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ABSTRACT

Visualization has emerged as an effective means to quickly obtain insight from raw data.

While simple computer programs can generate simple visualizations, and while there has been

constant progress in sophisticated algorithms and techniques for generating insightful pictorial

descriptions of complex data, the process of building visualizations remains a major bottleneck

in data exploration. In this thesis, we present the main design and implementation aspects of

VisTrails, a system designed around the idea of transparently capturing the exploration process

that leads to a particular visualization. In particular, VisTrails explores the idea of provenance

management in visualization systems: keeping extensive meta-data about how the visualizations

were created and how they relate to one another.

This thesis presents the provenance data model in VisTrails, which can be easily adopted

by existing visualization systems and libraries. This lightweight model entirely captures the

exploration process of the user, and it can be seen as an electronic analogue of the scientific

notebook. The provenance metadata collected during the creation of pipelines can be reused

to suggest similar content in related visualizations and guide semi-automated changes. This

thesis presents the idea of building visualizations by analogy in a system that allows users to

change many visualizations at once, without requiring them to interact with the visualization

specifications.

It then proposes techniques to help users construct pipelines by consensus, automatically

suggesting completions based on a database of previously created pipelines. By presenting

these predictions in a carefully designed interface, users can create visualizations and other data

products more efficiently because they can augment their normal work patterns with the suggested

completions.

VisTrails leverages the workflow specifications to identify and avoid redundant operations.

This optimization is especially useful while exploring multiple visualizations. When variations

of the same pipeline need to be executed, substantial speedups can be obtained by caching the

results of overlapping subsequences of the pipelines. We present the design decisions behind

the execution engine, and how it easily supports the execution of arbitrary third-party modules.

These specifications also facilitate the reproduction of previous results. We will present a descrip-



tion of an infrastructure that makes the workflows a complete description of the computational

processes, including information necessary to identify and install necessary system libraries. In

an environment where effective visualization and data analysis tasks combine many different

software packages, this infrastructure can mean the difference between being able to replicate

published results and getting lost in a sea of software dependencies and missing libraries.

The thesis concludes with a discussion of the system architecture, design decisions and

learned lessons in VisTrails. This discussion is meant to clarify the issues present in creating

a system based around a provenance tracking engine, and should help implementors decide how

to best incorporate these notions into their own systems.
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CHAPTER 1

INTRODUCTION

In recent years, with the explosion in the volume of scientific and measurement data, we have

observed a paradigm shift in how scientists and engineers use visualization. Projects such as

CORIE, an environmental observation and forecasting system for the Columbia River, generate

and publish on the Web thousands of new images daily which depict river circulation simulation

forecasts and hindcasts, as well as real-time sensor data. Figure 1.1 shows examples of the kinds

of visualizations used in the project. Visualization techniques have become key to understanding

complex phenomena, and the field has grown into a mature area with an established research

agenda [92].

This demand for visualization has driven the development of software systems that provide

flexible frameworks for creating complex visualizations. Visualization systems can be broadly

classified as turnkey applications (e.g., ParaView, VisIt, Amira) [22, 62, 85] and dataflow-based

systems (e.g., VTK, SCIRun, AVS, OpenDX) [53, 99, 110, 122]. In this thesis, I will focus on

dataflow systems. These are more general and often serve as the foundation of turnkey applica-

tions: both ParaView and VisIt are based on VTK [22, 62], and turnkey application development

systems have been proposed using both SCIRun [80] and VisTrails [108].

More specifically, I will focus on visual programming systems that are (loosely) based on a

dataflow architecture. These systems represent computations by directed graphs, and allow users

to edit the representations visually, by adding and removing vertices and edges. Such graphs

are typically called pipelines. The graph vertices represent different atomic computational tasks,

and are usually called modules. The graph edges specify the flow of inputs and outputs in the

computation, and are called connections. More recently, visual programming systems have been

proposed for more general computational tasks [76], or based around web services [96]. One

of the stated goals of visual programming systems is to facilitate the creation of programs by

non-programmers [53]. However successful these systems may be, creating effective scientific

visualizations is very much about exploration of the design space. While most dataflow-based

systems have sophisticated user interfaces that ease the creation of visualizations, the path from
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1.1: The CORIE project produces a large number of visualizations in a daily basis, posing a
significant underlying data management problem. http://www.stccmop.org/CORIE

“data to insight” requires a laborious, trial-and-error process, where users successively assemble,

modify, and execute pipelines [123].

In general, visual programming systems lack the infrastructure to help exploring the space of

possible visualizations. In the course of exploratory studies, users often build large collections

of visualizations, each of which helps in the understanding of a different aspect of their data.

A scientist working on a new computational fluid dynamics application might need a collection

of visualizations such as 3-D isosurface plots, 2-D plots with relevant quantitative information,

and some direct volume rendering images. Although in general each of these visualizations

is implemented in a separate dataflow, they have a certain amount of overlap (e.g., they may

manipulate the same input data sets). Furthermore, for a particular class of visualizations, the

scientists might generate several different versions of each individual dataflow while fine tuning

visualization parameters or experimenting with different data sets. Often, insight comes from

comparing the results of a variety of visualizations [104]. For example, Figure 1.1 shows a set

of CORIE images used to study the salinity variation at the mouth of the Columbia river. A
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large portion of the motivation behind the work in this thesis is the realization that visualization

fundamentally requires a variety of approaches and visualizations examined in combination.

Even in the simplest exploration scenarios, visualization practitioners will typically try several

different isosurface values, transfer functions and colormaps before deciding which is more

effective. Manually managing these different parameter sets and dataflow structures in typical

systems requires an ad-hoc naming scheme for files saved on disk, which is not scalable beyond

a handful of visualization pipelines. Because these systems are designed to interact with a single

visualization and pipeline at a time, any particular pipeline might be lost in a sea of files. While

Apple’s Spotlight technology provides an API that allows programmers to expose file metadata

to a centralized file system searching tool [55], integrating data management in the system itself

has several advantages, including the ability to use the metadata for other applications besides

search, as we will present in the following chapters.

1.1 Contributions and Impact
This document comprises several contributions to the field of scientific visualization. Specif-

ically, my thesis is that a comprehensive, transparent mechanism for capturing the steps involved

in the creation of a scientific visualization (in our case, in the form of a visualization pipeline)

can make the exploratory process of creating visualizations simpler and more effective, and, just

as importantly, also help make the generated visualizations more reproducible. This mechanism

also serves as infrastructure in which novel applications can be built. The specification of the

provenance model itself is described in Chapter 3, while the applications, such as building visual-

izations by analogy and data-driven suggestion of visualization pipeline fragments are described

in Chapters 4 and 5. Chapter 8 contains a preliminary evaluation of the design principles of

VisTrails and its implementation in the system, and a discussion of the issues involved with

a proper evaluation. I believe these contributions substantially improve the state-of-the-art in

scientific visualization systems, and help bridge the gap between visualization designers and

consumers.

The execution model of VisTrails workflows is mostly characterized by the transparent caching

of previously computed results. It is well-suited or exploratory visualization, where users are

trying to understand the relation between different but related visualizations and the role of

specific parameters in the final results. This execution model, it has shown useful for other similar

systems, and the caching strategy now been implemented in Kepler [9], a popular scientific

workflow system.



4

While this thesis presents the major design decisions and some major features of VisTrails,

important parts and extensions of the system are described elsewhere. We note that many of these

extensions were made easier by the uniform change-based provenance model of VisTrails (to be

described in Chapter 3). Ellkvist et al. use the provenance model to synchronize the interaction

of multiple users, enabling groupware-like collaboration in VisTrails [32] such as described by

Ellis and Gibbs [31] in a straightforward fashion.

Santos et al. designed an automatic user interface generation tool for workflows in VisTrails,

where the provenance model is used to simultaneously track the changes in the workflow speci-

fication, and parameter sets executed by a user in the generated interface [108]. By changing the

domain object being tracked from VisTrails workflows to other objects, it is possible to provide

process provenance for third-party applications such as ParaView [17].

The provenance model used in VisTrails is, to the best of our knowledge, the first model used

in visual programming systems for scientific visualization that uniformly captures both parameter

and structural changes for visualizations. This model is successful in capturing the exploration

process of more complicated objects than previously done, and so it allows process provenance

to be used in practical real-life scenarios.

The ideas of creating visualizations by analogy and of presenting data-driven completions

in scientific visualization systems use the data generated by the provenance model to facilitate

the creation of visualizations. In particular, they should be seen as attempts to interpret the

provenance model as “externalized knowledge”: the collected lessons of potentially many users

as they generate visualizations. This notion of “wisdom of the crowds” is particularly important

in a world where multiple-user collaborations are the norm rather than the exception, and these

chapters present contributions to scientific visualization in that context. I believe this notion of

specifying visualizations using exploration data collected from users — in a sense, metaprogram-

ming visualizations — will become more practical as we provide better tools to easily store and

process this collected data. This thesis is a step in that direction.

As previously mentioned, the provenance model and techniques proposed in this thesis have

been implemented in VisTrails, which is publicly available and open-source. VisTrails has been

downloaded more than 10000 times over the course of two years. In addition, VisTrails has been

used in classrooms to teach Scientific Visualization at the University of Utah and UNC-Chapel

Hill. The provenance model presented in Chapter 3 has also been implemented in other scientific

visualization systems, including ParaView and VisIt, and is currently part of a commercial plugin

for history management in Maya [56].
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1.2 Document Structure
This thesis is roughly structured in three parts. The first part, composed of Chapters 1 and 2,

cover preliminaries and generally related work. The next part provides a detailed discussion of

core concepts in VisTrails, and comprises Chapters 6, 3 and 9. The final part of the thesis presents

techniques that use the provenance model to facilitate the creation of visualizations, in Chapters 4

and 5.

Chapter 3 describes the provenance model in VisTrails. The data captured by this model

represents the user’s exploration process during the creation of a visualization, and allow users to

easily navigate and compare the different visualizations created. This model also prevents the user

from accidentally erasing a potentially useful visualization. Scientists have long recognized in the

laboratory notebook the need for comprehensive annotation of every experiment performed, and

every question asked, for later analysis. The VisTrails provenance model provides an electronic

analogue of the laboratory notebook. It is not intended to replace best practices in note-taking:

it complements and facilitates them, leaving the visualization practitioner to do what they want

to do most: create novel and insightful visualizations that helps them better understand the better

being studied. One defining theme of this thesis is that the data in the provenance model can

actually be used to enable novel applications. In particular, Chapter 4 uses this data to let the user

create novel visualizations by analogy, without referring to the visualization pipeline itself. This

is possible by combining the history information in the provenance model with a novel inexact

graph matching technique that transfers the user’s exploration from one context to another.

Still, without knowledge of the underlying computational components, it is hard to understand

what series of modules and connections should be added to obtain a desired result. In essence,

there is no “roadmap”; visual programming systems provide little feedback to help the user

deduce which modules can or should be added to the pipeline. Even with a mechanism such

as the one described in Chapter 4, a novice user, or even an advanced user performing a new task,

often must resort to manually searching for existing pipelines to use as examples. These examples

are then adapted and iteratively refined until a solution is found. This manual, time-consuming

process is the current standard for creating visualizations rather than the exception. Chapter 5

describes VisComplete, a recommendation system for visualization pipelines based on data col-

lected during the exploration process. The system learns common paths used in existing pipelines

and predicts a set of likely module sequences that can be presented to the user as suggestions

during the design process.
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The goal of exploratory visualization also influenced the choice of execution strategy for

VisTrails pipelines. Because scientific visualization techniques are often computationally- and

memory-intensive, visualization pipelines may comprise long sequences of expensive steps with

large temporary results, which might limit a user’s ability to interactively explore their data.

Chapter 6 describes the execution model of VisTrails pipelines, with particular emphasis on a

caching mechanism that allows different pipelines to reuse each other’s partial results. This

mechanism makes exploratory visualization more practical while imposing relatively few barriers

to the way execution modules are designed.

1.3 Terminology
In this thesis, I will use the noun “visualization” to mean a visual depiction meant to increase

the understanding of some set of data.

VisTrails was originally designed for scientific visualization scenarios. However, its execution

model is general enough to support more varied execution tasks, more akin to scientific workflow

systems such as Taverna and Kepler. Because of that, I will sometimes use the terms visualization

pipeline and scientific workflow (or simply workflow) interchangeably. In the original VisTrails

paper [10], we used the term “vistrail” to mean one such pipeline. We have since decided to use

the term to mean the version tree corresponding to an exploration.

Although the term applies in a more general sense, in this thesis we will take scientific visual-

ization systems to mean systems that allow users to create visualizations via a visual programming

interface, most often using a dataflow execution model.



CHAPTER 2

BACKGROUND AND RELATED WORK

Visualization pipelines are a particularly simple form of computer programs and, in a sense,

facilitating the creation of programs is as old a problem as computer science itself. We cannot

hope to cover the entire range of proposed solutions for this general formulation of the problem.

We instead focus on works most closely related to scientific visualization, workflow systems,

and, in particular, to solutions related to the process provenance model we propose, and the

different ways of storing, representing and manipulating a user’s history. Work related to specific

techniques used in subsequent chapters will be presented in the chapters themselves.

2.1 Visual Programming Systems for Visualization
Visualization systems have been quite successful at bringing visualization to a greater au-

dience. Seminal systems such as AVS Explorer and Data Explorer [53, 122] enabled domain

scientists to create visualizations with much less training and effort than previously possible.

The early success of these systems led to the development of several alternative approaches.

SCIRun [99] focuses on computational steering: the intentional placement of human intervention

and visualization in the process of generating simulations. The Visualization Toolkit [110] is

a library that directly exposes a powerful dataflow API for several programming languages.

Development in workflow systems for visualization is ongoing, as evidenced by projects such as

MeVisLab [86] for medical visualization, and VisTrails itself [121], which helps users to easily

combine existing visualization libraries with user-defined modules in a provenance capturing

framework.

As scientific visualization became more widely used, several scalability issues have arisen,

ranging from ensuring good performance, handling large amounts of data, capturing provenance,

and providing interfaces to interact with a large number of visualizations. Distributed, parallel

systems [22] have been developed to address performance and dataset size concerns. Such

systems provide a scalable architecture for creating and running visualization pipelines with large

data.
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Visualization has also reached business and financial users. In these scenarios, data is typ-

ically stored in a relational database. These data stores have much richer structure associated

with them and allow one to design an associated algebra of visualizations. This approach was

pioneered by Mackinlay [79] and served as inspiration for Stolte, Tang and Hanrahan in the

Polaris system and formalism [114]. This was then extended to facilitate the visualization of data

cubes in Rivet [113]. The Polaris effort culminated in Tableau, a commercial system for database

visualization, which is the basis of an excellent study by Heer et al. of the tradeoffs in designing

and presenting graphical histories of the user’s exploration process [49].

Some systems focus on distributed execution of visualization workflows in the Grid. sgViz,

in particular, is a system that extends IRIS Explorer for execution on Grid resources [15]. Its

layered architecture allows different bindings for a given pipeline specification in each layer. This

allows different visualization systems and strategies to be integrated. Heterogenous execution is

supported in VisTrails via a fairly complete web services package. One drawback of the execution

model in VisTrails is that its caching mechanism requires centralized control, and the execution

of a visualization pipeline is currently orchestrated by a single process. Still, the execution model

itself is well-suited for parallel execution. The requirement that modules behave functionally,

as described in Chapter 6, implies that the order in which the modules are executed does not

change the result, which simplifies parallelization. We have, however, chosen to focus on other

implementation issues, and automatic parallelism remains as future work.

2.2 Exploration history management
An important requirement that has come to the attention of developers and users of visu-

alization systems is the ability to record provenance so that computational experiments can be

reproduced and validated. Provenance-aware scientific workflow systems have been developed

that record provenance both for data products (i.e., how and from which files a given result was

generated [34]) and for the exploratory process, the sequence of steps followed to design and

refine the workflows used to process the data [16, 59, 100, 109].

User interface designers have long recognized the inadequacy of imposing a linear structure

on the actions performed by a user in a system. Vitter described US&R, one of the earliest pub-

lished studies of different Undo/Redo models, in the context of text editors [125]. Vitter describes

a set of formal rules to implement Undo, Skip and Redo (US&R) operations. Flagging operations

as Skip allows users to “undo” non-terminal actions. Vitter’s model, however, is inadequate for

large branching histories: any navigation in branches of the history requires a manual context
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resolution at every step to determine if the branching actions should be merged. Subsequently,

Berlage described a mechanism similar to Vitter’s Skip for selective undo [12]. Berlage’s model

for selectively undoing some actions amounts to taking all downstream actions that are not to

be undone and applying them afresh in a new branch of the history. Many other issues with

correctly modeling the undo functionality have been researched by the HCI community, including

compositionality [93], effect locality [30] and multi-user operation [7]. While the most popular

strategy for implementing branching histories is based on the Command design pattern [41],

other approaches include specialized logics based on branching time models [27] and explicit

programming language support [70].

Specialized history mechanisms have also been proposed for visualization-centric systems.

Kreuseler et al. [65] proposed a history mechanism for exploratory data mining, but their ideas

are also applicable to exploratory visualization. They use a tree structure to represent the change

history, and describe how undo and redo operations can be calculated in this tree structure. This

mechanism provides a detailed provenance of the exploratory process and is very similar to our

process provenance proposal discussed in Chapter 3. One difference in Kreuseler et al.’s approach

is that their model is opaque with respect to the underlying object: the changes are essentially

black boxes. This hinders the use of the exploration record for anything besides archival and

reproducibility. By specifying actions as workflow changes (and having a description of the types

of possible changes), our model captures features of these changes which allow most applications

described in Chapter 3 and, especially, Chapter 4.

A formal model for capturing the visualization exploration process was proposed by Jankun-

Kelly et al. [59], who argued that a richer representation was necessary for a more effective

analysis of the user’s exploration. The authors’ P-Set model captures an exploration session

of the parameters in a single visualization. In contrast, the provenance model described in this

thesis uniformly captures both parameter and pipeline changes. In exploratory visualization, it is

likely that users will try different pipelines, and we argue that a model that treats the exploration

more uniformly is more likely to be applicable in other scenarios. One advantage of the process

provenance framework we propose in Chapter 3 is that it is somewhat agnostic to the execution

strategy in use. This means it is an attractive candidate for adoption in specialized systems.

For example, Dolgert et al. use the VisTrails provenance model to keep track of workflows in

High-Energy Physics [28]. In the area of user interfaces, Kurlander et al. [66, 67] have presented

approaches to streamline the repetitive tasks users often face. They suggested directly editing

the user’s history to generalize it and turn it into macros that could be used in other contexts.
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The creation of visualizations by analogy, described in Chapter 4, can be seen as an attempt to

draw upon the structure imposed by the graph structure of workflows to automatically infer these

generalizations. In addition, because the storage model of VisTrails is actually directly based on

the actions, it is possible to build such higher-level operations retroactively, not only while the

undo stack is present.

The algorithm we describe for matching two pipelines is similar to a technique developed

to match database schemas [84]. It is also reminiscent of well-known variations of PageRank,

which is the basis for Google’s successful ranking algorithm [14, 69]. As we will show in

Chapter 4, the strength of the correspondence between two modules in our algorithm can be

seen as given by the PageRank of the edge in the product graph, given carefully constructed ini-

tialization probabilities. Our visualization-by-analogy mechanism shares some of the objectives

of programming-by-example techniques [72].

The management of different versions is the driving problem behind source code version

control systems such as CVS [33]. While CVS was considered the standard for publicly-available

open source version control systems in the nineties, there has been a recent flurry of systems that

focus on distributed operation, where every copy of a source tree under control is considered

to be its own repository. Notably, most of these systems, including DARCS [105], git [3] and

Mercurial [97], use changeset-based representations, similar to the change-based mechanism

we present in Chapter 3. DARCS is particularly notable because it uses a “theory of patches”

based on computing whether two patches commute: whether the effects of applying the patches

will change if applied in different orders. This patch algebra is similar to the operators that

some authors have proposed to manipulate the user’s history, including the Rotate command of

Yang [128]. We note that this notion of commutation is related to the computation of the domain

and range contexts described in Section 3.3. The management of scientific data and processes

has attracted a lot of attention in the recent literature (see e.g., [76,115]). Although our effort was

motivated by visualization, the VisTrails framework is extensible and can also be used for general

scientific workflows.

