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1376–1383, November/December 2007.

[10] F. Bodin and S. Bihan. Heterogeneous multicore parallel programming for graphics process-
ing units. Sci. Program., 17(4):325–336, 2009.

[11] C. P. Botha and F. H. Post. Hybrid scheduling in the devide dataflow visualisation environ-
ment. In SimVis, pages 309–322, 2008.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.
Brook for GPUs: Stream computing on graphics hardware. ACM Transactions on Graphics,
23(3):777–786, 2004.

[13] S. P. Callahan, L. Bavoil, V. Pascucci, and C. T. Silva. Progressive volume rendering of large
unstructured grids. IEEE Transactions on Visualization and Computer Graphics, 12(5):1307–
1314, 2006.

113

[14] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. Interactive rendering of large
unstructured grids using dynamic level-of-detail. In IEEE Visualization ’05, pages 199–206,
2005.

[15] S. P. Callahan, M. Ikits, J. L.D. Comba, and C. T. Silva. Hardware-assisted visibility
sorting for unstructured volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 11(3):285–295, 2005.

[16] E. Camahort, 1999. The Contour Library http://www.ticam.utexas.edu/ccv/software/libcontour/.

[17] CAPS. Hmpp workbench. http://www.caps-entreprise.com/hmpp.html.

[18] A. Chalmers, T. Davis, and E. Reinhard. Practical Parallel Rendering. AK Peters Ltd, July
2002.

[19] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. M., B. J Whitlock, and N. Max. A
contract-based system for large data visualization. In IEEE Visualization ’05, pages 190–198,
2005.

[20] P. Chopra and J. Meyer. TetFusion: An algorithm for rapid tetrahedral mesh simplification. In
IEEE Visualization ’02, pages 133–140, 2002.

[21] P. Cignoni, D. Constanza, C. Montani, C. Rocchini, and R. Scopigno. Simplification of
tetrahedral meshes with accurate error evaluation. In IEEE Visualization ’00, pages 85–92,
2000.

[22] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External memory management and
simplification of huge meshes. IEEE Transactions on Visualization and Computer Graphics,
9(4):525–537, 2003.

[23] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified surfaces.
Computer Graphics Forum, 17(2):167–174, 1998.

[24] J. H. Clark. Hierarchical geometric models for visible surface algorithms. Communications
of the ACM, 19(10):547–554, October 1976.

[25] Nsf cluster exploratory (nsf08560). //www.nsf.gov/pubs/2008/nsf08560/nsf08560.

htm.

[26] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility for walk-
through applications. IEEE Transactions on Visualization and Computer Graphics, 9(1):3–15,
2003.

[27] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Visibility-based prefetching for interactive
out-of-core rendering. In IEEE Symp. on Parallel and Large-Data Visualization and Graphics,
pages 1–8, 2003.

[28] W. T. Corrêa, J. T. Klosowski, and Cláudio T. Silva. iWalk: Interactive out-of-core rendering
of large models. Technical Report TR-653-02, Princeton University, 2002.

[29] M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-core visualiza-
tion. In IEEE Visualization ’97, pages 235–244, 1997.

[30] B. Cutler, J. Dorsey, and L. McMillan. Simplification and improvement of tetrahedral models
for simulation. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, pages 93–102, 2004.

114

[31] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Symposium on Operating Systems Design and Implementation, 2004.

[32] R. Dolbeau, S. Bihan, and F. Bodin. Hmpp: A hybrid multi-core parallel programming
environment. First Workshop on General Purpose Processing on Graphics Processing Units,
2007.

[33] J. El-Sana, N. Sokolovsky, and C. T. Silva. Integrating occlusion culling with view-dependent
rendering. In IEEE Visualization ’01, pages 371–378, October 2001.

[34] R. Farias. Out-of-core rendering of large, unstructured grids. IEEE Comput. Graph. Appl.,
21(4):42–50, 2001.

[35] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In
SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, pages 209–216, New York, NY, USA, 1997. ACM Press/Addison-
Wesley Publishing Co.

[36] M. Garland and Y. Zhou. Quadric-based simplification in any dimension. ACM Transactions
on Graphics, 24(2), April 2005.

[37] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, third
edition, 1996.

[38] R. Haber and D. McNabb. Visualization idioms: A conceptual model for scientific visualiza-
tion systems. In Visualization in Scientific Computing. IEEE Computer Society Press, 1990.