2.3 Recommendation Systems
Recommendation systems have been used in widely different application areas. Like the

system we present in Chapter 5, these are based on techniques that predict users’ actions based

solely on the history of their previous interactions [51]. Examples include Unix command-line

prediction [64], prediction of Web requests [40, 94], and autocompletion systems such as Intel-
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liSense [87]. Senay and Ignatius have proposed incorporating expert knowledge into a set of

rules that allow automated suggestions for visualization construction [111], while Gilson et al.

incorporate RDF-based ontologies into an information visualization tool [43]. However, these

approaches necessarily require an expert that can encode the necessary knowledge into a rule set

or an ontology.

Fu et al. [40] applied association rule mining [8] to analyze Web navigation logs and discover

pages that co-occur with high frequency in navigation paths followed by different users. This

information is then used to suggest potentially interesting pages to users. VisComplete also

derives predictions based on user-derived data and does so in an automated fashion, without the

need for explicit user feedback. However, the data it considers is fundamentally different from

Web logs: VisComplete bases its predictions on a collection of graphs and it leverages the graph

structure to make these predictions. Because association rule mining computes rules over sets of

elements, it does not capture relationships (other than co-occurrence) amongst these elements.

In graphics and visualization, recommendation systems have been proposed to simplify the

creation of images and visualizations. Design Galleries [81] were introduced to allow users

to explore the space of parameters by suggesting a set of automatically generated thumbnails.

Igarashi and Hughes [54] proposed a system for creating 3D line drawings that uses rules to

suggest possible completions of 3D objects. Suggestions have also been used for view point

selection in volume rendering. Bordoloi and Shen [127] and Takahashi et al. [117] present

methods that analyze the volume from various view points to suggest the view that best shows the

features within the volume. Like these systems, we provide the user with prioritized suggestions

that the user may choose to utilize. However, our suggestions are data-driven and based on

examples of previous interactions.

An emerging trend in image processing is to enhance images based on a database of existing

images. Hays and Efros [48] recently presented a system for filling in missing regions of an

image by searching a database for similar images. Along similar lines Lalonde et al. [68] recently

introduced Photo Clip Art, a method for intelligently inserting clip art objects from a database to

an existing image. Properties of the objects are learned from the database so that they may be

sized and oriented automatically, depending on where they are inserted into the image. The use

of databases for completion has also been used for 3D modeling. Tsang et al. [120] proposed a

modeling technique that utilizes previously created geometry stored in a database of shapes to

suggest completions of objects. Like these methods, our completions are computed by learning
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from a database to find similarities. But instead of images, our technique relies on workflow

specifications to derive predictions.

Another important trend is that of social visualization. Web-based systems such as Vis-

Portal [13, 57] provide the means for collaborative visualization from disjoint locations. Web

sites such as Sens.us [50], Swivel [116], and ManyEyes [124] allow many users to create, share,

and discuss visualizations. One key feature of these systems is that they leverage the knowledge

of a large group of people to effectively understand disparate data. Similarly, VisComplete uses

a collection of pipelines possibly created by many users to derive suggestions.

2.4 Multiple-view Visualizations
VisTrails provides an infrastructure that enables the effective use of several visualization

techniques which aid users to explore and understand the underlying information. In particular,

it supports the three primary techniques described by Roberts [103]: Multiform visualization, the

ability to display the same information in different ways, can be achieved by appropriately setting

parameters or modifying a vistrail (e.g., the top row of Figure 2.1 shows the Visible-Human

dataset rendered using isosurfaces whereas the bottom row uses volume rendering); abstract

views, which apply the same visualization algorithm using different simplification criteria, can

be constructed by refining and modifying a trail specification; and direct manipulation, which

allows objects to be directly interrogated, scaled and positioned, can be achieved both through

the Vistrail Builder and through the VisTrails Spreadsheet, and in the latter, different views can

be coordinated (see Figure 2.1).

The use of spreadsheets for displaying multiple images was proposed in previous works.

Levoy’s Spreadsheet for Images (SI) [71] is an alternative to the flow-chart-style layout employed

by many earlier systems using the dataflow model. SI devotes its screen real estate to viewing data

by using a tabular layout and hiding the specification of operations in interactively programmable

cell formulas. The 2D nature of the spreadsheet encourages the application of multiple operations

to multiple data sets through row or column-based operations. Chi [20] applies the spreadsheet

paradigm to information visualization in his Spreadsheet for Information Visualization (SIV).

Linking between cells is done at multiple levels, ranging from object interactions at the geometric

level to arithmetic operations at the pixel level. The difficulty with both SI and SIV is that they

fail to capture the history of the exploration process, since the spreadsheet only represents the

latest state in the system.
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2.1: VisTrails provides support for multiple-view visualization via the VisTrails Spreadsheet. Cameras
as well as other vistrail parameters for different cells can be synchronized. This spreadsheet shows
visualizations of the Visible Human dataset using different algorithms. The top row shows the rendering
of two isovalues, while in the second row, images are created using volume rendering. The cameras for
the cells in the rightmost column in the spreadsheet above are synchronized.

The VisTrails Spreadsheet supports concurrent exploration of multiple visualizations. The

interface is similar to the one proposed by Jankun-Kelly and Ma [58] and it provides a natural

way to explore a multi-dimensional parameter space. The separation between parameters and

the actual network makes the vistrail model especially suitable to be used in such an interface.

Users can change any of the parameters present in a workflow, creating new versions in the

vistrail; they can also synchronize different views over a set of vistrail parameters – changes to

this parameter set are reflected in related workflows in the same vistrail, shown in different cells

of the spreadsheet.



CHAPTER 3

CHANGE-BASED PROVENANCE

The most visible distinction of VisTrails when compared to other similar systems is its version

tree, shown schematically in Figure 3.1, and in a screenshot of the system GUI in Figure 3.2.

This version tree is a user-accessible record of the entire exploration process at any point in time.

Because users try different alternatives during the exploration process, and this process can be

laborious [123], VisTrails eschews the notion of there being one single important visualization in

a process, and considers instead the problem of managing this potentially large set of alternatives.

We first present some necessary definitions. Then we describe our model in detail, and relate it to

the history management models presented in Chapter 2. This provenance model is the basis for

the techniques presented in Chapters 4 and 5.

3.1 Definitions
A visualization system is a software system that provides functionality for graphically dis-

playing data according to a specific set of rules. In our case, we restrict ourselves to visual

programming systems, where the programmatic rules can be seen as a representing a program

by a graph, and they are called pipelines. Executing the pipeline in the visualization system

produces a visualization. The pipeline is composed of modules which define specific operations

and connections which determine the flow of data between modules. The modules are the pipeline

graph’s vertices, and the connections are the edges. The modules and connections have additional

information to specify the behavior of the resulting visualization. Modules have input ports that

specify the set of possible inputs, and output ports, that specify the outputs. Each connection

links an output port of one module (the source) with an input port of another module (the

destination). In addition, modules might require additional state settings, represented by a set

of module parameters. Each module parameter is specified by an ordered pair of parameter name

(one of a set specified by the module’s designer, as described in Chapter 6) and value.

We denote the set of all visualization pipelines as V. The VisTrails provenance model is

intended to help the user manage a potentially large subset v⊂V of these pipelines.
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3.1: A review of terminology from VisTrails. The version tree (shown on the left) captures
the history of the exploration process, where each node corresponds to a visualization pipeline.
Edges in this tree are functions from f :V→V. Each pipeline comprises modules, connections,
and parameter values, and generates a visualization (shown on the right).

An important observation leveraged throughout this thesis is that every user operation per-

formed on a pipeline, such as adding and deleting modules, connections and parameters, can be

directly expressed as a function f : V→ V (this function can be partial, that is, not specified

for some of the elements in its domain). If the original user operation on a pipeline A resulted

in a pipeline B, the only requirement for the representation of f is that f (A) = B. Many of our

techniques depend on making these functions first-class elements in the visualization system.

We are now ready to present the actual model used in VisTrails to represent the user’s explo-

ration process in V.

3.2 An Action-Based Provenance Model for the Evolution of
Visualization Pipelines

VisTrails uses an action-based model to capture provenance. As the user makes modifications

to a particular workflow, the provenance mechanism records those changes. Instead of storing

the set of all workflows, we store the operations or actions that are applied to them, such as the

addition of a module, and the modification of a parameter. This representation is both simple and

compact—it uses less space than the alternative of storing multiple versions of a workflow. In
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3.2: An overview of the main VisTrails GUI. Shown on the left side is the version tree view,
where users can navigate the captured history of the exploration process. In the middle, we show
the highlighted workflow, and associated notes and thumbnail on the right side.

addition, it enables the construction of an intuitive interface that allows users to both understand

and interact with the history of the workflow through these changes. A tree-based view allows a

user to return to a previous version, to undo bad changes, to compare different workflows, and to

be reminded of the actions that led to a particular result. This, combined with a caching strategy

that reduces redundant computations described in Chapter 6, facilitates the exploration of a large

number of related visualizations.

VisTrails provides a mechanism that uniformly captures provenance information for both the

data and the processes that derive the data. We will first describe the mechanism to capture the

user’s exploration history, and then show how it can be used to capture data provenance as well.

Along with the benefits of previously proposed provenance mechanisms, such as reproducibility

and documentation, the action-based model has additional benefits. As we discuss in Section 3.8,

it enables operations that streamline the data exploration process, and is the basis for Chapters 4

and 5.

A vistrail V T is a tree in which each node corresponds to a version of a pipeline, and each

edge between nodes pp and pc, where pp is the parent of pc, corresponds to the function applied to
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type Vistrail = vistrail [ @id, @name, Action*,
annotation? ]

type Action =
action [ @id, @parentId, @user, @date,

tag?, annotation?,
(addModule|deleteModule|replaceModule|

addConnection|deleteConnection|
|setParameter|changeParameter)]

3.3: Excerpt of the schema for a vistrail. Notably, the model does not store any workflows
directly; it instead encodes them by actions that change the workflow.

pp which generated pc. As we described before, letV be the domain of all possible visualization

pipelines. In addition, we will assume the existence of one special visualization pipeline, /0 ∈

V, that corresponds to an empty pipeline, with no modules or connections, which generates no

visualizations. This special version has no action associated with it, and hence has no parent. We

will treat it as the root of the tree. Also, let δ :V→V be a function that transforms a workflow

instance into another, and D be the set of all such functions. when a function represents an atomic

change performed by a user, we will denote it by f . A vistrail node corresponding to a pipeline p

is constructed by composing a sequence of actions, where each δi ∈D :

p = ( fn ◦ ( fn−1 ◦ · · · ◦ ( f1 ◦ ( /0))...))

In what follows, we use the following notation: we represent pipelines as pp, and if a

workflow pc is created by applying a sequence of actions on pp, we say that pp < pc (i.e., the

vistrail node pc is a descendant of pp). Note that, necessarily, for all p ∈V, if p is different than

/0, then /0 < p.

An excerpt of the vistrail XML schema is shown in Figure 3.3. For simplicity of the presen-

tation, we only show a subset of the schema and use a notation less verbose than XML Schema.

A vistrail has a unique ID, a name, an optional annotation, and a set of actions. Each action is

uniquely identified by an ID (@id), the ID of its parent (@parentId), its creator (@user), and the

time of creation (@date). The different actions we have currently implemented include: adding,

deleting and replacing workflow modules, adding and deleting connections, and setting parameter

values. To simplify the navigation and querying of the history, a version may have a name (the

optional attribute tag in the schema) as well as additional notes from the creator (annotations).
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3.3 Determining Pipeline Differences
Workflow-based systems allow users to create a variety of pipelines, rather than being re-

stricted to a predefined set of visualizations. In the process of deriving insightful visualizations,

a series of pipelines is often created by iterative refinement. To understand this process as

well as the derived visualizations, it is useful to compare the different pipelines. The standard

representation of a pipeline is a directed graph, with labeled vertices representing operations.

Given a pair of such pipelines, we want to determine the difference between the visualizations

they generate. In the following, we show how to describe and manipulate differences between

pipelines.

We previously defined δ : V → V as a function on the space of visualizations. Now, let

∆ : V×V→ δ be a function that takes two pipelines pa and pb and produces another function

that will transform pa to pb. For brevity, let δab = ∆(pa, pb). From now on, we will use δ to refer

to an arbitrary ∆(a,b). It is clear that δ is not unique: even though δab(pa) = pb is a necessary

constraint, there are no further restrictions. Loosely speaking, we would like to pick the δab

that minimally changes all other pipelines. If we define the distance between pa and pb as the

number of changes necessary to perform the transformation, then a natural way to determine δab

is as one such function that satisfies the distance between pa to pb. This is easily seen to be as

hard as as finding a best matching between two pipelines pa and pb, which is the problem of

subgraph isomorphism. Furthermore, the subgraph isomorphism problem is trivially reducible to

the MAX-CLIQUE problem, a well-known NP-hard problem [42]. Additionally, MAX-CLIQUE

is a particularly hard problem: there is no approximation algorithm for it with approximation

factor better than n1−ε , for any constant positive value of ε [46]1. This is about as bad a negative

result as one can get, since outputting a single vertex gives an approximation factor of n. Since

we cannot possibly get a good approximation, heuristics for both problems are well justified.

We restrict our initial analysis to the simple case where pb is derived from pa — the user

created pb by applying a finite set of changes to pa. We denote this relationship as pa < pb.

Then, a system with some knowledge of how the pipelines were constructed should be able to

determine the differences between related pipelines using this history.

When pa < pb, we can then say δab is the sequence of operations that was used to derive pb

from pa. However, few pairs of versions satisfy the < relation, and we would like ∆ to be less

1This result assumes that NP 6= ZPP. Quoting Hastad [46], “The faith in the hypothesis NP 6= ZPP is almost as
strong as in NP 6= ZPP”.
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restrictive. We start with a simple extension: if δab exists, so should δba. Specifically, we would

like the following functional equation to hold:

δabδba = e

where e is the identity function. We can achieve this if our sequence of changes consists of

invertible atomic operations. Specifically, suppose δab = fn ◦ · · · ◦ f1 where each fi has a well-

defined inverse. For example, if fi is the operation of adding a module to the pipeline, f−1
i is the

operation of deleting that module from the pipeline. Then,

δba = δ
−1
ab = f−1

1 ◦ · · · ◦ f−1
n

From now on, we assume that any function that operates on V has an inverse on a, that is, that

for every f such that f (a) = b, we can construct an f−1 such that f−1(b) = a. Note that both

functions might still be partial.

3.4 Performance
In terms of storage, the action-based model we use for history management is optimal in the

sense that it only requires O(1) storage per new version. In fact, storage cost for a vistrail file

stored in disk is dominated by the thumbnails generated for executed workflows. To give an idea

of the actual storage necessary, we computed the average action size by inspecting every vistrail

collected from students performing a set of scientific visualization tasks in a course taught at the

University of Utah (the dataset is described in more detail by Lins et al. [73]). Every action, stored

in disk takes an average of 137.6 bytes. This is computed by taking the entire XML description

of a vistrail (including annotations and tags), compressing it with the traditional ZIP tool (which

is actually how a vistrail is stored in disk), and dividing the total amount of disk space taken by

the total number of actions in all vistrails. Figure 3.4 shows a scatterplot with the distribution of

actions versus file sizes.

The obvious problem the model presents, however, is its time complexity per access of any

particular version. Without any other modification, the scheme described above requires O(d)

time to materialize any version by replaying all the actions from the root, where d is the distance

from the desired version to the root node, assuming each action requires O(1) time to execute. In

addition, d might be much larger than the size of the visualization pipeline under consideration

(call that s), so replaying through these versions is likely to take much more work than would

be necessary to produce a copy of said pipeline. For example, again using the same dataset as
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3.4: Scatterplot of file size versus action count using 251 vistrails provided by students in two
scientific visualization courses. The average action size is 137.6 bytes. One outlier was cropped
to increase plot legibility.

before, the average visualization pipeline size (combined number of modules, connections and

parameter settings) was 40.44, while the average depth of a tagged version was 118.20 (we show

a scatterplot of this in Figure 3.5). If space complexity was not an issue, it is obvious that we

could simply store every intermediate version on a vistrail of n nodes directly for a total storage

cost of O(ns) and access time O(1). Our goal is to find a trade-off between storage cost and

version access time.

More generally, this problem occurs any time a data structure changes over time and we

are required to have access to its past states. These are known as permanent data structures [60].

More specifically, if any version can only be changed once (that is, if past versions can be accessed

but not mutated), they are known as partially persistent. If any version can be changed, these

structures are known as fully persistent. One way to see the version tree proposed in this chapter

is as a data structure for fully-persistent visualization pipelines. Finally, persistent data structures

can be confluent, which means that there exists an operation to combine two versions. Since we

do not support such operations, we will not discuss them any further.
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3.5: A scatterplot that compares the depth of workflows in a vistrail and their size, measured by
the sum of module count, connection count and parameter setting. The data used here are vistrails
provided by students during two scientific visualization courses. The average workflow size is
40.44, and the average depth is 118.20. This scatterplot is slightly cropped (with about 20 outlier
workflows removed) to increase legibility.

Driscoll et al. showed how by paying close attention to the actual data structures being stored,

it is possible to achieve an optimal O(m) total space usage (where m denotes the total number of

versions) and O(1) amortized time to access any given version [29]. Their analysis and techniques

for fully persistent data structures, however, are quite involved. More importantly, they require

the data structure under investigation to be comprised of nodes of bounded in-degree, which is

not the case in our situation. We restrain ourselves to an analysis of checkpointing, which is fully

general and applies to black-box cases where we do not have any access to the data structures

aside from storing copies.

Let us first look at checkpointing for partially-persistent data structures, those whose history

is linear. It is possible to show that to minimize the worst case of space blowup or time spent per

access, we must store O(
√

n) copies of the data structures, spaced O(
√

n) versions apart from

each other. We now show that picking O(
√

n) versions uniformly at random also allows us to
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3.6: The cost of accessing a version at depth d out of n versions with a certain configuration of k
checkpoints is equal to the run of uncheckpointed versions until either a checkpoint or /0 is found.
White nodes denote uncheckpointed versions, black nodes denote checkpoints, and gray nodes
denote nodes whose status is irrelevant for the cost of the configuration. The tree root is shown
as the leftmost node.x

achieve average-time O(
√

n) time access to any version. This random technique will be combined

with an online replacement of old versions to allow O(
√

n) when n is not known in advance, such

as when users interact with the version tree and simultaneously create new versions, which is the

typical mode of operation.

Consider the selection of a version at depth d in a partially-persistent data structure with n

versions, k of which are checkpointed. Assuming O(1) cost per action, the cost of accessing this

version is equal to the run of uncheckpointed versions needed to find the checkpoint. We proceed

via a straightforward counting argument, illustrated in Figure 3.6.

If we think of a possible configuration of the checkpoints as an n-digit binary string, then by

defining a random variable C to represent the number of left-looking runs of zeros starting at digit

d, it is easy to see that its expectation is given by

Econf[C(d,n,k,conf)] =
(

n
k

)−1
(

d
(

n−1−d
k

)
+ ∑

0≤i≤d
i
(

n− i
k−1

))

with the left binomial term being the probability of not seeing any checkpoint all the way up

the root, and the binomial term inside the sum being the probability of seeing a run of length i

(we use “conf” to denote the possible configurations with k checkpoints). By assumption, the

checkpointed versions are independent of the current version picked, so the joint probability

P(d,n,k,conf) factors as P(d)P(n,k,conf). In this simple case, versions and depths stand in

one-to-one correspondence. The expectation over all possible versions is, then,
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Ed,conf[C(d,n,k,conf)] = n−1
∑

1≤d≤n−1
Econf[C(d,n,k,conf)].

Surprisingly, the expression has a simple closed form (found using Mathematica [101]):

Ed,conf[C(d,n,k,conf)] =
−2+(−3+n)+ k(2+ k +n2)

(1+ k)(2+ k)
.

Now notice we can simply choose k = n1/2 and get (−2 + 2n1/2− n + n2 + n3/2)/(2n + 3n3/2 +

n2) = O(n1/2), our desired result.

A full analysis of the optimal number of checkpoints for arbitrary trees is much more compli-

cated. It is clear that special classes of trees allow better worst-case situations (consider a balanced

binary tree: since the height is O(logn), we need no copies to achieve the O(
√

n) bound). We

would like to know if it is possible to achieve the O(
√

n) bound for general trees. Based on our

empirical data collected (and shown in Figure 3.7), the trees in history trees produced by users of

VisTrails tend to have relatively large depth. Since we expect these trees to have close to O(n)

depth, we settle by convincing ourselves that O(
√

n) checkpoints will always be enough to attain

O(
√

n) access times: that is, branching will never hurt the asymptotic expected access time.

When computing the expected cost per node, we have to account for the checkpoint versions

that might be inaccessible in separate branches of the tree. The expected cost, for any given node,

is the same to a node at the same depth in a long list with as many nodes as the tree, except that

all the branches are reglued to the back of the branch in consideration. Notice, then, that the

transplanted branches always can never have a smaller cost in the list configuration than they did

in the tree configuration, and so we are done: O(
√

n) checkpoints are enough. This is illustrated

in Figure 3.8.

We have decided to use a randomized version of checkpointing because it lends itself to a

simple online extension of the algorithm. This is desirable, since during the course of interacting

with the version tree, n will increase (say, from n to n′), and so the original checkpoints will be, on

average, O(
√

n) apart, but likely not O(
√

n′). To remedy this situation, every time a new version

if added to the version tree, a random checkpoint is created with probability 1/
√

n. This ensures

that there will be, on average, O(
√

n) checkpointed versions available. To ensure that they will be

correctly distributed, we also replace the oldest checkpointed version with the currently selected

version when the user navigates to a different version in the tree (which, under our assumption,

will be any one of the versions with equal probability). This way, the checkpointed versions

gradually “spread out” and become uniformly distributed on the version tree, regardless of the

growing.
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3.7: Scatterplot of maximum depth versus version count in 251 user vistrails containing tasks
collected from two scientific visualization courses. These trees tend to have relatively few
branches and deep nodes: note the linear trend.

3.8: The average cost of accessing nodes in a tree with n nodes and k checkpoints is never worse
than the cost of a list with the same number of nodes and checkpoints. The average cost at a depth
d includes a sum to d, and there is always a mapping of nodes (by the pigeonhole principle) from
one such list to a tree that will not increase the depth of any node.
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Notice that these checkpointed workflows contain information that is dependent on the set

of VisTrails modules currently enabled on the system. If a vistrail with checkpointed workflows

is shared, and opened in a version of the system with upgraded VisTrails packages, or missing

libraries, a linear-time pass over each checkpointed workflow can determine if the checkpoint can

be used. If it cannot, this checkpoint is simply removed from the vistrail. Section 6.6 deals with

the problem of evolution of VisTrails packages in more detail.

3.5 Distributed Operation
In this section, we describe how we use the action-based provenance mechanism to allow

several users to collaboratively, and in a distributed and disconnected fashion, modify a vistrail—

collaborators can exchange patches and/or synchronize their vistrails.

An important feature of the VisTrails provenance model is monotonicity: nodes in the vistrail

history tree are never deleted or modified—once pipeline versions are created, they never change.

Having monotonicity makes it possible to adopt a collaboration infrastructure similar to modern

version control systems (eg. GNU Arch, BitKeeper, git and DARCS), where every user’s local

copy can act as a repository for other users. This enables them to work offline, and only commit

changes they perceive as relevant.

As we discuss below, the main challenge in providing this functionality lies in keeping

consistent action timestamps—the global identifiers of actions in a vistrail. Intuitively, in a

distributed operation, two or more users might try to commit workflows with the same timestamp,

and a consistent relabeling must be ensured.

3.5.1 Synchronizing vistrails
We call vistrail synchronization the process of ensuring that two repositories share a set of

actions (or, equivalently, visualizations). Figure 3.9 gives a high-level overview of the synchro-

nization process. Because of monotonicity, to merge to history trees, it suffices to add all nodes

created in the independent versions of a vistrail. In what follows, we describe an example scenario

that illustrates the issues that must be addressed in vistrail synchronization.

Suppose user A has a vistrail which is checked out by both users B and C. User B creates a

new workflow, represented by a sequence of actions with timestamps {10, 11, 12}. Unbeknownst

to user B, user C also creates a new workflow, which happens to have overlapping timestamps:

{10, 11, 12, 13}. User C happens to commit its workflow before user B, so when B decides to

commit his changes, there will already be actions with his timestamps. The only solution is for

A to provide B with a new set of action timestamps, which A knows to be conflict free in his
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vistrail (say, {14, 15, 16}). The problem appears simple, expect B might himself have served as

a repository for user D, who checked out {10, 11, 12} before B decided to commit. If B ever

exposed his changed timestamps, a cascade of relabelings might be necessary. Worse than that,

D might be offline, or depending on the operation mode, B might even be unaware of D’s use of

the vistrail.

Our solution is based on a simple observation. Action timestamps need to be unique and

persistent, but only locally so. In other words, even if user A exposes his actions to B as a set

of timestamp values, there is no reason for B to use the same timestamps. The problem lies

exactly when actions created by user B have timestamps that may be changed in the future, when

committed to A. To avoid that, we introduce what we call relabeling maps, a set of bijective

function fi : N→ N. Each user keeps a relabeling map whose preimage is the set of timestamps

given by the parent vistrail i, and whose image is a local set of timestamps which will be exposed

in case its vistrail is used as a repository. When the user commits a set of actions, the parent

vistrail might provide a new set of timestamps (more specifically, the parent creates new entries

on its own relabeling map, and exposes new timestamps). The child vistrail’s relabeling map

then only changes the preimage. In the previous paragraph’s example, part of B’s relabeling map

preimage goes from {10, 11, 12} to {14, 15, 16}, but the image stays the same. If we call fB

the old relabeling map, and f ′B the new one, then fB(10) = f ′B(14), fB(11) = f ′B(15) and so on.

Notice that in this way, it does not matter what B’s relabeling matter is, aside from its image not

changing when B commits back to A. Since D’s repository only depends on the image of fB, D

will never be affected by any actions of B, a property essential for distributed operation.

This distribution model of vistrails allows for operation under peer failure. Using the above

example, assume User B’s hard drive fails, losing his vistrail repository. Even though the local

changes are lost, some of the data might be available in User D’s vistrail. In failure mode, we

allow D to commit changes directly to A (or any other repository). Even though this makes

it possible to prevent data loss, some redundancy becomes inevitable. Since User B’s relabeling

map has been lost, it is impossible to know the mapping between User D and User A’s timestamps.

We simply assume, then, that all actions User D wants to commit are new. The most important

feature of this operation mode is that it does not violate monotonicity. User A’s vistrail is still

valid, User C might still use User A’s vistrail, and User D will simply receive a completely new

preimage for its relabeling map. The most important feature of the scheme is that users that have

checked out User D’s vistrail need not be aware of User B’s failure.
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3.9: Synchronizing vistrails. When users collaborate in a distributed fashion (subfigures (a) and
(b)), they might create actions with the same timestamp. When these are committed to the parent
repository, some timestamps have to be changed (subfigure (c)).

3.10: Synchronizing vistrails through relabeling maps. Even though its local timestamps might
change on commits, each vistrail exposes locally consistent, unchanging timestamps to the world,
ensuring correct distributed behavior.
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3.6 Data Provenance via Process Provenance
One of the fundamental problems users face when trying to determine the provenance of a

certain file is following the chain of results generated by an exploration task. Critically, the answer

to the question “where did this file come from?” might be composed of multiple workflows that

generate and consume intermediate results. Most systems that tackle the problem of capturing

provenance focus directly on the relationship between the data products [89].

In contrast, the perspective we present in VisTrails is that it is more valuable to capture data

provenance indirectly via the processes that generated the data. Most importantly, it allows us

to very naturally answer the related question “what was the change in the underlying process

that caused these two results to be different?”. Unless a complete record of the changes in the

process is transparently and permanently stored, the burden of management is put on the user. In

addition, this related question is commonly the important one during provenance analysis [37].

The VisTrails execution log contains the records of workflow executions. By linking the record of

a file being written to disk (or an SQL “insert” statement, for example) with the related read, it is

possible to trace these data dependencies — in fact, Koop et al. describe a translation mechanism

from the VisTrails provenance model to the Open Provenance Model (OPM), which has recently

been suggested as a common model for data provenance [90]. One potential problem with this

simple approach is that the raw data files can be moved, deleted or modified.

More sophisticated mechanisms can be used to maintain the raw data [38,115]. For example,

the RHESSI Experimental Data Center [115] uses a mapping scheme to locate and retrieve data

items, and it ensures data consistency by only allowing raw data to be accessed through the

meta-data available in the database. Since VisTrails workflows are extensible by design, these

systems could be easily integrated with VisTrails via a specialized VisTrails module package.

3.7 Computing Pipeline Differences
This problem becomes much easier using the action-based provenance model. Let d1 and d2

be two vistrail nodes corresponding to the pipelines P1 and P2 respectively:

d1 = xk ◦ xk−1 ◦ · · · ◦ x1 ◦ /0

d2 = yi ◦ yi−1 ◦ · · · ◦ y1 ◦ /0.

Since all the vistrails nodes are represented by paths in a rooted tree, they all share at least one

common ancestor. Let c = xm = y j = lca(xk,yi) be the least common ancestor of xk and yi. The

common part of d1 and d2 is the path from the root of the tree down to node c, i.e., {c◦· · ·◦ /0}. The
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3.11: Computing the differences between two workflows that derive visualizations of CT data
of a lung containing pathological tissue. In VisTrails, users can select nodes (workflows) in
the vistrail tree to be compared. Here, the user selected the workflows labeled “RayCast” and
“Texture Mapped”. Their corresponding visualizations are shown on the right and the differences
between the two workflows are shown in the bottom. Modules shown in blue are present only in
“Texture Mapped”, orange modules are present only in “RayCast”, dark grey modules are present
in both workflows, and light-grey modules have different parameter values in the two versions as
shown on the bottom left for the “vtkColorTransferFunction” module.

difference computation is simple and efficient—it can be done in linear time: after obtaining the

least common ancestor of the nodes, the difference d2−d1 is represented by two lists of actions:

{xk ◦ . . .◦xm+1} and {yi ◦ . . .◦y j+1}. Using these lists, we identify the modules that are unique in

the two pipelines, and for modules that are present in both pipelines, we identify their differences

by examining setParameter actions. For display, we divide the nodes into four categories: shared

nodes, shared nodes with parameter changes, nodes that belong only to P1, and nodes that belong

only to P2. Edges are divided into shared edges, and edges that belong to P1 or P2 respectively. A

remaining issue is how to handle nodes that have been deleted and re-inserted to a given workflow.

We handle this case by inspecting module names and function signatures (although we do not do

it, another possibility is to use the matching algorithm described in Chapter 4). Obviously, the
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actual path taken from P1 to P2 might not actually encode a minimal set of such changes. However,

it does encode a path actually taken by users, and in our experience, the encoded difference seems

reasonably short and without many obviously unnecessary changes.

Figure 3.11 shows the visual difference interface provided by VisTrails. A visual difference

is enacted by dragging one node in the history tree onto another, which opens a new window

with a difference pipeline. The difference pipeline displays modules unique to the first node in

orange, modules unique to the second node in blue, modules that are the same in dark grey, and

modules that have different parameter values in light grey. The parameter changes are displayed

in a subwindow when a light grey module is selected. Using this interface, users can correlate

differences between two visualizations with differences between their corresponding pipelines.

3.8 Data Exploration through Pipeline Manipulations
Capturing provenance by recording changes applied to workflows has benefits in both uni-

formity and compactness of representation. In addition, it allows powerful data exploration

operations through direct manipulation of the history tree. First, we describe our interface for

interacting with provenance to gain a better understanding of the exploration process than a single

visualization specification provides. Second, we show that stored actions lend themselves very

naturally to reuse through a macro mechanism. Third, we describe a bulk-update mechanism

that allows the creation of a large number of visualizations of an n-dimensional slice of the

parameter space of a workflow. Finally, we describe how the differences between workflows

can be efficiently computed in the action-based model.

3.8.1 Interacting with the Process Provenance
Figures 3.12 shows an example of a history tree. Each node in the tree corresponds to one

visualization pipeline. An edge between two nodes represents one or more actions that changed

the parent pipeline. To avoid visual clutter, in addition to a full tree view, we provide a default

condensed view of the tree. The condensed view shows only the nodes that the user assigns a tag,

or nodes that form a branch in the history. Since a tag is only metadata, it can easily be changed

or even removed, thus changing the visual representation of the tree. A series of actions between

tagged nodes is represented by a “+” icon that can be expanded and collapsed with a click.

As described above, additional metadata (e.g., annotations, creator, and date of creation) is

recorded with each action and is displayed with the history tree. Annotations can be provided

by the user to facilitate searching, clarify the exploration process, and provide the additional

information that may be needed for a complete audit trail. When a node is selected, the metadata
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3.12: An overview of the version tree interface in VisTrails.

is displayed in the right panel of the history tree viewer, as shown in Figure 3.12 (left). In addition,

the creator, date information and thumbnail are incorporated as visual cues in the history tree. The

color of the nodes denotes the creator (blue nodes were created by the user and orange nodes were

created by someone else) and the saturation of the node denotes chronology (more recent nodes

are more saturated). These cues, along with the tags and annotations, allow a user to open a

previously unseen vistrail and quickly get an overview of the exploration process.

Inevitably, as a user is creating and exploring visualizations, mistakes will be made or the

tree will grow too large. Thus, we provide pruning operations that hide the extraneous nodes

(no provenance information is actually deleted). Pruning the tree can currently be performed

in two ways. The first, and simplest, pruning operation is to manually select the nodes to

be removed and press the delete key. The second pruning operation is performed through a

search and refine interface. A search will highlight only the nodes that match a query, whereas

a refine will collapse the history tree to contain only the matching nodes. Both search and refine

features use a keyword-based text input that is provided in the interface. Queries over modules,

parameters, tags, annotations, users, and dates can be performed directly by directly typing words

or by using a simple query interface. For example, a version created by “stevec” in March that
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uses a “vtkRenderer” could be queried as user:stevec date:Mar vtkRenderer. These features are

especially useful when different users share a vistrail in a database, and are similar to the use of

queries as views into a relational database [112].

3.8.2 Scalable Derivation of Visualizations
The action-oriented model also leads to a very natural means to script workflow changes. The

parameter space of a workflow d, denoted by P(d), is the set of workflows that can be generated

by changing the value of parameters of d. From xk, · · · ,xi, we can derive P(d) by tracking

addModule and deleteModule actions, and knowing P(m), the parameter space of module m,

for each module in the workflow. Each parameter can then be thought of as a basis vector for the

parameter space of d.

Using the action-based model, instances for the basis vectors can be produced by a sequence

of setParameter actions. Workflows spanning an n-dimensional subspace of P(d) are generated

as follows:

setParameter(idn,valuen)◦ · · · ◦ setParameter(id1,value1)◦d

The ability to apply bulk updates over a set of distinct workflows greatly simplifies the explo-

ration of the parameter space for a given task and provide an effective means to create a large

number of visualizations. Our bulk-update interface is accessed through a tab in the VisTrails

GUI (see Figure 3.13). The parameters that have been set throughout the pipeline are displayed

in the right column. All the parameters the user desires to explore are dragged into the main

window. Our interface allows the user to select one of four dimensions for a parameter to be

mapped to in the spreadsheet: horizontal rows, vertical columns, multiple sheets, and animations

through time in a single cell. Additionally, there are several options for defining the values to

explore. The first is a simple interpolation that occurs between a start and end parameter and is

most commonly used for simple integer or floating point values. The second is a user-specified

list that can be used for any data type. This option is intended for exploring strings such as file

names or labels. Finally, the most flexible option provides an interface for creating a Python

function that defines the values. This option is intended for providing non-linear sequences of

values for exploration.

Mapping bulk updates to a spreadsheet is relatively straightforward when the pipeline pro-

duces a single visualization. However, this is not always the case, as shown by the different slice

axes used in Figure 3.13. We provide an interface that allows the user to specify the spreadsheet

layout of multiple visualizations during bulk updates. An annotated snapshot of the pipeline is
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3.13: Visualization Spreadsheet. Parameters for a vistrail loaded in a spreadsheet cell can be
interactively modified by clicking on the cell. Cameras as well as other vistrail parameters for
different cells can be synchronized. This spreadsheet contains visualizations of MRI data of
a head and was generated procedurally with the parameter exploration interface shown on the
right. The horizontal axis varies one parameter of an image filter and the vertical axis explores
another. The interface allows the user to manage the layout of cells when multiple visualizations
are produced by one pipeline as shown above with the two views (labeled 1 and 2).

displayed that shows a number on each module that appears multiple times in the pipeline. For

example, in the figure, several modules are repeated twice and are thus assigned a “1” or a “2”

to distinguish them in the explorations. The layout of the outputs are performed using a virtual

cell interface that allows annotated cells to be stacked horizontally and vertically (shown on the

bottom right of the figure).

Note that since parameter value modifications and workflow modifications are captured uni-

formly by the action-based provenance, a similar mechanism can be used to explore spaces of

different workflow definitions. For example, if a user needs to compare visualizations generated

by different algorithms, she can create a series of visualizations using the first algorithm, and then

apply a bulk update that creates new workflows by replacing the occurrences of the first algorithm

with the second and keeping all the other modules and parameter settings intact.

The resulting functionality is similar to Jankun-Kelly and Ma’s visualization spreadsheet [58],

with the added generality of executing arbitrary VisTrails workflows, and full provenance track-

ing: a version of the visualization found via one such parameter study can be stored back in

the version tree, allowing all other provenance techniques to work seamlessly. In addition,

since VisTrails identifies and avoids redundant operations (as described in detail in Chapter 6),

workflows generated from parameter explorations can be executed efficiently—the operations

that are common to the set of affected workflows need only be executed once.



CHAPTER 4

CREATING VISUALIZATIONS BY ANALOGY

The visualization by analogy component provides a mechanism for reusing these pipelines

to construct new visualizations in a semi-automated manner—without requiring users to directly

manipulate or edit the dataflow specifications. As Figure 4.1 illustrates, this technique works by

determining the difference between a source pair of analogous visualizations, and transferring

this difference to a third visualization. This forms the basis for scalable updates: the user does

not need to have knowledge of the exact details of the three visualization dataflows to perform

the operation.

In Chapter 3, we defined a provenance model that uniformly captures changes to pipeline

and parameter values during the course of data exploration. This detailed history information,

combined with a multi-view visualization interface, simplifies the exploration process. It allows

users to navigate through a large number of visualizations, giving them the ability to return to

previous versions of a visualization, compare different pipelines and their results, and resume

explorations where they left off. Of particular importance to this chapter, we showed how the

process provenance can be promptly used to compute differences between two visualization

pipelines in the version tree.

Here, we show how this provenance information can also be used to simplify and partially

automate the construction of new visualizations. Constructing insightful visualizations is a pro-

cess that requires expertise in both visualization techniques and the domain of the data being

explored. We propose a framework that enables the effective reuse of this knowledge to aid both

expert and non-expert users in performing data exploration through visualization. When creating

visualizations, users often have to integrate new features into existing pipelines. For example, a

user may wish to improve a given visualization by adjusting parameter so they match a published

result. The user might also simply want to switch to a different visualization algorithm. In either

case, there usually exists an example that demonstrates the given technique. A user can infer the

necessary changes, and then apply them to a particular visualization. This analogical reasoning

is very powerful, and we show that visualization by analogy can be (partly) automated.
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4.1: Visualization by analogy. The user chooses a pair of visualizations to serve as an analogy
template. In this case, the pair represents a change where a file downloaded from the WWW is
smoothed. Then, the user chooses a set of other visualizations that will be used to derive new
visualizations, with the same change. These new visualizations are derived automatically. The
pipeline on the left reflects the original changes, and the one on the right reflects the changes when
translated to the last visualization on the right. The pipeline pieces to be removed are portrayed
in orange, and the ones to be added, in blue. Note that the surrounding modules do not match
exactly: the system figures out the most likely match.