[39] Hadoop. //hadoop.apache.org/.

[40] Hive. //hadoop.apache.org/hive/. Accessed March 7, 2010.

[41] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for interactive rendering on clusters. In SIG-
GRAPH, pages 693–702, 2002.

[42] Intel. Threading building blocks. http://www.threadingbuildingblocks.org.

[43] M. Isenburg and P. Lindstrom. Streaming meshes. In IEEE Visualization ’05, pages 231–238,
oct 2005.

[44] M. Isenburg, P. Lindstrom, and H. Childs. Parallel and streaming generation of ghost data for
structured grids. Computer Graphics and Applications, IEEE, 30(3):32–44, 2010.

[45] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh simplification using
processing sequences. In IEEE Visualization ’03, pages 465–472, 2003.

[46] V. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro. Predictive runtime
code scheduling for heterogeneous architectures. High Performance Embedded Architectures
and Compilers, pages 19–33, 2010.

[47] C. Johnson and C. Hansen. Visualization Handbook. Academic Press, Inc., Orlando, FL,
USA, 2004.

[48] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. ACM
Transactions on Graphics, 21(3):339–346, July 2002.

115

[49] M. Kazhdan and H. Hoppe. Streaming multigrid for gradient-domain operations on large
images. ACM Transactions on Graphics, 27:21:1–21:10, August 2008.

[50] Kitware. ParaView. http://www.paraview.org.

[51] Kitware. The Visualization Toolkit (VTK) and Paraview. http://www.kitware.com.

[52] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel. Feature-sensitive surface extraction
from volume data. In ACM SIGGRAPH ’01, pages 57–66, 2001.

[53] KronosGroup. OpenCL. http://www.khronos.org/opencl/.

[54] C. Law, K. M. Martin, W. J. Schroeder, and J. Temkin. A multi-threaded streaming pipeline
architecture for large structured data sets. In IEEE Visualization ’99, pages 225–232, October
1999.

[55] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D. Owens. Glift: Generic, efficient,
random-access gpu data structures. ACM Transactions on Graphics, 25(1):99, 2006.

[56] P. Lindstrom. Out-of-core simplification of large polygonal models. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques, pages 259–262,
2000.

[57] P. Lindstrom. Out-of-core construction and visualization of multiresolution surfaces. In ACM
Symposium on Interactive 3D Graphics, pages 93–102, 2003.

[58] P. Lindstrom and C. T. Silva. A memory insensitive technique for large model simplification.
In IEEE Visualization ’01, pages 121–126, 2001.

[59] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. Computer Graphics, 21(4):163–169, 1987.

[60] K. Ma. In situ visualization at extreme scale: Challenges and opportunities. Computer
Graphics and Applications, IEEE, 29(6):14 –19, nov.-dec. 2009.

[61] K. Ma and S. Parker. Massively parallel software rendering for visualizing large-scale data
sets. IEEE Comput. Graph. Appl., 21:72–83, July 2001.

[62] S. Marchesin, C. Mongenet, and J-M. Dischler. Multi-gpu sort last volume visualization. In
EG Symposium on Parallel Graphics and Visualization (EGPGV’08), 2008.

[63] J. D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pages 19–25, December 1995.

[64] P. S. McCormick, J. Inman, J. P. Ahrens, C. Hansen, and G. Roth. Scout: A hardware-
accelerated system for quantitatively driven visualization and analysis. VIS ’04: Proceedings
of the Conference on Visualization ’04, pages 171–178, 2004.

[65] P. Miceli. The Gutenberg Project. http://www.gutenberg.org/.

[66] K. Moreland and D. Thompson. From cluster to wall with VTK. In IEEE Symp. on Parallel
and Large-Data Visualization and Graphics, pages 25–32, 2003.

[67] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable interface
to hardware performance counters. In In Proceedings of the Department of Defense HPCMP
Users Group Conference, pages 7–10, 1999.

116

[68] C. Muller, S. Frey, M. Strengert, C. Dachsbacher, and T. Ertl. A compute unified system archi-
tecture for graphics clusters incorporating data locality. IEEE Transactions on Visualization
and Computer Graphics, 15:605–617, 2009.

[69] NASA,. NASA Blue Marble http://earthobservatory.nasa.gov/
Features/BlueMarble/.