Two ordered pairs are analogous if the relationship between the first pair mirrors the relation-

ship between the second pair. Therefore, if we know what the relationship is between the first

pair, and are given the first entity of the second pair, we should be able to determine the other

entity of that pair. More concretely, given a difference between δ two pipelines, we should be

able to modify an arbitrary pipeline so that the resulting changes mirror δ .

4.0.3 Updating Pipelines
Finding differences is not only a useful technique for analyzing pipelines, but it can also be

used to create new visualizations. As a reminder, in Chapter 3 we defined δ to be a function that

changes one pipeline into another, typically created as the encoding of the difference between

two pipelines.

Our ultimate goal is to apply the pipeline difference result δ to pipelines other than those used

to create it. To analyze where δ is applicable, we introduce the domain and range context of δ .

Formally, the domain context of δ , D(δ ), is the set of all pipeline primitives required to exist

for δ to be applicable. We represent these contexts as sets of identifiers. For example, if δ is a
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function that changes the file name parameter of a module with id 32, D(δ ) is the set containing

the module with id 32. Similarly, the range context of δ , R(δ ), is the set of all pipeline primitives

that were added or modified by δ . Note that D(δ−1) = R(δ ), which provides an easy way to

compute range contexts. In other words, these contexts encapsulate the partiality information of

the functions that comprise δ .

We will use the δ objects similarly to applying patches in source control systems: the dif-

ference results can be applied to modify an existing pipeline. Given a δ , it is straightforward

to apply it to a pipeline. Recall that δ is a sequence of actions that transform a pipeline. Thus,

updating a pipeline pa is as simple as computing δ (pa). Note, however, that the operation can

fail if an element of D(δ ) does not exist in pa. If we denote the set of identifiers in pa as Id(pa),

then δ (pa) will fail if D(δ )− Id(pa) 6= /0. We will now present a technique that changes δ to try

and ensure that the operation succeeds.

It is important to notice here that previously published techniques for manipulating the user’s

history can be seen as particular ways of changing δ . For example, Berlage’s selective undo

mechanism [12] allows users to manually remove a certain set of actions from the history before

applying it in a different context, which makes it possible for users to remove the violating

elements of D(δ ). Kurlander and Feiner’s macro-by-example mechanism also allows users to

explicit change the domain of the actions in consideration [67]. In our case, the objects under

consideration, visualization pipelines, are conceptually much simpler than a full-fledged vector

drawing system. As we will discuss in Section 4.3, it is this simplicity that allows us to effectively

use an automatic method for pipeline matching. This matching operation is what we turn to now.

4.0.4 Matching Pipelines
While computing pipeline differences is an integral part in reasoning about multiple vi-

sualizations, another important operation is to match similar pipelines, i.e., we wish to find

correspondences between pipelines. The result of pipeline matching can either be a binary

decision (whether the pipelines match) or a mapping between the two inputs. Note that different

metrics and thresholds can be used to determine the similarity of two pipelines. In the remainder

of this section, we discuss an approach for finding a good mapping between two pipelines.

Let D represent the set of all domain contexts and define map : V×V → (D→ D) as a

function which takes two pipelines, pa and pb, as input and produces a (partial) map from the

domain context of pa to the domain context of pc. The map may be partial in cases where elements
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of pa do not have a match in pb or vice versa. Notice that if pa < pb, map(pa, pb) = mapab is the

identity on all elements that were not added or deleted in the process of deriving pb.

To construct such a mapping, we formulate the problem as a weighted graph matching prob-

lem. Let Ga = (Va,Ea) be the graph corresponding to the pipeline pa. In a straightforward

definition, Va would be the modules in pa and Ea the connections in pa. However, one could

consider other definitions such as the dual of this representation. For Va, we define a scoring

function s : Va×Vb → [0.0,1.0] that defines the compatibility between vertices. For example,

the similarity score of two modules that are exactly the same can be set to 1.0 and the score of

modules M1 and M2 such that M1 is a subclass of M2 may be set to 0.6.

We define a matching between Ga and Gb as a set of pairs of vertices M = {(va,vb)} where

va ∈Va and vb ∈Vb. A matching is good when

∑
(va,vb)∈M

s(va,vb)

is maximized. A good matching on pipelines is one that corresponds to a good matching on their

representative graphs. Given a good matching M, we can define a mapping from pa to pb as

va→ vb for all (va,vb) ∈M.

To automate this operation, we need to compute the difference between two pipelines and ap-

ply this difference to another (possibly unrelated) pipeline. Suppose that we have three pipelines

pa, pb, pc, and wish to compute pd so that pa : pb as pc : pd . We discussed the problem of finding

the difference in Section 3.3, but recall that updating a pipeline pc with an arbitrary δ will fail if

pc does not contain the domain context of δ . When this is the case, we need to map the difference

so that it can be applied to pc.

We wish to express δab so that δab(pc) succeeds. This is exactly what mapac does; recall that

to construct this operator we need to find a match between pa and pc. More precisely, we first

compute δ ∗cb = mapac(pa, pb) and then find δ ∗cb(pc).

In summary, our algorithm is:

1. Compute the difference: δab = ∆(pa, pb)

2. Compute the map: mapac = map(pa, pc).

3. Compute the mapped difference: δ ∗cb = mapac(δab)

4. Compute pd = δ ∗cb(pc)
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4.1 A Soft Graph Matching Algorithm based on the Product Graph
In our matching algorithm, we use the standard graph representation where vertices corre-

spond to modules and edges to connections. In addition, even though we still discriminate

between input and output ports, we do not enforce directionality on the edges so that we can

diffuse similarity along them.

Recall that our goal in pipeline matching is to determine a mapping from the context of one

pipeline to another. To do so, we convert the pipelines to labeled graphs and define a scoring

function for nodes based on their labels. With a graph for each pipeline, we compute the mapping

by pairing nodes that score well and enforcing connectivity constraints between these pairs.

Let Ga and Gb be the graphs corresponding to pa and pb. For our implementation, we define

modules as vertices and connections as edges. Denote a connection between two vertices a and b

as a∼ b and define the scoring function that measures the pairwise compatibility of vertices by

c(va,vb) =
|ports(va)∩ports(vb)|
|ports(va)|+ |ports(vb)|

where ports(v) denotes the ports of the module corresponding to the vertex v. This measure em-

phasizes port matching: it gives higher scores to modules that can be more easily substituted for

each other. Such a substitution depends solely on the compatibility of the input and output ports

and not on module name or functionality. Figure 4.2 shows an example of such an approximate

matching.

Notice that this scoring function is defined only for nodes, and therefore, it does not help us

in comparing the topologies of the pipelines. While a simple maximum bipartite matching [24]

between nodes may succeed in finding a map between nodes, we would like to enforce some

neighborhood relationship constraints on the graphs. Intuitively, we want to define the similarity

between vertices as a weighted average between how compatible the modules are and how similar

their neighborhoods are. The similarity score should strike a balance between the locality of

pairwise compatibility and the overall similarity of the neighborhood. In a way, we will try to

build a matching that is progressively less local, by diffusing “potential isomorphisms” that are

easy to compute. This definition seems circular, but it leads to a simple matching technique based

on the dominant eigenvector of a Markov chain [69].

We create a graph G = Ga×Gb that combines both Ga and Gb. In this graph, we define a

vertex va,b for each pair of vertices va ∈ Va,vb ∈ Vb. Similarly, an edge vi, j ∼ vk,` exists when

vi ∼ vk in Ga and v j ∼ v` in Gb. (G is the graph categorical product of Ga and Gb.) Notice that

the connectivity of G encodes the pairwise neighborhoods of the vertices in Ga and Gb. We now
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4.2: Example of an analogy between pipelines where there is no perfect module matching. The
difference in the left pipeline pair is transferred to the right pipeline pair. Note, however, that the
modules are not the same—the system must find the most likely pairing based on the similarity
measure described in the text.

want to translate our intuitive algorithm from the previous paragraph into an iterative algorithm.

First, we need the following notation:

• πk(G) is the measure of pairwise similarity after k steps

• A(G) is the adjacency matrix of G normalized so that the sum of each row is one (a row

with sum zero is modified to be uniformly distributed)

• c(G) is the normalized vector whose elements are the scores for the paired vertices in G:

c(G) = (c(va,vb),va ∈ Ga,vb ∈ Gb)

• α is a user-defined parameter that determines the trade-off between pairwise scoring and

connectivity

To iteratively refine our estimate, we diffuse the neighborhood similarity according to the follow-

ing formula:

πk+1 = αA(G)πk +(1−α)c(G)

= MGπk.
(4.1)

The final pairwise similarity between modules is given by π∞ = limk→∞ πk. For our purposes,

c(G) gives a good measure of similarity so A(G) is used mainly to break ties between two alter-

natives. Thus, we choose a small weight for the neighborhood in our implementation (α = 0.15).
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Though this formulation makes intuitive sense, we want to ensure that repeated iteration always

converges and does so quickly.

It is clear that MG in Equation 4.1 is a linear operator; therefore, if π converges, it does so

to an eigenvector. The theory of Markov chains tells us that because of the special structure of

MG, it has spectrum (1,α,α2, · · ·) [69], and so the iteration is exactly the power method [45]

for eigenvalue calculation. Hence, the iteration will converge to the single dominant eigenvector,

and each iteration will improve the estimate linearly by 1−α . Since we are using a small α ,

this ensures quick convergence. From this iteration, we obtain π∞ which contains the relative

probabilities of va ∈ Ga and vb ∈ Gb matching for each possible pair. For each vertex in va, the

vertex in vb whose pair has the maximum value in π∞ will be considered the match. Figure 4.3

illustrates how the matchings are refined as the mapping algorithm iterates.

There are two steps involved in applying an analogy to a pipeline. First, the user defines the

analogy template by selecting the two pipelines whose difference is to be applied to another

pipeline. Second, the user selects another pipeline and applies the analogy to that pipeline,

creating a new pipeline. In VisTrails, these operations can be executed in either the version

tree pane of the builder window or the visualization spreadsheet. In either case, the application

of the analogy creates a new version in the vistrail.

In the version tree, an analogy is defined by dragging the version representing initial pipeline

to the version representing the desired result. This operation displays the difference between the

pipelines and the user is able to click a button to create an analogy from these pipelines. To apply

the analogy, the user right-clicks on the version representing the pipeline and selects the desired

analogy.

Creating and applying analogies in the VisTrails Spreadsheet is similar. The spreadsheet

supports a viewing mode and a composition mode. In the composition mode, a user can create an

analogy by dragging one cell into another cell. To apply the analogy, the user drags the pipeline

to be modified to a new cell, at which point the analogy is applied and the new visualization

displayed.

The computation of the analogy in this case is the same as the one described previously.

More concretely, for pipelines pa and pb defining the analogy and the pipeline to be updated pc,

we derive δab using the version tree. We then match Ga and Gc using the algorithm described

above to obtain mapac and use this function to compute δ ∗cb which can then be applied to pc to

produce a new pipeline pd .
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4.2 Case Studies
We present three examples that illustrate the proposed primitives.

Example 1: Updating Inputs in Multiple Pipelines In this scenario, we want to compare

different isosurface extraction techniques. In particular, we wish to investigate how resilient the

techniques are to subsampled or oversampled data. Typically, the techniques are first compared

using raw inputs. The task, then, is to update the pipelines with the new test data.

There are several ways to address this problem. The most straightforward one is to develop

a preprocessing script that converts the files. Although this is feasible, it is not desirable since it

puts the burden to manage the data on the user. At the least, it requires explicit management of

intermediate files, and it does not provide an explicit record of the desired experiment. A better

alternative is to directly create new dataflows that exercise the test regime. It is clear, however,

that this can be time consuming if the specialist must first examine each pipeline to determine

whether it needs to be updated and only then perform the required modifications.

It is therefore desirable to automate this process. With query-by-example, we can find all

matching pipelines with one operation. With analogies, we can perform the desired update once,

capture that change as an analogy and apply it to the matching pipelines. Not only does this save

time and effort, but it ensures that all pipelines are updated. In addition, each update is done in a

similar manner; the possibility that the updates are inconsistent is reduced.

In this example, we construct a query template by copying the relevant portion of the pipeline

onto the Query Canvas. This procedure returns a set of pipelines (highlighted in Figure 4.6) which

we need to update. We first update one of the pipelines by directly adding the resampling step.

Then, we define an analogy template using the original pipeline and the updated one. We apply

this analogy to automatically update the other pipelines that match the query. As result, several

new results are produced without requiring the user to manually update each individual pipeline.

Example 2: Changing a rendering algorithm In this example, we show a moderately

complex change in a pipeline that replaces an entire rendering technique with another. When

designing an effective visualization, one algorithm tends to perform better than the alternatives.

It is natural, then, that a single visualization will be tried with different algorithms. When the best

result is identified, the user must change the other visualizations to reflect this. In this example,

we show that it is possible to replace an entire algorithm by analogy.

The visualization portrayed in Figure 4.5 renders an ITK [52] scalar field in VTK [110], using

the Teem tools [61] to generate the appropriate data format. While in the original change, there
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was only one generated view, in the analogy target there are two renderings, so the system must

correctly decide the proper one to modify.

Example 3: Chaining Analogies We have discussed that one can modify a pipeline by

analogy as a single update operation. However, one can also use analogies to quickly combine

multiple examples. In this example, illustrated in Figure 4.4, we show how three different

techniques can be combined to transform a very simple pipeline into a visualization that is not

only more complicated but also more useful.

In many scientific fields, the amount of data and the need for interaction between researchers

across the world has led to the creation of online databases that store much of the domain

information required. Scientists are concerned not only with using data from these centralized

repositories but also publishing their own results for others to view. In this example, we show

how analogies can be used to modify a simple pipeline that visualizes protein data stored in a

local file to obtain data from an online database, create an enhanced visualization for that protein,

and finally publish the results as an HTML report.

We begin with a vistrail that contains pipelines that accomplish each of the individual tasks

outlined above. Specifically, we have a simple pipeline p0 that reads a file with protein data and

generates a visualization of that data. We also have pipelines p1 and p′1 where the difference

between the two is that p1 reads a local file and p′1 reads data from an online database, pipelines

p2 and p′2 where p2 features a simple line-based rendering and p′2 improves the rendering to use

a ball-and-stick model. Finally, p3 displays a visualization while p′3 generates an HTML report

that contains the visualized image.

To create the new pipeline, we compute the analogy between p1 and p′1 and apply it to p0.

Then, we compute the analogy between p2 and p′2 and apply that the result of the previous step.

Finally, we compute the analogy between p3 and p′3 and apply it. The new pipeline p∗0 prompts

the user for a protein name, uses that information to download the data for that protein, creates a

ball-and-stick visualization of the data, and embeds that image in an HTML report.

The benefits of using analogies to generate this new pipeline not only include faster results

but also a lower level of knowledge needed to modify pipelines. One can imagine a scientist who

executes a pipeline to create a visualization downloading a pipeline which publishes data to the

web and adding the same capability to their pipeline via analogy. Instead of trying to find the

correct modules and manually modifying the pipeline, the scientist can use the analogy from the

example pipeline to add the new feature automatically.
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4.3 Discussion
We argue that visualization by analogy is a useful operation that efficiently solve what are

otherwise manual, time-consuming tasks. The basic operations introduced in Section 4.0.3 rely

both on the graph structure of pipelines and on pipeline modification history. As discussed, global

comparisons of graphs are intractable in general, but the fact that visualization pipelines translate

to labeled graphs where the nodes are largely distinct allows us to define effective heuristics. We

believe that this framework can be used to develop additional primitives that significantly reduce

the amount of work required to maintain and integrate ensembles of visualizations.

The proposed primitives can be easily implemented in dataflow-based visualization systems

that provide undo/redo capabilities. As long as undo/redo operations are represented explicitly in

the system (for example, using the Command design pattern [41]), a straightforward serialization

of these would achieve the wanted capabilities. Module and connection representations may vary

across systems, but the framework and techniques apply as long as the elements can be translated

to labeled graphs.

As with most heuristics-based approaches, our approach to matching is not foolproof, and

there are cases where it may fail to produce the results a user expects. For example, if a user

applies an analogy to a pipeline that shares little or no similarity with the starting pipeline, the

matching algorithm will return a mapping which is likely to be meaningless. However, when

application of an analogy fails or produce poor results, the user can either discard or refine

the resulting pipeline: analogies always construct new pipelines—they do not modify existing

pipelines.

Analogies can be highly subjective. In some cases, applying an analogy can lead to ambiguity

and derive bad results. Figure 4.7 shows an example of an analogy that is supposed to resample

an input file before continuing with the rest of the pipeline. Instead of removing a connection

from the raw file to downstream modules, the application keeps the old connection in addition to

adding the new connection to the resampling module. In this case, a user might have to “clean up”

the results of the pipeline. Our current pairwise similarity score tries to establish a compromise

in the absence of domain-specific knowledge about modules. Formulating and incorporating

such knowledge into the matching is certainly possible and desirable. An interesting avenue

for future work is to investigate how to acquire this information in an unobtrusive way, for

example, by taking user feedback about derived analogies into account. Furthermore, our current

implementation finds the best mapping solving a maximum-weight assignment problem. There

are alternative ways of using π∞, and this investigation is part of future work.
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One important consideration when introducing new manipulation primitives is the impact

on how users interact with them. Also, to extend our analogy tool, users’ input could be used to

guide the matching process, especially in cases where the automatic construction fails. Constraint

information might be incorporated into the matching, allowing it to generate better results in

situations where the information in the pipeline definitions is not sufficient. Along the same

lines, it may be useful to allow users to explore the results of many possible matchings.

4.3.1 Matching more complicated objects
The technique described above computes a remapping between actions in different contexts.

In our case, the context is given by the pipelines. On first inspection, one could think that a

generalization would work for other types of data and actions, such as changing pieces of a

program in a text editor. Here, we present some of the particularities of the current setup that

clarify why such generalizations could fail.

One important aspect of the current algorithm that is not shared by many other editing tools is

access to semantic information about the modules being manipulated. For example, it uses the set

of available input and output ports (which is the declared interface of the module) to decide the

matching. Modern IDEs such as Eclipse also include knowledge of target language semantics,

and notably provide refactoring tools [35]. A critical difference between automatic refactoring

and a generalization of our proposal is that refactoring does not change the semantics of the code,

and so requires no external examples.

VisTrails workflow representations are “all semantics”, in a sense: the workflow graph en-

codes the semantics of the execution. In addition, if we assume that the signature generated by

the cache manager as described in Chapter 6 encodes the behavior of the module (aside from

system-level side effects such as the contents of files), then every different workflow encodes

a different behavior. This denseness of representation is not present in other languages, and

for good reason: it is undecidable to check whether Turing-complete languages produce the same

behavior, by a trivial application of Rice’s Theorem [102]. Even in domain-specific languages that

are Turing-complete, doing matching on abstract syntax trees is bound to be problematic. It might

be possible to create meaningful analogy changes in limited cases for dataflow-like language such

as Sh [83]. Even in that case, if the construction of the pipelines is done programmatically, this

is not likely to work.
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4.3: Example matching generated by the pipeline matching algorithm. Thicker edges correspond
to stronger correspondences. Notice that the correspondences get progressively better as the
algorithm iterates. This matching corresponds to Example 2 in Section 4.2.
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4.4: Creating complex pipelines by chaining simple analogies. From three simple examples, the
user creates a complex visualization that creates a web page with enhanced molecule rendering,
whose results are fetched from the Protein Database, an online macromolecular database.

4.5: Switching the rendering technique by analogy. The analogy template on the left specifies
that volume rendering modules should be replaced by isosurfacing ones. The analogy target and
the resulting pipeline are shown, together with the resulting visualization.
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4.6: Query-by-example and analogy-based updates provide a simple way for users to manipulate
multiple pipelines simultaneously. In this example, the user selects parts of a query result and
updates them all with an analogy that introduces a preprocessing module to the pipeline that
supersamples the original dataset.

4.7: A situation where creating pipelines by analogy fails. The intended effect when defining
the analogy was to replace the raw file with a preprocessing step. Note, however, that there still
is one lingering connection, highlighted in red.



CHAPTER 5

RECOMMENDING PIPELINE FRAGMENTS

User collaboration and social data reuse has proven to be a powerful mechanism in various

domains, such as recommendation systems in commercial settings (e.g., Amazon, e-Bay, Netflix),

knowledge sharing on open Web sites (e.g., Wikipedia), image labeling for computer vision (e.g.,

ESPGame [126]) and visualization creation (e.g., ManyEyes [124]). The underlying theme shared

by these systems is that they use information provided by many users to solve problems that

would be difficult otherwise. We apply a similar concept to pipeline creation: pipelines created

by many users enable the creation of visualizations by consensus. For the user, VisComplete

acts as an auto-complete mechanism for pipelines, suggesting modules and connections in a

manner similar to a Web browser suggesting URLs. The completions are presented graphically

in a way that allows the user to easily explore and accept suggestions or disregard them and

continue working as they were. Figure 5.1 shows an example of VisComplete incorporated into

the VisTrails Builder interface and Figure 5.2 shows some example completions for a single

module.

We propose a recommendation system that leverages information in a collection of pipelines

to provide advice to users of visualization systems and aid them in the construction of pipelines.

We develop a technique that uses a pipeline’s representation as a graph for predicting likely

completions. In particular, this algorithm searches for common subgraphs in the collection. We

also present an interface that displays the recommended completions in an intuitive way. Our

preliminary experiments show that VisComplete has the potential to reduce the effort and time

required to construct visualizations. We found that the suggestions derived by VisComplete could

have reduced the number of operations performed by users to construct pipelines by an average of

over 50%. Note that although in this paper we focus on the use of VisComplete for visualization

pipelines, the techniques we present can be applied to general workflow systems.
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5.1: The VisComplete suggestion system and interface. (a) A user starts by adding a module to
the pipeline. (b) The most likely completions are generated using indexed paths computed from a
database of pipelines. (c) A suggested completion is presented to the user as semi-transparent
modules and connections. The user can browse through suggestions using the interface and
choose to accept or reject the completion.

5.2: Three of the first four suggested completions for a “vtkDataSetReader” are shown along
with corresponding visualizations. The visualizations were created using these completions for a
time step of the Tokamak Reactor dataset that was not used in the training data.

5.1 Generating Data-driven Suggestions
VisComplete suggests partial completions (i.e., a set of structural changes) for pipelines as

they are being created by a user. These suggestions are derived using structural information

obtained from a collection G of already-completed pipelines.

Pipelines are specified as graphs, where nodes represent modules (or processes) and edges

determine how data flows through the modules.
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As described in Chapter 3, a pipeline is directed acyclic graph G(M,C), where M consists of

a set of modules and C is a set of connections between modules in M. A module is an object

which contains a set of input and output ports through which data flows in and out of the module.

A connection between two modules ma and mb connects an output port of ma to an input port of

mb. In this chapter, we will ignore the methods that change a module’s state. In addition, we will

mostly disconsider that a connection between two modules might be realized by different sets of

input and output ports.

The problem of deriving pipeline completions can be defined as follows. Given a partial graph

G, we wish to find a set of completions C(G) that reflect the structures that exist in a collection

of completed graphs. A completion of G, Gc, is a supergraph of G: the vertices and edges of G

are subsets of the ones in Gc.

Our solution to this problem consists of two main steps. First, we preprocess the collection

of pipelines G and create Gpath, a compact representation of G that summarizes relationships

between common structures (i.e., sequences of modules) in the collection (Section 5.1.1). Given

a partial pipeline p, completions are generated by querying Gpath to identify modules and connec-

tions that have been used in conjunction with p in the collection (Section 5.1.2).

5.1.1 Mining Pipelines
To derive completions, we need to identify graph fragments that co-occur in the collection of

pipelines G . Intuitively, if a certain fragment always appears connected to a second fragment in

our collection, we ought to predict one of those fragments when we see the other.

Because we are dealing with directed acyclic graphs, we can identify potential completions

for a vertex v in a pipeline by associating subgraphs downstream from v with those that are

upstream. A subgraph S is downstream (upstream) of a vertex v if for every v′ ∈ S, there exists a

path from v to v′ (v′ to v). In many cases where we wish to complete a graph, we will know either

the downstream or upstream structure and wish to complete the opposite direction. Note that this

problem is symmetric: we can change one problem to the other by simply reversing the direction

of the edges.

However, due to the (very) large number of possible subgraphs in G , generating predictions

based on subgraphs can be prohibitively expensive. Thus, instead of subgraphs we use paths, i.e.,

a linear sequence of connected modules. Specifically, we compute the frequencies for each path

in G . Completions are then determined by finding which path extensions are likely given the

existing paths.
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To efficiently derive completions from a collection of pipelines G , we begin by generating a

summary of all paths contained in the pipelines. Because completions are derived for a specific

vertex v in a partial pipeline (we call this vertex the completion anchor), we extract all possible

paths that end or begin with v and associate them with the vertices that are directly connected

downstream or upstream of v. Note that this leads to many fewer entries than the alternative of

extracting all possible subgraph pairs. And as we discuss in Section 5.4, paths are effective and

lead to good predictions.

More concretely, we extract all possible paths of length N, and split them into a path of length

N−1 and a single vertex. Note that we do this in both forward and reverse directions with respect

to the directed edges. This allows us to offer completions for pipeline pieces when they are built

top-down and bottom-up. The path summary Gpath is stored as a set of (path, vertex) pairs sorted

by the number of occurrences in the database and indexed by the last vertex of the path (the

anchor). Since predictions begin at the anchor vertex, indexing the path summary by this vertex

leads to faster access to the predictions.

As an example of the path summary generation, consider the graph shown in Figure 5.3. We

have the following upstream paths ending with D: A→ C→ D, B→ C→ D, C→ D, and D.

In addition, we also have the following downstream vertices: E and F . The set of correlations

between the upstream paths and downstream vertices is shown in Figure 5.3. As we compute

these correlations for all starting vertices over all graphs, some paths will have higher frequencies

than others. The frequency (or support) for the paths is used for ranking purposes: predictions

derived from paths with higher frequency are ranked higher.

A

C

B

D

E F

path vertex
A→C→ D E
A→C→ D F
B→C→ D E
B→C→ D F

C→ D E
C→ D F

D E
D F

5.3: Deriving a path summary for the vertex D.
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5.4: Predictions are iteratively refined. At each step, a prediction can be extended upstream
and downstream; in the second step, the algorithm only suggests a downstream addition. Also,
predictions in either direction may include branches in the pipeline, as shown in the center.

Besides paths, we also extract additional information that aid in the construction of comple-

tions. Because we wish to predict full pipeline structures, not just paths, we compute statistics

for the in- and out-degrees of each vertex type. This information is important in determining

where to extend a completion at each iteration (see Figure 5.4). We also extract the frequency of

connection types for each pair of modules. Since two modules can be connected through different

pairs of ports, this information allows us to predict the most frequent connection type.

5.1.2 Generating Predictions
Predicting a completion given the path summary and an anchor module v is simple: given the

set of paths associated with v, we identify the vertices that are most likely to follow these paths.

As shown in the following algorithm, we iteratively develop our list of predictions by adding new

vertices using this criteria.

GENERATE-PREDICTIONS(P)

predictions← FIRST-PREDICTION(P)
result← [ ]
while |predictions |> 0

do prediction← REMOVE-FIRST(predictions)
new-predictions← REFINE(prediction)
if |new-predictions |= 0

then result← result+prediction
else predictions← predictions+new-predictions
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At each step, we refine existing predictions by generating new predictions that add a new vertex

based on the path summary information. Note that because there can be more than one possible

new vertex, we may add more than one new prediction for each existing prediction. Figure 5.4

illustrates two steps in the prediction process.

To initialize the list of predictions, we use the specified anchor modules (provided as input).

At this point, each prediction is simply a base prediction that describes the anchor modules and

possibly how they connect to the pipeline. After initialization, we iteratively refine the list of

predictions by adding to each suggestion. Because there are a large number of predictions, we

need some criteria to order them so that users can easily locate useful results. We introduce

confidence to measure the goodness of the predictions.

Given the set of upstream (or downstream depending on which direction we are currently

predicting) paths, the confidence of a single vertex c(v) is the measure of how likely that vertex

is, given the upstream paths. To compute the confidence of a single vertex, we need to take into

account the information given by all upstream paths. For this reason, the values in Gpath are not

normalized; we use the exact counts. Then, as illustrated by Figure 5.5, we combine the counts

from each path. This means we do not need any weighting based on the frequency of paths; the

formula takes this into account automatically. Specifically,

c(v) =
∑P∈upstream(v) count(v | P)

∑P∈upstream(v) count(P)

Then, the confidence of a graph G is the product of the confidences of each of its vertices:

c(G) = ∏
v∈G

c(v)

While each vertex confidence is not entirely independent, this measure gives a reasonable ap-

proximation for the total confidence of the graph. Because we perform our predictions iteratively,

we calculate the confidence of the new prediction pi+1 as the product of the confidence of the old

prediction pi and the confidence of the new vertex v:

c(pi+1) = c(pi) · c(v)

For computational stability, our implementation uses log-confidences so the products are actually

sums.

Because we wish to derive predictions that are not just paths, our refinement step begins by

identifying the vertex in the current prediction that we wish to extend our prediction from. Recall

that we computed the average in- and out-degree for each vertex type in the mining step. Then, for
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5.5: At each iteration, we examine all upstream paths to suggest a new downstream vertex.
We select the vertex that has the largest frequency given all upstream paths. In this example,
“vtkDataSetMapper” would be the selected addition.

each vertex, we can compute the difference between the average degree for its type and its current

degree for the current prediction direction. We choose to extend completions at vertices where the

current degree is much smaller than the average degree. We also incorporate this measure into

our vertex confidence so that predictions that contain vertices with too many edges are ranked

lower:

cd(v) = c(v)+degree-difference(v)

We stop iteratively refining our predictions after a given number of steps or when no new

predictions are generated. At this point, we sort all of the suggestions by confidence and return

them. If we have too many suggestions, we can choose to prune our set of predictions at each

step by eliminating those which fall below a certain threshold.

5.1.3 Biasing the Predictions
The prediction mechanism described above relies primarily on the frequency of paths to rank

the predictions. There are, however, other factors that can be used to influence the ranking. For

example, if a user has been working on volume rendering pipelines, completions that emphasize

modules related to that technique could be ranked higher than those dealing with other techniques.

In addition, some users will prefer certain completions over others because they more closely

mirror their own work or their own pipeline structures. Again, it makes sense to bias completions

toward user preferences. We can adapt our algorithm to include such bias by incorporating a

weighting factor in the confidence computation. Specifically, we adjust our counts by weighting

the contribution of each path according to a pipeline importance factor determined by a user’s

preferences.
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5.2 Implementation
Our implementation is split into three specific steps: determining when completion should be

invoked, computing the set of possible completions, and presenting these suggestions to the user.

Computing the possible completions requires the machinery developed in the previous section.

The other steps are essential to make the approach usable. The interface, in particular, plays a

significant role in allowing users to make use of suggestions while also being able to quickly

dismiss them when they are not desired.

5.2.1 Triggering a Completion
We want to provide an environment where suggestions are offered automatically but do not

interfere with a user’s normal work patterns. There are two circumstances in pipeline creation

where it makes sense to automatically trigger a completion: when a user adds a new module

and when a user adds a new connection. In each of these cases, we are given new information

about the pipeline structure that can be used to narrow down possible completions. Because users

may also wish to invoke completion without modifying the pipeline, we also provide an explicit

command to start the completion process.

In each of the triggering situations, we begin the suggestion process by identifying the mod-

ules that serve as anchors for the completions. For new connections, we use both of the newly

connected modules, and for a user-requested completion, we use the selected module(s). How-

ever, when a user adds a new module, it is not connected to the rest of the existing pipeline.

Thus, it can be difficult to offer meaningful suggestions since we have no surrounding structure

to leverage. We address this issue by first finding the most probable connection to the existing

pipeline, and then continue with the completion process.

Finding the initial connection for an added module may be difficult when there are multiple

modules in the existing pipeline than can be connected to the new module. However, because

visual programming interfaces allow users to drag and place new modules in the pipeline, we can

use the initial position of the module to help infer a likely connection. To accomplish this, we

compute the user’s layout direction based on the existing pipeline, and locate the module that is

nearest to the new module and can be connected to it.

5.2.2 Computing the Suggestions
As outlined in the previous section, we compute possible completions that emanate from a

set of anchor modules in the existing pipeline using path summaries derived from a database of

pipelines, and rank them by their confidence values. Depending on the anchor modules, a very
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large set of completions can be derived and a user is unlikely to examine a long list of suggestions.

Therefore, we prune our predictions to avoid rare cases. This both speeds up computation and

reduces the likelihood that we provide meaningless suggestions to the user. Specifically, because

our predictions are refined iteratively, we prune a prediction if its confidence is significantly lower

than its parent’s confidence. Currently, this is implemented as a constant threshold, but we can

use knowledge of the current distribution or iteration to improve our pruning.

VisComplete provides the user with suggestions that assist in the creation of the pipeline

structure. Parameters are also essential components in visualizations, but because the choice of

parameters is frequently data-dependent, we do not integrate parameter selection with VisCom-

plete. Instead, we focus on helping users complete pipelines, and defer a discussion of the influ-

ence of parameters in visualizations to Chapter 7. Alternatively, existing systems for parameter

explorations can be readily combined with the techniques presented in this chapter [10,58,59,78].

It would certainly be beneficial to extend VisComplete to identify commonly used parameters that

a user might consider exploring, but we leave this for future work.

5.2.3 The Suggestion Interface
In concert with our goal of unobtrusiveness, we provide an intuitive and efficient interface

that enables users to explore the space of possible completions. Auto-complete interfaces for

text generally show a set of possible completions in a one-dimensional list that is refined as the

user types. For pipelines this task is more difficult because it is not feasible to show multiple

completions at once, as this would result in visual clutter. The complexity of deriving the

completion is also greater. For this reason, our interface is two-dimensional: users can select

from a list of full completions and then increase or decrease the extent of the completion.

Current text completion interfaces defer to the user by showing completions but allowing

the user to continue to type if he does not wish to use the completions. We strive for similar

behavior by automatically showing a completion along with a simple navigation panel when a

completion is triggered. The user can choose to interact with the completion interface or disregard

it completely by continuing to work, which will cause the completion interface to automatically

disappear. The navigation interface contains a set of arrows for selecting different completions

(left and right) and depths of the current completion (up and down). In addition, the rank of

the current completion is displayed to assist in the navigation and accept and cancel buttons are

provided (see Figure 5.1(c)). All of these completion actions, along with the ability to start a new

completion with a selected module, are also available in a menu and as shortcut keys.
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5.6: One of the test visualization pipelines applied to a time step of the Tokamak Reactor dataset.
VisComplete could have made many completions that would have reduced the amount of time
creating the pipeline. In this case about half of the modules and completions could have been
completed automatically.

The suggested completions appear in the interface as semi-transparent modules and connec-

tions, so that they are easy to distinguish from the existing pipeline components. The suggested

modules are also arranged in an intuitive way using a set of simple heuristics that respect the

layout of the current pipeline. The first new suggested module is always placed near the anchor

module. The offset of the new module from the anchor module is determined by averaging the

direction and distance of each module in the existing pipeline. The offset for each additional

suggested module is calculated by applying this same rule to the module it is appended to.

Branches in the suggested completion are simply offset by a constant factor. These heuristics

keep the spacing uniform and can handle upstream or downstream completions whether pipelines

are built top-down or left-right.

5.3 Use Cases
We envision VisComplete being used in different ways to simplify the task of pipeline con-

struction. In what follows, we discuss use cases which consider different types of tasks and

different user experience levels. The types of tasks performed by a user can range from the very

repetitive to the unique. Obviously, if the user performs tasks that are very similar to those in the

database of pipelines, the completions that are suggested are very full—almost the entire pipeline

can be created using one or two modules (see Figure 5.2 for examples). On the other hand, if the
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task that is being performed is not often repeated and nothing similar in the database can be found,

VisComplete will only be able to assist with smaller portions of the pipeline at a time. This can

still aid the user by showing the possible directions to proceed with pipeline construction, albeit

at a smaller scale.

The experience level of users that could take advantage of VisComplete also varies. For

a novice user, VisComplete replaces the process of searching for and tweaking an example

that will perform their desired visualization. For example, a user who is new to VTK and

desires to compute an isosurface of a volume might consult documentation to determine that

a “vtkContourFilter” module is necessary and then search online for an example pipeline using

this module. After downloading the example, they may be able to manipulate it to produce the

desired visualization. Using VisComplete, this process is simplified— the user needs only to start

the pipeline by adding a “vtkContourFilter” module and their pipeline will be constructed for

them (see Figure 5.1). Multiple possible completions can easily be explored and unlike examples

downloaded from the Web, VisComplete can customize the suggestions by providing completions

that more closely reflect a specific user’s previous or more current work.

For experienced users, VisComplete still offers substantial benefits. Because experts may not

wish to see full pipelines as completions, the default depth of the completions can be adjusted as

a preference so that only minor modifications are suggested at each step. Thus, at the smallest

completion scale, a user can leverage just the initial connection completion to automatically con-

nect new modules to their pipeline. The user could also choose to ignore suggested completions

as they add modules until the pipeline is specific enough to shrink the number of suggestions.

Unlike the novice user who may iterate through many suggestions at each step, the experienced

user will likely choose to ignore the suggestions until they provide the desired completion on the

first try.

5.4 Evaluation
5.4.1 Data and Validation Process

To evaluate the effectiveness of our completion technique, we used a set containing 2875

visualization pipelines along with logs of the actions used to construct each pipeline. These

pipelines were constructed by 30 students during a scientific visualization course.1 Throughout

the semester, the students were assigned five different tasks and carried them out using the

1http://www.vistrails.org/index.php/SciVisFall2007
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VisTrails system, which captures detailed provenance of the pipeline design process: the series

of the actions a user followed to create and refine a set of related pipelines [36].

The first four tasks were straightforward and required little experimentation, but the final

task was open-ended; users were given a dataset without any restrictions on the use of available

visualization techniques. As these users learned about various techniques over the semester, their

proficiency in the area of visualization presumably progressed from a novice level toward the

expert level.

To predict the performance gains VisComplete might attain, we created user models based on

the provenance logs captured by VisTrails. User modeling has been used in the HCI community

for many years [18, 19], and we employed a low-level model for our evaluation. Specifically, we

assumed that at each step of the pipeline construction process, a VisComplete user would either

modify the pipeline according to the current action from the log or select a completion that adds

a part of the pipeline they would eventually need. We assumed that a user would examine at most

ten completions and could select a subgraph of any of these suggestions.

Because VisComplete requires a collection of pipelines to derive suggestions, we divided our

dataset into training and test sets. The training sets were used to construct the path summaries

while the test sets were used with the user models to measure performance.

We note that this model presumes a user’s foreknowledge of the completed pipeline, and this

certainly is not always the case. Still, we believe this simple model approximates user behavior

well enough to gauge performance. We also assumed a greedy approach in our model; a user

would always take the largest completion that matched their final pipeline. Note that this might

not always yield the best performance because the quality of the suggestions may improve as the

pipeline is further specified.

5.4.2 Results
Figure 5.6 shows one of the test pipelines with the components that VisComplete could have

completed highlighted along with its resulting visualization. To evaluate the situation where a set

of users create pipelines that all tend to follow a similar template, we performed a leave-one-out

test for each task in our dataset. Figure 5.7 shows that our suggestion algorithm could have

eliminated over 50%, on average, of the pipeline construction operations for each task. Because

Task 1 was more structured than the other tasks, it achieved a higher percentage of reduction.

Because Task 4 was more open-ended, although the average percentage is also high, the results
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5.7: Box plot of the percentages of operations that could be completed per task (higher is better).
The statistics were generated for each user by taking them out of the training data.

show a wider variation (between 30% and 75%). This indicates that the completion interface can

be faster and more intuitive than manually choosing a template.

Because it is much more likely that our collection will contain pipelines from a variety of

tasks, we also evaluated two cases that examined the type of knowledge captured by the pipelines.

Since Task 5 was more open-ended and completed after the other four tasks, we expected that

most users would be proficient using the tool and closer to the expert user described in Section 5.3.