[70] NVIDIA. CUDA programming guide. http://developer.nvidia.com/object/cuda.

html.

[71] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-foreign
language for data processing. In ACM SIGMOD, pages 1099–1110, 2008.

[72] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell.
A survey of general-purpose computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, 2007.

[73] S. G. Parker and C. R. Johnson. SCIRun: A scientific programming environment for compu-
tational steering. In SuperComputing, page 52, 1995.

[74] V. Pascucci, D. E. Laney, J. R. Frank, G. Scorzelli, L. Linsen, B. Hamann, and F. Gygi.
Real-time monitoring of large scientific simulations. In SAC ’03: Proceedings of the 2003
ACM Symposium on Applied Computing, pages 194–198, New York, NY, USA, 2003. ACM.

[75] R. Rajagopalan, D. Goswami, and S. P. Mudur. Functionality distribution for parallel ren-
dering. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers, page 18, Washington, DC, USA, 2005. IEEE
Computer Society.

[76] J. Rossignac. 3D compression made simple: Edgebreaker with zip&wrap on a corner-table.
In Proceedings of the International Conference on Shape Modeling & Applications, page 278,
2001.

[77] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[78] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The Visualization Toolkit. Prentice-
Hall, pub-PH:adr, second edition, 1998. With special contributors Lisa Sobierajski Avila,
Rick Avila, and C. Charles Law. Includes CD-ROM with vtk-2.0. The most recent release is
available on the World-Wide Web at http://www.kitware.com/vtk.html.

[79] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes. In
SIGGRAPH ’92: Proceedings of the 19th Annual Conference on Computer Graphics and
Interactive Techniques, pages 65–70, New York, NY, USA, 1992. ACM.

[80] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering.
San Diego Workshop on Volume Visualization, 24(5):63–70, 1990.

[81] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algorithms for scientific
visualization and computer graphics. In IEEE Visualization ’02, 2002. Course Notes for
Tutorial 4.

[82] C. T. Silva, J. L. D. Comba, S. P. Callahan, and F. F. Bernardon. A survey of GPU-based vol-
ume rendering of unstructured grids. Brazilian Journal of Theoretic and Applied Computing,
12(2):9–29, 2005.

117

[83] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, and T. Ertl. Large volume visualization of
compressed time-dependent datasets on gpu clusters. Parallel Comput., 31(2):205–219, 2005.

[84] Impetus Technologies. Hadoop performance tuning - white paper.

[85] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive - a warehousing solution over a map-reduce framework. PVLDB, 2(2):1626–
1629, 2009.

[86] Craig Upson et al. The application visualization system: A computational environment for
scientific visualization. Computer Graphics and Applications, 9(4):30–42, 1989.

[87] H. T. Vo, S. P. Callahan, P. Lindstrom, V. Pascucci, and C. T. Silva. Streaming simplification of
tetrahedral meshes. IEEE Transactions on Visualization and Computer Graphics, 13:145–155,
January 2007.

[88] H. T. Vo, S. P. Callahan, N. Smith, C. T. Silva, W. Martin, D. Owen, and D. Weinstein. iRun:
Interactive rendering of large unstructured grids. In Eurographics Symposium on Parallel
Graphics and Visualization, pages 93–100, 2007.

[89] H. T. Vo, D. K. Osmari, B. Summa, J. L. D. Comba, V. Pascucci, and C. T. Silva. Streaming-
enabled parallel dataflow architecture for multicore systems. Computer Graphics Forum,
29(3), 2010.

[90] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting for tetrahedral meshes.
In IEEE Visualization ’03, pages 333–340, 2003.

[91] J. Wu and L. Kobbelt. A stream algorithm for the decimation of massive meshes. In Graphics
Interface ’03, pages 185–192, 2003.

[92] Yahoo! expands its m45 cloud computing initiative, adding top universities to supercomputing
research cluster. //research.yahoo.com/news/3374.

[93] J. Yan, P. Shi, and D. Zhang. Mesh simplification with hierarchical shape analysis and iterative
edge contraction. IEEE Transactions on Visualization and Computer Graphics, 10(2):142–
151, 2004.

[94] S. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious mesh layouts. ACM
Transactions on Graphics, 24(3):886–893, 2005.

[95] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar Gunda, and J. Currey.
DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-
level language. In Symposium on Operating Systems Design and Implementation, 2008.