We ran the completion results using Tasks 1 through 4 as the training data (2250 pipelines) and

Task 5 (625 pipelines) as the test data to represent a case where novice users are helping expert

users, but we also ran this test in reverse to determine if pipelines from expert users can aid

beginners. Figure 5.8 shows that both tests achieved similar results; this implies that the variety

of pipelines from the four novice tasks balanced the knowledge captured in the expert pipelines.

Our testing assumed that users would examine up to ten full completions before quitting.

In reality, it is likely that users would give up even quicker. To evaluate how many predictions

a user might need to examine before finding the desired completion, we recorded the index of

the chosen completion in our tests. Figure 5.9 shows that the the chosen completion was almost

always among the first four. Note that we excluded completions that only specified the connection
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5.8: Box plot of the percentages of operations that could be completed given two types of tasks,
novice and expert. The statistics were generated by evaluating the novice tasks using the expert
tasks as training data (novice) and by evaluating the expert tasks using the novice tasks as training
data (expert).

between the new module and the existing pipeline because these trivial completions are possible

at each prediction index.

Our results show that VisComplete can significantly reduce the number of operations required

during pipeline construction. In addition, the completion percentages might be higher if our

technique were available to the users because it would likely change user’s work patterns. For

example, a user might select a completion that contains most of the structure they require plus

some extraneous components and then delete or replace the extra pieces. Such a completion

would almost certainly save the user time but was not captured with our user model. Finally, the

parameters (e.g., pruning threshold, degree weighting) for the completion algorithms were not

tuned. We plan to evaluate these settings to possibly improve our results.

The completion examples shown in the figures of this paper, with the exception of Figure 5.6,

used the entire collection of pipelines to generate predictions. Figure 5.6 used only the pipelines

from Tasks 1–4.

5.5 Discussion
To our knowledge, VisComplete is the first approach for automatically suggesting pipeline

completions using a database of existing pipelines. As large volumes of data continue to be

generated and stored and as analyses and visualizations grow in complexity, the creation of new

content by consensus and the ability to learn by example are essential to enable a broader use of

data analysis and visualization tools.
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5.9: Box plot of the average prediction index that was used for the completions in Figure 5.7
(lower is better). These statistics provide a measure of how many suggestions the user would
have to examine before the correct one was found.

The major difference between our automatic pipeline completion technique and the related

work on creating pipelines by analogy presented in Chapter 4 is that instead of using a single,

known sequence of pipeline actions, our method uses an entire database of pipelines. Thus,

instead of completing a pipeline based on a single example, VisComplete uses many examples.

A second important difference is that instead of predicting a new set of actions, our method

currently predicts new structure regardless of the ordering of the additions. This also means that

VisComplete only adds to the structure while analogies will delete from the structure as well.

By incorporating more provenance information, as in analogies, VisComplete might be able to

leverage more information about the order in which additions to a pipeline are made. This could

improve the quality of the suggested completions.

We note that there will be situations where data about the types of completions that should

occur are not available. Also, some suggestions might not correspond to the user’s desires. If there

are no completions, VisComplete will not derive any suggestions. If there are completions that do

not help, the user can dismiss them by either continuing their normal work or by explicitly cancel-

ing completion. Currently we determine the completions in an offline step (by pre-computing the

path summary as described in Section 5.1). We could update the path summary as new pipelines



63

are added to the repository, incorporating new pipelines as they are created. In addition, we could

learn from user feedback by, for example, allowing users to remove suggestions that they do not

want to see again. Completions could be further refined by assigning greater weight to those that

more closely mirror the current user’s actions, even if they are not the most likely in the database.

One important aspect of our technique is that it leverages the visual programming environment

available in many visualization systems. In fact, it would be difficult to offer suggestions without a

visual environment in which to display the structural changes. In addition, the information for the

completions comes from the fact that we have structural pipelines from previous work. Without

an interface to construct pipeline structures, it would be more difficult to process the data used

to generate completions. However, we should note that turnkey applications that are based on

workflow systems, such as ParaView [62], may also be able to take advantage of completions in

a more limited way by providing a more intelligent set of default settings for the user during their

explorations.

5.6 Conclusions and Future Work
We have described VisComplete, a new method for aiding in the design of visualization

pipelines that leverages a database of existing pipelines. We have demonstrated that suitable

pipeline fragments can be computed from the database and used to complete new pipelines in

real-time. Furthermore, we have shown how these completions can be presented to the user in an

intuitive way that can potentially reduce the time required to create pipelines. Our results indicate

that substantial effort can be saved using this method for both novice and expert users.

There are several areas of future work that we would like to pursue. As described above,

we would like to update the database of pipelines incrementally, thus allowing the completions

to be refined based on current information and feedback from the user. We plan to refine the

quality of the results by formally investigating the confidence measure and its parameters. We

would also like to explore suggesting finished pipelines from the database in addition to the

constructed completions we currently generate. For finished pipelines, we could display not only

the completed pipeline structure but also a thumbnail of the result from an execution of that

pipeline. While the evaluation presented in Section 5.4 presents good preliminary evidence of

the quality of the predictions generated, it critically does not consider the interplay between

the usability of the user interface we designed for VisComplete and the effectiveness of the

predictions. That is best addressed by a user study.
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THE VISTRAILS EXECUTION MODEL

This chapter describes the execution model used for pipelines in VisTrails. The execution

engine in VisTrails was designed with the following goals in mind. First, the set of execution

modules in VisTrails should be extensible, so that it is easy to include third-party functionality in

VisTrails. Second, VisTrails should try to accommodate the styles used for commonly wrapping

third-party scientific visualization and computation software. In particular, VisTrails was de-

signed to easily support application libraries written in either of the following styles: precompiled

binaries that are executed on a shell and use files as input/outputs, or C++/Java/Python class

libraries that pass internal objects as input/output. Finally, because of its focus on exploratory

data visualization and analysis, VisTrails should try to take advantage of the common pieces of

pipelines executed in the process, to make the execution more efficient.

We satisfy the first requirement by allowing new classes to be included in VisTrails by what

we call module packages. Concretely, these are user-defined Python modules. Inside these

modules, the user defines custom classes that subclass from a basic VisTrails execution module

simply called Module. These subclasses implement a simple interface that defines the appropriate

custom behavior. We will describe this in detail in Section 6.1.

The second requirement means that VisTrails should be as lenient as possible when it comes

to its data model. In particular, this means that the VisTrails dataflow model is somewhat different

than architectures that provide a stark distinction between the data types being processed and the

classes that perform the processing (typically called “filters”). In VisTrails, the module class

hierarchy and the data class hierarchy are the same. The prototypical example is a module that

might, for example, produce as output an object of its own type. This is very similar to the

object type systems of Java and C++, and the choice was not accidental: it was very important

for us to support automatic wrapping of large class libraries. For example, VisTrails users have

automatically wrapped class libraries such as the ones in ITK and SCIRun. It is not clear that this

would be possible with a more structured data model. We note, in addition, that the model that

separates data and filter types is strictly included in our type model.
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To satisfy the third requirement, we have designed and implemented a caching mechanism

that reuses pipeline pieces from previous executions. In exploratory visualization, we expect

similar pipelines to be executed in close succession, and so it is wasteful to require re-execution

of identical fragments of a pipeline. Because we reuse previous execution results, we implicitly

assume that modules are functional: given the same inputs, modules will produce the same out-

puts. This requirement imposes definite behavior restrictions on classes, but we believe they are

reasonable. If we intend VisTrails to be a vehicle for disseminating scientific results and facilitate

reproducibility, allowing modules to violate this requirement and behave in a non-deterministic

way would undermine most of our other design goals. There exist, on the other hand, obvious

situations where this behavior is unattainable. Some modules might be executed solely for the

side effects that occur during its execution, not because of the data produced as a result of their

execution (uploading a file to a remote server or saving a file to disk, for example). Other modules

might use randomization, and their non-determinism might be desirable. We discuss these issues

in more detail in Section 6.2.1

The process provenance model described in Chapter 3 is appropriate for managing changes

in the workflows. In exploratory analysis, however, the actual modules themselves might change

in the course of an analysis. For example, bugs might be uncovered or modules might require

new input parameters. These are changes in both the implementation and interface of Module

subclasses. In Section 6.6, we describe how VisTrails allows changes to these modules to be

instrumented such that workflows that use obsolete module versions are still at least partially

supported.

6.1 The VisTrails Module
This section provides an overview of the implementation aspects of user-defined classes. A

more developer-oriented explanation is provided in the VisTrails User’s Guide [6].

Every module that is executed in VisTrails is an instance of a subclass of Module. This class

defines the basic interface that user-defined modules implement. In the most basic setting, the user

simply defines a new compute method, which is invoked after all the inputs of the module have

been computed. These inputs modules are made available to the current module via its input ports,

for which data can be requested. Hence, the compute methods for the modules in a pipeline are

invoked sequentially. If a module does not spawn new threads, the execution will be inherently

single-threaded. Notice, however, that the module inputs and outputs are full-fledged Python
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objects, and so it is easy to overcome this limitation by deferring the actual module computation

to methods in the data types being passed by the pipeline.

To simplify the typechecking algorithms for input and output ports, we require that VisTrails

modules to be singly inherited for the base class Module. The Python class declaration itself

can use multiple inheritance, but ultimately, there should be only one inheritance path to Module

from any user-defined module.

6.1.1 Defining Inputs and Outputs
The input and output of a new module are explicitly defined by the class declaration itself,

via the class variables input ports and output ports, which will hold a list of port dec-

larations. Each port declaration specifies the data type supported by each port. These type

declarations are used by the pipeline building stage to ensure that connections between an output

and an input port are compatible. A connection is defined to be compatible when the output port’s

module type is a subtype of the input port’s module type. This closely matches the Java and C++

type model for a parameters in a function call. In C++ and Java, the parameter used in the call

must provide at least the interface required by the declared type. The function declaration in a

C++ program corresponds to the input port of a VisTrails module: it is an interface requirement.

It is important to emphasize that the type-checking is only performed at pipeline building

time. During the execution of a pipeline, VisTrails does not verify whether the output emitted by

a module in a port actually obeys the specified interface. While this (deliberate) choice makes

debugging of incorrectly programmed modules harder, modules are then free to break the type

system if it becomes too restrictive. Since one of the stated goals of the VisTrails execution

model is to be as lenient as possible in its data model, we see this as a compromise that allows for

convenient design-time type checking while not necessarily restricting the flow of data that can

be defined. In addition, the type checking in VisTrails can be overridden by declaring a port type

to be of type Variant. This is declaration is interpreted to mean that static type-checking should

be disabled for this port, and so every connection with it is allowed.

6.2 The VisTrails Cache Manager
The VisTrails Cache Manager schedules the execution of modules in VisTrails. From a high-

level perspective, the goal of the Cache Manager is to analyze a visualization pipeline description

to determine whether some of its fragments pipeline have already been executed. In that case, the

Cache Manager simply reuses these pieces. In this session, we provide a more detailed description

of the process.
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INSTANTIATE-PIPELINE(p̃)
1 s← SIGNATURES(p̃)
2 m←{}
3 for m̃ ∈ FIRING-ORDER(p̃)
4 do if s[m̃] ∈ cache
5 then m[m̃]← cache[s[m̃]]
6 else new-module← NEW-MODULE(m̃)
7 CONNECT-MODULES(new-module, p̃,s)
8 cache[s[m̃]]← new-module
9 return m

6.1: Basic procedure to instantiate a set of execution modules given a description of a pipeline.

Definition 1 Given a visualization pipeline, its defining graph is the (directed acyclic) graph with

one vertex for each module and an edge for each connection such that vertices and edges stand

in one-to-one correspondence with the modules and connections.

Definition 2 Given two visualization pipelines P1 and P2, P2 is a subpipeline of P1 if the defining

graph of P2 is a subgraph of the defining graph of P1.

Definition 3 Given the standard partial order � induced by the defining graph of a pipeline P,

a pipeline fragment corresponding to a module m ∈M(P) and vertex v in the defining subgraph

is the subpipeline P′ consisting of all modules with the corresponding vertices v′ such that v′ � v.

The connection set of P′ is one such that if there exists a connection between v1 and v2 in P, this

connection is also present in P′.

Combined with the assumption made by the VisTrails execution model that modules are

functional, we can see that the output generated by any module being executed is completely

determined by its pipeline fragment. The main mechanism of behind the Cache Manager is a

procedure that computes for each pipeline fragment a concise signature. When a new pipeline

is scheduled for execution, the Cache Manager computes these signatures for all fragments, and

checks against fragments that have already been executed. If the signatures match, a new module

is not instantiated: the new execution pipeline simply shares the already existing fragment. In a

sense, the cache acts as a persistent set of modules, and the Cache Manager decides when to add

new modules to it and when to reuse parts of it. The procedure is shown in Figure 6.1.

Notice that the results generated by each pipeline fragment are not explicitly referenced in the

cache. While the earliest implementation of this caching mechanism described by Bavoil et al.
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is effective for caching intermediate results for pipelines of VTK modules, the scheme described

here is conceptually simpler and actually closer to the interpretation of the VisTrails cache as a

tabled Datalog program given in the paper [10].

We now turn to the computation of the actual pipeline fragment signatures. As can be seen

from Figure 6.1, these signatures are used as keys in a hash table of module references returned

by . More specifically, they are 256-bit digests produced by SHA-256, an algorithm designed

to generate cryptographically safe hashes [26]. SHA-256 computes signatures from arbitrarily

long strings. Notice, however, that a digest from SHA-256 is also a string whose signature can

also be computed. We exploit this to build pipeline fragment signatures hierarchically: first,

we build signatures for modules such that different modules will have different signatures. We

then use these module signatures to compute signatures for the corresponding connections by

concatenating the module signatures with the appropriate connection information, and computing

the digest of this string.

If a module has no incoming connections, then the pipeline fragment signature is defined to

be the module signature (in this case, we call the pipeline fragment “atomic”). The other pipeline

fragment signatures are computed by structural induction on the depth of a module, where the

depth d of a module m, d(m) is defined to be the smallest integer such that d(m) > d(m′), for

all m′ ≺ m. This way, a module of depth k has access to pipeline fragment signatures of depth

k− 1. Each of these pipeline fragments is connected to the module via some connection. We

combine the signature of this connection with the pipeline fragment’s to obtain a list of composite

signatures, one for each pair. We now have to combine these signatures somehow. Notice that we

have to find one consistent permutation of the list, such that if subsequently, a pipeline fragment

contains the same connections and fragments, the computed signature has to be the same. We do

this by simply sorting the list of signatures, and then concatenating them in order, together with

the signature of the current module. The signature of this larger string is extremely likely to be

unique because of the design of SHA-256 [26]. The pseudo-code for this procedure is given in

Figure 6.2.

6.2.1 Selectively disabling the cache
Essentially every pipeline that is executed in VisTrails will, at some point, perform an op-

eration with side effects. Most often, this side effect will be the data from a pipeline fragment

being displayed on screen, but some pipelines will save files to disk, or upload the results to a

remote server. These modules are not functional: different executions with the same data might
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FRAGMENT-SIGNATURE(fragment)
1 if IS-ATOMIC(fragment)
2 then return MODULE-SIGNATURE(fragment)
3 else fragment-ids←{}
4 for fragment ∈ UPSTREAM-FRAGMENTS(fragment)
5 do id← FRAGMENT-SIGNATURE(fragment)
6 conn← FRAGMENT-CONNECTION(fragment)
7 conn-id← CONNECTION-SIGNATURE(conn)
8 fragment-ids← fragment-ids∪{id⊕conn-id}
9 result← 0

10 for id ∈ SORTED(fragment-ids)
11 do result← result⊕ id
12 return result

6.2: Generation of a signature for a pipeline fragment. In the pseudocode, ⊕ denotes the generation of an
SHA-256 digest from two other SHA-256 digests, as described in the text.

6.3: In order to execute the first pipeline, the cache manager first determines the data dependencies among
its modules. It then decomposes it into a series of subnetworks that generate the intermediate results for
this pipeline (steps 1–5). Each intermediate result is associated with a unique identifier in the cache. Gray
nodes represent non-cacheable modules; yellow nodes indicate cacheable modules; and red nodes indicate
vistrail modules that are replaced with cache lookups. Ghosted modules are not present in the subnetworks,
but they contribute to the construction of subnetwork cache keys. When the second pipeline is scheduled
for execution (step 6), the results for the Reader-Isosurface fragment previously computed for Pipeline
1 (in step 4) are reused. Thus, Pipeline 2 requires fewer expensive computations.

yield observably different results for the user. Hence, the execution model in VisTrails needs

to selectively disable the caching behavior for these modules. We solve this issue by adding a

method to the interface of Module called is cacheable. This method, by default, returns true

inconditionally. When a pipeline gets scheduled for execution, VisTrails first scans the list of

modules in the cache and calls is cacheable for each of these. All the modules that return false

are simply removed from the cache.
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User-defined Signatures Another important feature of the caching mechanism in VisTrails

is that user-defined modules are free to define their own signatures. Modules that define their own

signatures have an associated Python function that returns the correct signature that is declared at

the level of a VisTrails package.

The hashing algorithm as defined above can distinguish pipeline fragments with different

components. In some cases, however, some parameters or inputs do not actually affect the

generated output. For example, some inputs might be used only for performance purposes. If

these modules use the basic signature generating algorithm, the Cache Manager will assume that

these modules generate different data, which will be potentially wasteful: if the results have

been previously computed, parameters that control performance are irrelevant. A user-defined

signature computation might allow a module to simply ignore these parameters when computing

the signature.

6.3 Performance
The performance gains obtained by caching are heavily dependent on the set of vistrails used

in a given session. For instance, for both the brain and visible human case studies (shown in

Figures 6.4 and 2.1), where there is substantial overlap, caching leads to speedups that vary

between 2 and 2.5 times, computed over the execution of all the visualizations. For the CORIE

case study, on the other hand, there is no overlap among the vistrails. In this case, the caching

mechanism actually incurs overhead. However, it is very small – under 1 percent.

Changes to class design and algorithms have the potential to improve the efficiency of the

VCM. In particular, some techniques require substantial preprocessing steps to enable faster

update times, e.g., the out-of-core isosurface technique of Chiang et al. [21]. In order to leverage

these techniques with the conventional VTK pipeline, it is necessary to explicitly enforce the

availability of the required index structures for subsequent operations – and this requires pro-

gramming. In contrast, the VCM achieves the same behavior in a transparent (and automatic)

fashion.

Increasing the number of synchronized views in a spreadsheet has a direct effect on the

rendering frame rate. The reason is obvious: all views share a single GPU and the overall frame

rates depend highly on the combined complexity of the models being shown. In practice, if the

frame rate is too slow to interact with a given group of views, we can disable synchronization and

interact with a single view until the desired viewpoint and/or values are determined. At that time,

we turn synchronization back on. A comprehensive solution to this problem requires the avail-
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6.4: When executing many related visualization pipelines such as the ones shown in this
parameter exploration, the efficiency gains of a caching scheme can be substantial.

ability of time-critical dynamic level-of-detail rendering algorithms for each of the types of data

supported by the system. The development of these renderers is an active area of research [77].

In the context of visual programming systems for visualization, it would be interesting to explore

data-driven approaches such as the one described in Chapter 5 to automatically suggest a more

efficient version of a pipeline that is likely to not be particularly efficient.

6.3.1 Cache Replacement Strategy
As any caching system, VisTrails needs to apply some cache replacement policy. Since entries

in the cache have different memory footprints and modules may have widely different execution

times, traditional cache replacement techniques might be inappropriate. Because VisTrails mod-

ules are arbitrary Python objects, determining their memory usage is not trivial. For example,

some modules might return indices into data produced by other modules. By simply inspecting

the outputs produced, a memory manager might overestimate the amount of memory being used



72

by a module. Our solution for this problem is to have a VisTrails object report its total memory

allocated during this execution. We also note that using some operating system mechanism to

inspect the memory usage before and after the module executes does not work in general, because

libraries (or even the operating systems themselves) often perform their own heap management,

including memory preallocation.

The best the VisTrails cache manager can do, then, is to monitor the total memory usage

as reported by the instantiated modules, and when this figure exceeds a user-specified amount

(the current default setting in VisTrails is half the total main memory reported by the operating

system), to purge the cache according to some strategy. Currently, when VisTrails reaches this

limits, it purges the cache down to 50% memory utilization.

In traditional cache management algorithms, every object under management has the same

size. In this context, the optimal strategy was formalized by Belady’s theoretical MIN algo-

rithm [11], which states that the optimal algorithm will remove the page which will not be used

for the longest time in the future. Clearly this algorithm cannot be implemented, but it serves

as a comparison for other strategies. The popular LRU strategy (Least Recently Used) assumes

that an object that has not been accessed recently will tend to stay in that way, thus trying to

approximate MIN’s behavior without actually peeking into the future.

The argument presented by Belady can be adapted to the slightly more complicated case in

VisTrails, where different objects have different sizes. The goal of MIN’s behavior is to free the

page which wants to come back to the cache the least, or, equivalently, to find the “most secure

spot” in the cache for new data. In a sense, it is trying to find the biggest chunk of “space-time”

that is going to be available in the future. In the case of objects with different sizes, then, the

ideal strategy is then to minimize, for each object, the product of object size and time until future

usage. In the case of VisTrails, we define a variant of LRU that assumes that if an object was

accessed t units of time ago, it will only be become needed t units of time in the future, and use

that as the estimate for time until future usage. The worst-ranked objects are then removed until

enough memory is again available.

An undesirable property of this scheme is that as time progresses, two objects that have

not been touched in the cache might actually swap positions in the removal ordering: relatively

large objects become progressively bad in the ordering as wall time progresses. This behavior is

illustrated in Figure 6.5. Notice that this scheme also currently assumes that the time to “retrieve

the object”, that is, the time for a module to finish executing, is constant, regardless of what

object it is. While this is obviously not the case, and although we can reasonably expect that a
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6.5: One of the properties of the cache replacement algorithm in VisTrails is that the ranking
of the objects under consideration changes. Object A was last accessed at time t1, and Object
B, at t2. At t3, Object A fares worse than Object B (as illustrated by the area of the rectangle it
spans). At t4, however, Object B fares worse than Object A. In general, larger objects will rank
progressively worse and tend to be removed from the cache.

future execution will take about as long as the previous one has, a more complete study of caching

strategies remains as future work.In fact, in early prototypes of VisTrails, the caching replacement

strategy was to simply clear the cache every time the memory usage became unacceptably high,

which provides evidence that thrashing the cache is not a critical issue.

Another feature that should be noted in the VisTrails cache replacement algorithm is that

the removal of one module induces the removal of all modules that depend on it, because it is

impossible, in general, for VisTrails to know if the data associated with a module being removed

will still be used by downstream modules. Ideally these downstream modules should also be

included in the analysis of which object to remove, but for the sake of simplicity, we chose to

ignore them.

6.4 Differences between Module Parameters and Input Ports:
Instantiating a VisTrails Workflow

From a user’s perspective, it is convenient to present all of the state pertaining to a Module

in a single location. In VisTrails, this state is shown in the Module Method pane, as shown
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in Figure 6.7. The method pane shows, for a single module, all the possible parameter names

together with the appropriate type of data they accept so that the user can appropriately configure

the module’s behavior. Since most methods in VisTrails take a single parameter, in this section

we use the terms “parameter” and “method” interchangeably. might be worth it to fix this.

Note that values set in this pane are determined by the user’s interaction with the GUI prior

to the execution of the workflow, and are, in a sense, “constant”: they cannot depend on data

results upstream of the module. At the same time, it makes little sense to disallow values of

these methods to be computed by upstream modules. The implementation of Module classes in

VisTrails should then, satisfy the following requirements:

1. Module state that can sensibly be manually entered should be explicitly listed in the GUI

so users can set method values;

2. These methods should also be used as regular input ports in the case that the value needs to

be computed by upstream modules; and

3. The API for accessing module inputs during module executions should make as few dis-

tinctions as possible between state set as method and inputs set through input ports.

The solution we have designed in VisTrails is to fix a special input and output types to be

the only possible candidates for the Method pane. In particular, when the designer of a module

specifies the possible input and output ports (as previously described in Section 6.1.1), only the

input types that are subclasses of Constant will be shown in the Method pane. This has several

advantages. The Constant class defines an interface that its subclasses must implement which

includes functions to create GUI widgets for the user to select appropriate values and serialization

of the the data type’s values. This allows module designers to include custom GUIs for complex

data, such as the transfer functions present in modern volume visualization tools [63]. In the

workflow view, only the port types that are not subclasses of Constant show up as input ports

by default. This is simply meant to avoid clutter, and all ports can be made visible by an easily

accessible menu option. We have found out, in practice, that most of the time Constant port

types are indeed used for constant data.

This allows us to completely remove the distinction between method state and connection

inputs at the API level. When a workflow is scheduled for execution, all methods set in a module

are instantiated as regular modules of the specified type, and connected to the appropriate input

port. At the API level, then, methods essentially do not exist. The instantiation is illustrated in
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6.6: When a workflow is scheduled for execution, the methods of a module are instantiated
as additional executable modules. This simplifies the implementation of Module subclasses by
VisTrails users, and the interplay of method specification and caching functionality.

6.7: The state settings for a particular module are shown in the Module Method pane.

Figure 6.6.Describe how to avoid circularity in executing constants, since they need to get their

values from somewhere.
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6.5 Managing User interactions
The process provenance model presented in Chapter 3 appropriately manages and stores the

branching exploration history of a user’s session in VisTrails. Much of the exploration in a

visualization session, however, happens interactively, after the user has executed the workflow.

This exploration can consist, for example, of picking the correct camera angle or volume clipping

plane. Jon Claerbout, one of the earliest scientists to have tackled the problem of reproducibility

of computational results, states that “dependence on an interactive program can be a form of

slavery (nonreproducible research)” [23]. However, it is impossible to argue with the power of

interactive techniques in exploratory data analysis. In fact, it could be argued that interactivity

is one of the most important aspects of the exploration process. In this section we show how

VisTrails supports capturing this aspect of the visualization exploration process in the provenance

model.

Jankun-Kelly, Ma and Gertz propose the pset-calculus (“pset” stands for parameter set) for

this type of situation [59]. We could have implemented their technique in VisTrails as a way to

factor the exploration process in two phases: before workflow execution, and after. We decided

against it for several reasons. First, our solution expresses this step of the exploration process

directly in terms of VisTrails actions, and we see the uniformity of the resulting model as an

advantage. Second, while it is the case that most of the exploration process in this stage happens

by changing parameters, there still exist some user interactions that are better modeled by adding

extra modules and connections to the underlying workflow (specifying a camera angle when

none existed before is an example that requires a new module in the workflow). This means

that a solution based purely on tracking parameters would fail to capture part of the possible

exploration.

The solution we adopt is to allow user-defined executed modules to post events from the

execution objects back to the provenance tracking engine. These events contain the actions

necessary to bring the executed workflow to the one currently expressed after the execution.

These actions are then simply added to the version tree. Care must be taken, however, in the

case that many modules in a single workflow generate the same signature and are thus mapped

to a single object in the cache. In this case, the action by a single executed object needs to be

translated into many different actions, to ensure that all the objects in the workflow are updates

correctly. It would be hard, in general, to guarantee that the actions posted by the execution

object actually correspond to the change performed by the user, and so VisTrails assumes the

action specifications are, in fact, accurate.
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6.6 Managing changing Module specifications
In the course of using VisTrails for data analysis and exploration, sometimes a user will have

to change some of the modules in the VisTrails packages she might have created, or some of the

system libraries. The reasons for this are the same as for the reasons for changing a workflow

during the course of the exploration. The same motivations that we previously gave for the

need to keep the process provenance then clearly apply for the underlying libraries and VisTrails

packages. More importantly, the danger of not doing so is the same – for example, it is hard to

enforce reproducibility of results, and also harder to effectively share the workflows. In fact, in

the course of one of the evaluation studies we performed with VisTrails (described in Chapter 8),

one expert reviewer pointed out that versioning of external packages was one aspect of the process

provenance that VisTrails simply did not keep track of.

While we would ideally like to have a system in which every possible dependency is tracked,

this would require a significantly different approach to the one we have taken with VisTrails. To

give but one example, even current operating systems have fairly complex system-level mecha-

nisms for resolving different library versions, such as GNU ld’s version scripts [44], so it seems

that in a fundamental level, shared library versioning is still very much an open problem. In the

current version of VisTrails, then, there is no support for concurrent versions of shared libraries

to be present at any given time. Still, modules can output the library versions that they use to

the execution log. This way, if two execution runs produce unexpectedly different results in two

different environments, it is possible to at least compare the execution runs to check whether

different library versions can explain the change. Currently, it is the responsibility of the module

designer to report the appropriate logging information, but there are possible alternatives, such as

the OS-level system call tracking in PASS [91].

Where VisTrails can fare better, however, is in tracking the changes of the Module subclasses

specification themselves in VisTrails packages. Our solution relies on the user package exposing

hooks for resolving a failed lookup of an old module version, and replacing actions that refer to

these modules with new ones. Such lookups can happen in only certain situations.

Whenever a new workflow version v is requested, we first compile a single action from the

composition of all the actions necessary to change an older workflow to v (this older workflow

is potentially one of the checkpoints described in Section 3.4). This compilation step is simply a

variant of dead-code elimination, where VisTrails removes canceling pairs of add-delete actions.

We collect all the remaining actions that add new workflow pieces, such as modules, connections

and parameters. All additions that refer to current valid package versions are performed as
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usual. Then, for each module whose version is outdated, VisTrails calls the responsible package

and expects back a list of actions meant to encode an updated, equivalent pipeline fragment.

Parameters need to be treated slightly differently, because their record in the vistrail schema

include a serialized version of the value. In the case of parameters, the package is responsible,

for translating the serialization of the old module version to a serialization of the current module

version.

This translation happens for all necessary pieces, and then these new actions are added to the

vistrail, together with actions that delete all the old versions. This way, the version tree stores a

record of this workflow update. This action is annotated as “updateVersion” to facilitate future

queries. If the package is unable to perform this translation, it can simply raise an exception that

will be captured by the system.

Requesting that packages return actions which encode the behavior of legacy versions requires

extra work by the package developer, but it has advantages over possible alternatives. For

example, the standard alternative is to keep around older versions of the Python classes and treat

new versions as entirely different modules without any relation between them. Our proposed

solution actually encodes the relationship between the old versions and the new versions in the

version tree.



CHAPTER 7

INCORPORATING PARAMETER SETTINGS

The two techniques presented in Chapters 4 and 5 use the graph structure of visualization

pipelines together with the process provenance to provide the user with higher-level primitives

in which to interact with VisTrails. While these structural techniques are not possible with

the previous state-of-the-art in visualization exploration techniques such as the work in Design

Galleries [81] and Jankun-Kelly et al.’s p-set calculus [59], it is necessary to note that both

visualization-by-analogy and VisComplete are, in fact, oblivious to the actual parameters used

in a visualization. In this chapter, we outline a few possible mechanisms to provide parameter

suggestion support to general pipelines in VisTrails. While these have not been currently imple-

mented, they are avenues for future work.

7.1 Parameter PCA
One of the basic themes in scientific visualization and computer graphics is the search for

a good set of parameters for a desired result, whether it is a colormap, a streamline seeding

point, a camera angle or a transfer function. Spreadsheet-based techniques such as presented by

Jankun-Kelly et al. [58] and the parameter explorations as described in Section 3.8.2 are effective

in covering a wide swath of a local neighborhood in parameter space. However, they by definition

ignore any interesting features of the visualization function when generating these slices through

parameter space.

Design Galleries [81], in contrast, provide a very effective way to navigate large parameter

spaces via a combination of stochastic sampling of the parameter space and a nonlinear dimen-

sionality reduction technique such as Isomap [118] or LLE [106], on the output data generated.

Design Galleries are general, simple and effective. However, they provide no information about

the input parameter space. There is no relation between the sets of input parameters that generated

the image and the display presented to the user by the method. The biggest disadvantage of this

is, of course, that it provides very limited insight about which parameter settings brought about
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the change in the result. If the goal of the exploration is to increase the insight about the data, this

situation is also not ideal.

One alternative is to pay closer attention to the relationship between the space of input

parameters and the space of outputs. Let us call our visualization technique f , and say that f

maps from I to O. If we impose a manifold structure in both input and output spaces, we can talk

about properties of the local structure around points p ∈ I and f (p) ∈ O. In particular, we know

that the derivative operator in a linear map from the tangent space of p to the tangent space of

f (p), and so we can now use this information to enrich parameter explorations. We illustrate this

in Figure 7.1.

For example, by choosing an appropriate metric for the input and output spaces, we can

meaningfully talk about which parameter changes around p created the biggest changes in f (p)

by simply computing PCA [47] on the vectors of the tangent space of f (p) and then computing

the pullbacks of the principal components through the derivative operator. This would combine

the output-sensitivity of Design Galleries with the explanation power of parameter slices. More

concretely, it would allow one to design a graphical user interface where it is possible to navigate

a high-dimensional space of parameters by always picking a locally best set of changes to the

current parameter. It would also naturally serve as a form of “visualization sensitivity”, showing

whether the results of a visualization might change drastically with a small change in the inputs.

We speculate that other applications of this additional structure are also possible, such as parallel

transport of preset paths through the parameter space.

7.2 Learning good Parameter Values
This section really could use a description of supervised learning and kernel tricks in general.

While a system built on the ideas presented above is likely to provide an attractive interface

for navigating the space of visualizations, it would say nothing about the quality of the generated

explorations. Nevertheless, it is obvious that the right choice of parameters has a great influence

in the quality of the resulting visualizations, and a system that could successfully predict (even if

partially) whether a certain visualization is good could potentially discard much of the parameter

space, making navigation much easier.

There has been a fair amount of recent work that aims to characterize the quality of a visual-

ization by maximizing an appropriate metric. In particular, researchers have look at interpreting a

figure as an information channel, and formulating the problem of picking the best parameters

(for example, the viewpoint) as one of maximizing the entropy of the symbol list [95, 127].



81

7.1: Illustration of the configuration around neighborhoods of input p and output f (p). The
derivative D f |p is the linear map that connects small changes of p to small changes of f (p)
(vectors in the tangent space of p and f (p), respectively) . In particular, a pullback of a vector v
in T ( f (p)) is a vector v′ in T (p) such that D f |p(v′) = v.

Alternatively, some authors have used supervised learning techniques from the machine learning

community, such as training a support vector machine (SVM) to classify whether 3D objects are

upright [39]. This is the approach we intend to use to learn good parameter values.

The most commonly support vector machine receives a set of points in space, together with

a binary classification on these points (hence the name “supervised learning”). Mathematically,

these support vector machines look for a hyperplane that is maximally separated from any in-

stances — SVMs are also known as maximum-margin classifiers [47]. Training an SVM involves

solving (via preprocessing) a semi-definite quadratic program. While this is not very efficient,

the actual classification of a point is typically much faster, because only a few training points

are actually used in the computation: these are the “support vectors”, and are points close to the

separating hyperplane.

For the same reason argued in the previous section, a linear hyperplane will never be a good

separator for the typical visualization techniques used in practice. The standard solution is to map

the points (nonlinearly) to some feature space, and find the linear hyperplane on this extended

space. This is known as the “kernel trick”, since it is possible to formulate the SVM process by

never referring to the point positions in space directly, but only by the inner product defined by

the space. One of the most commonly used kernels in practice is the gaussian kernel, which is

what we will adopt here.
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Feature Engineering for Workflow Systems The fundamental problem in our case, then,

is one of feature engineering: how to define a meaningful set of features that will be used for

a learning algorithm in a workflow system? In our case, we will train one SVM per Module

subclass that wants to expose Our solution is to require, for modules that want to have associated

classifiers associated, that they be able to compute a metric d for the inputs they take, and an

influence scale σ . With these two components, we can define a kernel for that space as

K(x,y) = exp
(

m(x,y)
σ2

)
(7.1)

That K(x,y) is indeed an inner product is not trivial to prove, and not particularly important for

our applications, but the series expansion argument is available in Minh et al. [88]. With that in

hand, we now need to find a way to generate training sets.

Generating Training Data and classifying visualizations To generate training data, we

intend to use the process provenance data collected from users willing to donate their visual-

izations and data. One possible dataset comes from the vistrails provided by the students of the

Scientific Visualization course used in Chapter 5. To navigate different parameters for the training

data, we can use the technique described in the previous section.

To determine whether a particular visualization is good or bad, we can use a system similar

to Louis von Ahn’s Games With a Purpose [126], by asking two people to correctly guess which

is the visualization that the other person will prefer, using similar techniques as described in

that paper to avoid cheating. After presenting a sufficiently large set of visualization/parameter

pairs to users, we simply group the ones that received a majority of positive votes as “good”,

and similarly for “bad”. Notice that in the case of a workflow used during training, more than

one module my have associated classifiers, and so the “good” or “bad” vote will be cast to all

the modules in the workflow. After the per-module SVMs have been trained, we can easily use

them to classify potential visualizations by simply combining the classifiers of each module in

the workflow and present them to the user.



CHAPTER 8

EVALUATION

This chapter will present some studies we have performed to evaluate the effectivess of the

design choices behind VisTrails. We first describe the two evaluations of the system as a whole

we have performed on separate occasions. We then discuss further evaluation studies and related

issues. Evaluating the effectiveness of a system such as VisTrails is not trivial. In particular,

it is damaging to the field in general to perform user studies that measure overly simplistic

characteristics of human behavior using the system. For example, while it is possible to design

a study to determine which of two graphical interfaces are faster for a user, it is much harder

to measure whether a system allows a user to better understand the data being analyzed. It is

especially perilous to fall under the trap of assuming that the attributes we can measure are the

ones by which we should evaluate a system. It is important to remember, then, that the design

goals behind VisTrails are not simply to help users create visualizations faster. The evaluations

we have performed are aimed at understanding how users interact with the novel features rather

than determining quantitative measures about the system performance.

8.0.1 Expert Review
We have solicited user input about VisTrails in two separate occasions. Our stated goals

in developing the system were to facilitate exploratory data analysis, and the reproducibility of

execution runs and processes. We first asked for a handful of collaborators to write about their

use of VisTrails and their impressions of the system, in the spirit of expert evaluations [119].

We explicitly solicited input about “usefulness, importance, extensibility and scalability” of the

provenance tracking mechanism described in Section 3 and the execution model described in

Section 6.

The respondents (four in total) were generally pleased with the ease of adding new modules

to VisTrails. One of the respondents, however, claimed the execution mechanism was entirely

ill-suited for his problem domain (analysis of high-energy physics experimental data). On the
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other hand, this same respondent claimed that the history mechanism was important enough in

his case that it warranted using VisTrails with a custom replacement of the execution environment:

“I am using VisTrails to develop a workflow management system for doing Exper-

imental High Energy Physics (HEP). In particular, I am using the workflow assem-

bly interface and the history tracking mechanism, replacing the interpreter, adding

custom modules and dropping the spreadsheet and using a custom made ’scientific

notebook’ instead. The custom interpreter allows for asynchronous processing of

the workflow with incremental updates of the results in order to give fast feedback

to the physicist. The custom modules correspond to very fine grained programming

structures equivalent to ’for’ loops, ’if’ blocks, etc. This fine granularity allows us to

use VisTrails’ provenance tracking to record all the filtering changes typically done

during an HEP analysis.”

About provenance management, this same respondent pinpointed one of hist perceived main

weaknesses of the system:

“I feel tracking of provenance is an essential part of scientific research and the HEP

field does not have any tools to aid with provenance tracking. However, to me

provenance tracking is about ’what you did’ while what VisTrails does is even better

which is ’replay what you did and use that as a starting point for new changes’. It

is the latter ability which enticed me to use VisTrails. Given that VisTrails tracks all

modifications done to a module, the system is extremely extensible assuming that all

modules are defined such that they contain no internal ’hysteresis’. However, there

is one change that VisTrails does not have a mechanism for, which is versioning of

the external packages.”

This is a critical issue that we have only started to address with VisTrails and whose difficulties

we have discussed in Section 6.6.

Another point generally made by respondents is that, while they prefer the provenance track-

ing of VisTrails to a manual management of the exploration data, the presentation of this history

is still somewhat cumbersome:

“The importance of the provided provenance system relies on the fact that the possi-

bilities of parameter exploration for this task are enormous, and often I am creating
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new workflows to create a different type of visualization or analysis. The fact that

VisTrails has a supportive provenance system allows me to explore different alterna-

tives with more freedom, since I know that the different alternatives that I pursued

before can be easily recovered. I wish there was a better way to clear paths that I do

not want anymore, other than starting a new vistrail and copying what I want.”

“Although necessary, the history management interface is not necessarially [sic]

ideal. In my projects, it is rare that I go back to earlier versions. While I know

that the entire progression from beginning to end is stored, I do not need to see old

versions as it tends to clutter the already full screen space. However, by using the

search-and-refine functionality, my working set of versions is significantly reduced

to a manageable subset.”

“The idea of representing the history as a graph works well for me. My only problem

is how quickly the graph grows. To me, part of the problem is that activities which

I think are unimportant to the physics [...] are represented on the graph and items of

extreme importance (eg., a workflow which I actually ran and got results from) are

only shown on the ’reduced’ graph if I manually name them.”

8.0.2 User Survey
More recently, we have asked a wider audience to fill a survey on their usage of VisTrails.

While the user survey is still open at the time of writing, the current set of results bears comment-

ing. In particular, we have asked the users about which features in VisTrails they commonly use,

and the results are summarized in Table 8.1. We note that the completion mechanism of Chapter 5

is not included in the current release of VisTrails, and so does not appear in the question.

We cannot, even if somewhat disappointingly, note that most of the “advanced” features in

VisTrails such as the visualization by analogies or the Visual Differences, are used much less

often than (say) the extensibility capability in VisTrails via user-defined packages. We have not

approached the particular respondents to ask for reasons while that might be so, but intend to do

it after we stop collecting answers for the survey. However, we can speculate about the reasons

for that

On the other hand, the process provenance tracking mechanism seems to be widely used.

In order to understand better how often people are using the branching history capabilities, we

decided to ask how many different versions in the version tree a user would tag at any given time.
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Never
Used once or

twice

Every five

sessions

Every

session

More than once a

session
Version Tree 20.8% 16.7% 0% 20.8% 41.7%

Parameter Exploration 8.3% 16.7% 45.8% 20.8% 8.3%
Text Querying 41.7% 29.2% 12.5% 0% 16.7%

Query-by-Example 62.5% 29.2% 4.2% 4.2% 0%
Analogies 79.2% 16.7% 4.2% 0% 0%

Visual Diff 54.2% 25.0% 16.7% 4.2% 0%
User-Defined Packages 45.8% 16.7% 0% 8.3% 29.2%

8.1: Summary of VisTrails features usage by frequency. The question asked was: “How often
do you use any of these particular features in VisTrails?”. There were, at the time of writing, 24
respondents.

8.1: Answers to the question “In any given vistrail (one .vt file), how many different versions
do usually you tag? That is, how many different workflow versions do you regularly use in a
vistrail?”

Even though we have the vistrails collected from the Scientific Visualization courses taught using

VisTrails, we asked other users this question explicitly, since our assignments required them to

tag different versions and so would bias the responses. The results are shown in Figure 8.1. Based

on those responses and the ones about text querying from Table 8.1, we speculate that users are,

at least in part, using the provenance management in a regular basis.

8.0.3 Discussion
We believe that a comprehensive and persistent tracking mechanism is very valuable to users

of data analysis in general, and that appropriately managing this history is one of the outstanding

problems in the design of visualization systems. At the same time, we note that more dedicated

user studies are still necessary to effectively evaluate the utility of the techniques presented here.

However, we argue that traditional evaluation methodologies might not be directly applicable

in this situation. In particular, some of the scenarios in which we believe the history tracking
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of VisTrails is most useful are also the ones where users already have developed their own

(however ad-hoc, cumbersome and inefficient) schemes for managing their explorations. During

the preparation of one of the early drafts of the user survey described above, we had some

respondents fill out the survey in our presence to ensure, among other things, that the question

wording was clear. When asked about his answer with respect of number of tagged versions

(only one per vistrail), he agreed that the version tree might be useful, but he was used to saving

different versions as separate files in the file system. The problem in designing an evaluation

methodology in our case, then, is in how to appropriately control for these situations.

One possible avenue for investigation is to instrument VTK, the visualization library packaged

by default in VisTrails. VTK already has functionality to inspect a pipeline built using their

libraries, so one could use borrow this to submit all executed pipelines during the programming

assignments of a scientific visualization course. By carefully designing the assignments such that

they’re possible both in plain VTK and VisTrails, it might be possible to compare the results, in

terms of time to completion, number of attempted visualizations, and so forth.

However, we would like to point out at least one problem with such quantitative analyses,

which is that to perform such analyses essentially reduces the evaluation of a system to whether

it is possible to finish a task faster. Although this is certainly an attractive feature of VisTrails,

we would argue that the provenance tracking mechanism would still be desirable (or even neces-

sary), even if it were to cause users to be slower. Compare the situation to performing physical

experiments without extensive annotations in a lab notebook — it would surely let one finish

experiments faster. We argue that some infrastructure such as proposed here should exist by

default whenever at all practical, and not only when it makes people work more efficiently. We

simply do not currently know how to properly formulate this in user studies and experiments.



CHAPTER 9

AN OVERVIEW OF THE VISTRAILS

ARCHITECTURE

This chapter, I will present a high-level description of the architecture of VisTrails. This

chapter clarifies which parts of VisTrails are involved in the different features presented in this

thesis, such as the Visual Differences presented in Chapter 3, and visualization by analogy,

presented in Chapter 4. This is intended to highlight some of the decisions behind the actual

implementation of the system, and also to show programmers one possible way of implementing

the techniques previously discussed.

Although the early prototypes were written in C++, fairly early in the development, VisTrails

was ported to Python. It currently runs on Python 2.5 and later. The decision to use Python

was mostly borne out of the perception that Python is quickly becoming a universal modern glue

language for scientific software, much in the same way that TCL was in the late 1980s [98]. Many

libraries written in different languages such as Fortran, C, and C++ use Python bindings as a way

to provide scripting capabilities. Since one of the stated goals for VisTrails is to facilitate the

orchestration of many different software libraries in workflows, a pure Python implementation

would make this much easier. In particular, Python has dynamic code loading features similar to

the ones seen in LISP environments, while having a much bigger developer community, and an

extremely rich standard library.

VisTrails uses Qt [25] as its GUI toolkit, and, in particular, its PyQt Python bindings [75].

It currently has about 67k lines of manually-written code, 30k lines of included VisTrails pack-

ages, and 100k lines of automatically generated code from the VisTrails db component (see

Section 9.3).

The provenance model described in Chapter 3, the visualization-by-analogy capability of

Chapter 4, and the data-driven recommendation system of Chapter 5 were all primary efforts of

this author. A substantial amount of the development behind VisTrails itself, however, involved

a larger group of individuals. The development of the current source base started in late 2005,

and involved three students working on it for a large portion of their time for over the course
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9.1: A high-level view of the VisTrails architecture. The main application is comprised
of three high-level, mostly independent components: VisTrails core, VisTrails db, and
VisTrails gui. The arrows indicate the major interactions between the subsystems.

of a year or so. After the basic infrastructure was stabilized, the group was increased to about

ten people, with two people being part of critical development efforts, ranging from substantial

day-to-day maintenance tasks and the preparation of new releases to new features (most notably

the VisTrails db component, a completely overhauled storage system developed by a different

student). The remaining developers made other contributions such as third-party packages and

extensions for VisTrails. These include a website where it is possible to browse and edit VisTrails

workflows, and LaTeX extensions to facilitate the reproducibility of printed figures.

Figure 9.1 illustrates the main components and their associated subsystems. We now turn to

a description of each of these components separately.

9.1 The VisTrails core component
The VisTrails core component contains the pieces of the VisTrails code that handle the

data structures necessary for capturing and representing the three major aspects of VisTrails: the
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capturing of the process provenance, the interaction with workflows, and the execution of these

workflows. Each of these tasks is conceptually separated in a separate layer, naturally called the

History, Workflow and Execution layers. Most features of VisTrails will interact with at least one

of these core layers. Most importantly, VisTrails core completely provides a fairly complete

abstraction over the change-based process provenance mechanism described in Chapter 3. There

are a few advantages to this layering. First, all interaction with the underlying storage (the

VisTrails db component) is done by VisTrails core and is invisible to applications. This

separation allows the different VisTrails db schemes to be completely irrelevant to the rest

of the application. In addition, it allows VisTrails features to operate on the level they are more

naturally suited to. For example, Visual Differences are more easily described as a sequence of

vistrail actions, but better presented as two workflows overlaid on top of each other. As should

be expected, then, the Visual Difference tool interacts only with the History and Workflow layer

of VisTrails core.

The following sections present a more detailed description of each layer in VisTrails core.

9.1.1 The History layer
All the algorithms related to the change-based model proposed in Chapter 3 are implemented

in the History layer of VisTrails core. The basic data structure of this layer is the vistrail

itself, which, as we have previously described, is a rooted tree of changes to individual pieces of

a workflow. As such, any given workflow itself is never manipulated by the History layer.

The History layer provides a point of access to the actions performed by the user in the

course of building their workflows. The most important objects in the layer are instances of

the Action class, whose main functionality is to effect some specified change in a workflow.

Action objects can be composed to create more complex actions that might represent a sequence

of user actions. These objects can be inspected, so algorithms can reason about the effect that

the actions will perform. As described in Chapter 4, this is used to compute the context of

an analogy. This inspection is also used to prepare the Visual Difference display as shown in

Chapter 3. In addition, it also provides the creation of new actions that might not have been

generated by the user. For example, the History layer is responsible for creating the actions that

have changed context during the calculations involved in building a new visualization by analogy,

also as described in Chapter 4.
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9.1.2 The Workflow layer
The Workflow layer controls access and methods of a single workflow. The main objects in

the Workflow layer are, perhaps obviously, instances of the Workflow class. This is the class

of objects that Actions act on, and it represents the static information about a workflow to be

executed in VisTrails. A Workflow object is a collection of Module and Connection objects

representing a directed acyclic graph. Module objects contain enough information to uniquely

identify them, which is in our case the identifier of the package that defines the module, a module

name and an optional namespace. The behavior of modules can be determined by parameters that

are sometimes fixed ahead of execution (for example, the file name used by a data loading module

would be a parameter). Each parameter is completely specified by the name of the module’s

method that sets the parameter and the value of the parameter. A Module then contains a list of

Parameter objects. Similarly, each Connection object contains a name of the input and output

ports that it is connecting.

It is important to notice that while parameters have a constant value, the methods that they call

will many times have values determined by other pieces of the workflow. Imagine, for example, a

workflow that performs automatic material surface extraction from a scalar field. One can imagine

that one piece of the workflow will compute the scalar corresponding to the interface, while

another module will actually extract the isosurface. Because of that, every parameter that can be

set manually by typing in the value can also be set by the workflow execution. The distinction

between regular input ports and parameter settings, then, should only exist in the Workflow

layer. As described in Section 6.4, the interpreter’s instantiation of a workflow (described in

Section 9.1.3) involves compiling away the parameters into additional modules and connections,

such that for the actual Python modules, there is no visible distinction between the two cases,

making for a simpler implementation of user-defined modules.

In general, the Workflow layer has no notion of dynamic, or runtime, information of the

modules. In that sense, it is similar to a syntax tree in a compiler implementation. It also has

no information about the (static) subtyping relationship of the modules in VisTrails. All this

semantic information is delegated to the Execution layer.

9.1.3 The Execution layer
The Execution layer is responsible for managing the data and algorithms related to the se-

mantic content of modules in VisTrails. It is the layer that will perform the instantiation of a

particular workflow description (in the form of a Workflow object) from the Workflow layer
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into actual executable Python. It also contains the typechecking rules for determining which

connections are allowed. It consists essentially of a workflow interpreter, a module registry and a

package repository.

The module registry contains all information about the executable modules currently installed

in a running VisTrails process, including pointers to the actual Python classes corresponding

to the workflow modules. Because new user-defined modules have to explicitly describe their

parent classes in their definition, the module registry can perform the necessary typechecking of

connections, as described in Section 6.1.1.

The VisTrails interpreter is explained in significant detail in Chapter 6, so we restrict ourselves

to discussing issues relevant to the overall architecture of VisTrails. As described in Section 6.5, it

is possible for a running workflow to document changes in the state of the workflow (the standard

example being an important camera angle found through interactive exploration). When such a

change is reported to VisTrails, it first goes to the interpreter. This provides a point of separation

between the interface that is visible to designers of user-defined modules and the VisTrails internal

structures, allowing us to change these without requiring users to have to fix their source code.

9.1.3.1 The VisTrails Package Repository
Basic of the infrastructure VisTrails provides, the workflows created in the system will some-

times involve many different software packages. A typical example comes from a paper compar-

ing different techniques for tetrahedral mesh generation [74]. A vistrail from such a comparison

will reference modules from many different packages, each of which with their own system

library dependencies (see Figure 9.2 for a workflow presented in the paper). Since one of the

stated goals of VisTrails is the facilitation of sharing results and reproducibility, this is a serious

problem: if users have easy access to the workflow specifications in VisTrails but cannot actually

run them because of the myriad dependencies, the utility of the system is compromised.

In order to alleviate this problem, VisTrails provides an interface to access a package repos-

itory. This repository contains a catalog of user-defined packages and pointers to the necessary

installation files. When a workflow that uses a missing user-defined module is referenced, the

module registry requests the appropriate module package to be installed. This way, developers of

user-defined modules can need only to submit the module packages they want to make available

for other VisTrails users.

This alleviates the problem of distributing the Python source files that define the modules that

comprise the VisTrails workflows. However, many of these Python source files depend them-
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9.2: A workflow in VisTrails can have dependencies from many different module packages and
underlying library. Because of that, VisTrails provides a package repository to facilitate sharing
of these module packages, and, consequently, the reproducibility of the executing workflows.
Figure from Lizier et al. [74], reproduced with permission.

selves on other libraries that might not be VisTrails module packages. Instead of requiring the

user to find, compile and install the required binaries, VisTrails provides a simple wrapper around

system-level software managers present in modern operating systems such as YUM in Fedora

GNU/Linux [2] and APT in Ubuntu GNU/Linux [5] and Debian GNU/Linux [1]. Module pack-

ages in VisTrails explicitly write out the required system-level software, and VisTrails invokes

the necessary installations. Workflows that exclusively use packages with this functionality are,

then, very easy to share as far as dependencies are concerned: VisTrails transparently identifies

and install all necessary binaries.

This functionality is quite simple from a user’s perspective, as can be seen in Figure 9.3.

Because different operating system have different names for these software packages, and because

the name “package” was already in use in VisTrails, we call these system-level packages bundles.

Support for bundles in different operating systems can be added by writing a small amount

of code that detects an operating system and mediates the calls to the installation procedures.



94

Currently, VisTrails supports Fedora GNU/Linux and Ubuntu GNU/Linux. The idea of the

VisTrails package repository and the bundle system is similar to the PLaneT system available

for the PLT Scheme programming language [82].

9.2 The VisTrails gui component
The VisTrails gui component comprises all portions of VisTrails that receive direct user

input. It presents information from VisTrails core and translates user interaction events into

actions that represent the user’s exploration process. GUI events that involve changing workflow

objects get translated to actions that are directly sent to the history layer in VisTrails core and

incorporated in the user’s exploration process.

In VisTrails, the undo and redo commands are entirely delegated to VisTrails core, and

interpreted in the following way: an undo command triggers a step “up” in the version tree,

together with pushing an identifier for the undone version to a private stack. The redo command

simply pops versions off this stack, and anytime the user navigates the version tree explicitly by

clicking on versions, the redo stack is simply cleared.

9.2.1 GUI updates during workflow execution
During the execution of a workflow, VisTrails provides visual feedback of the modules that

are currently being executed. The base Module class includes a set of procedure hooks to notify

beginning of module execution, progress, and end. These are used in the main application to

provide visual feedback of the execution in the workflow view. However, in the execution

of VisTrails workflows in server modes, they can be used to, for example, update a webpage

with the progress of long-running workflows. It should be noted that these updates require

establishing a mapping relation between modules being executed and modules in a VisTrails

core representation of a workflow. As described in Chapter 6, multiple modules in a workflow

view might coalesce into a single invocation of a module if they generate the same signature. This

mapping needs to be correctly accounted for.

9.3 The VisTrails db component
The internal database architecture implemented in VisTrails goes beyond the scope of this

document. The relevant algorithms, features and techniques are all part of David Koop’s doctoral

studies. We describe it only inasmuch detail as necessary to clarify our decisions for the rest of

VisTrails’s architecture. Its most important feature is a description of the storage scheme that is

agnostic to the actual underlying technology used to save and load vistrails. This way, VisTrails
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from core.bundles import py_import

# "regular" python would simply be
# import vtk
vtk = py_import(’vtk’, {’linux-ubuntu’: ’python-vtk’,

’linux-fedora’: ’vtk-python’})

9.3: A snippet of code showing how package developers provide support for automatic depen-
dency installation of software. VisTrails takes advantage of the combination of dynamic loading
and reflection in Python to provide simple access to the underlying operating system software
managers. Developers explicitly state the dependencies in their Python code. VisTrails then
queries the system and, if necessary, requests the appropriate software installation.

can switch between a file-based local storage scheme to a more advanced, multi-user RDBMS

engine with very limited changes to the rest of the application. In addition, VisTrails db

houses the technology to make graph-structural indexing and searching practical in VisTrails.



CHAPTER 10

CONCLUSIONS AND FUTURE WORK

This thesis presented the design and implementation of some main aspects of VisTrails. The

original goal of the system was to explore the interplay between a consistent and thorough

tracking of the process provenance behind scientific visualizations in a visual programming

environment and the reproducibility of these visualizations. The system has, however, naturally

grown into a full-fledged environment for managing rapidly-changing workflows in exploratory

tasks.

One of the most important high-level conclusions from this work is that reproducibility funda-

mentally requires a whole-system approach - it only takes one aspect of the process management

to be missing to make results not reproducible. In the current version of VisTrails, the weakest

aspect is the inability to allow different module package versions to exist concurrently. If one

vistrail contains different module versions, at least one of them will not be exactly reproducible.

While the approach described in Section 6.6 is an acceptable remedial technique, it would be

preferable to be able to execute legacy versions directly. However, this requires a fundamental

change in the way VisTrails works — imagine, for example, that legacy libraries might require

older kernel versions. Even though recent virtualization techniques might make this possible, it

is far from a simple issue, and one that we leave as future work.

While the execution engine of VisTrails is powerful enough for many interesting workflows to

be executed, there is no question that computer science is quickly moving to a many-core, parallel

environment. Automatic parallelization of execution runs will have a rippling effect throughout

most of the system, from how to properly log such an execution to how to manage libraries and

data across different systems to caching implications. We remain hopeful that the rich literature in

distributed programming languages and operating systems will provide guidance in this process.

The history data itself has shown to be very useful to present interesting applications in

Chapters 4 and 5. Still, we can see many future avenues that include further new applications of

the data. To give but one example, it should be possible to use different user’s histories to compare

their exploration processes, and suggest portions of the visualization space that they might have
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missed. Alternatively, a deployment of a history tracking mechanism in a larger institution might

be useful to automatically suggest users that are working on similar visualizations.

The visual representation of the history tree as currently portrayed in VisTrails is by no means

the only possible alternative. It would be interesting to investigate other visual metaphors, perhaps

using additional information from the exploration process and the space of visualizations itself.

We believe that the automatic, permanent capture of the exploration history is only going to

make more sense, as storage and computing power becomes ever cheaper, but humans interact

with computers and data at the same speed. One area of research that we have not touched here,

but that is one that can be critically important for a wider adoption of the provenance mechanisms

we suggest here is a careful study of the implications of a permanent document history in terms

of security and privacy. Similarly, it is important to understand the limitations of the suggested

model under data loss (or restricted access). Questions such as whether it is possible to recover

pieces of the exploration process, or which parts are safely erasable. While these questions have

started to receive attention in the context of keeping provenance of data products, an investigation

of the consequences of the change-based representation advocated here remains as future work.

Make reference style consistent, check URL references and date them. Make sure figures

have associated vistrails that are reproducible.
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