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Figure 1: Our simplification algorithm can be used to generate a pure quad level-of-detail hierarchy. The algorithm preserves topology
during simplification, and attempts to optimize geometric fidelity and quad structure (vertex valences near 4) throughout the process.

Abstract

We introduce a simplification algorithm for meshes composed of
quadrilateral elements. It is reminiscent of edge-collapse based
methods for triangle meshes, but takes a novel approach to the chal-
lenging problem of maintaining the quadrilateral connectivity dur-
ing level-of-detail creation. The method consists of a set of unit
operations applied to the dual of the mesh, each designed to im-
prove mesh structure and maintain topological genus. Geometric
shape is maintained by an extension of a quadric error metric to
quad meshes. The technique is straightforward to implement and
efficient enough to be applied to real-world models. Our technique
can handle models with sharp features, and can be used to re-mesh
general polygonal, i.e. tri- and quad-dominant, meshes into quad-
only meshes.

1 Introduction

Although in the past geometry processing methods have been dom-
inated by techniques that operate on triangular meshes, there is
a growing interest in developing algorithms that operate natively
on quad meshes (i.e., meshes composed of only quadrilateral ele-
ments). The motivation for the use of this type of mesh has been
well articulated in pioneering work on quad re-meshing, e.g., [Lai
et al. 2008; Dong et al. 2006; Marinov and Kobbelt 2006; Alliez
et al. 2003]. Our attraction to this surface representation can be at-
tributed to the ability of quad elements to naturally describe princi-
pal curvature directional fields and to share a common domain with
surface parameterization solutions. These characteristics enable a
number of important applications, including texturing and model-
ing with splines. An additional motivation for our work in quad-
based meshing is the use of such models in finite element analysis.

The goal of mesh simplification, analogous to downsampling in
digital signal processing, is to gracefully remove elements while
maintaining mesh fidelity. Mesh simplification is an important
geometry processing operation that has been used as a building
block for many higher-level processing steps, including mesh com-
pression, rendering, progressive transmission, editing operations,
smoothing, parameterization, and shape reconstruction. It is for
this reason that triangle mesh simplification techniques have been
some of the most useful operations developed.

A major challenge associated with quadrilateral simplification, un-
like triangle-based techniques, is the consideration of the structured
nature of the quadrilateral elements that force global constraints on
the mesh connectivity. For instance, it is not possible to create a
quadrangulation of a planar surface region bounded by a polyline
with an odd number of vertices. For triangle meshes it is possi-
ble to limit the attention to local operations, that is, to collapse an
edge in a triangle mesh, one only needs to consider the triangles
in its one-neighborhood. In contrast, the deletion of a single quad
element may require more global consideration, removing a larger
collection of elements.

Our algorithm includes operations that are related to edge-collapse
methods for triangle meshes, but addresses the challenging problem
of maintaining the quadrilateral connectivity at all levels-of-detail.
The method consists of a set of unit operations applied to the dual of
the mesh, each designed to improve mesh structure for various con-
figurations and maintain topological genus. Fidelity of geometric
shape is achieved through an extension of a quadric error metric to
quad meshes. Additionally, our technique preserves sharp features
in models and can be used for re-meshing tri- and quad-dominant
meshes into fully quad-meshes.

Contributions. In this paper, we introduce a technique for quadri-
lateral mesh simplification that we term QMS. Our technique is
based on the novel idea of exploiting the dual structure of the mesh.
We propose simplification operators and a prioritization scheme
to develop quality mesh structure at coarse representations while
leveraging an extension of the quadric error metric to preserve ge-
ometry. We also show how our simplification algorithm can be
used for re-meshing tri- and quad-dominant meshes into fully quad-
meshes. Our experimental results demonstrate the efficiency and
effectiveness of our technique on a variety of models.



2 Related Work

While triangle- and tetrahedral-based simplification schemes have
been thoroughly studied, few techniques exist that directly address
quadrilateral mesh simplification. Some research has investigated
quadrilateral improvement methods [Staten and Canann 1997; Kin-
ney 1997] which results in simplified models; however, it does not
provide a controllable means to reduce element counts in the final
mesh. Another improvement technique [Bremer et al. 2002], de-
veloped to augment vertex valences on grafted surfaces, uses a ring
collapse method, related to our poly-chord structure (Sec. 3). Re-
lated quadrilateral coarsening approaches have also exploited the
ring structure, developing restructuring [Staten et al. 2008] and lo-
calized deletion techniques [Dewey 2008].

Quadrilateral remeshing algorithms are used to achieve varying
level-of-detail meshes, thus mimicking simplification in a bottom-
up approach. Quadrilateral generation algorithms often have con-
trol parameters that tune the sizes of the created elements, with
which they can construct meshes with varying levels of detail.

Tracing iso-curves over orthogonal vector fields that form a chart
covering a surface yields the connectivity that defines a quadri-
lateral mesh [Kalberer et al. 2007; Dong et al. 2005]. This tech-
nique extends earlier anisotropic quadrilateral meshing algorithms
that use principal curvature to define the frames over the surface
[Marinov and Kobbelt 2004; Alliez et al. 2003]. These techniques
generate high quality, feature aware quadrilateral meshes, and can
achieve level-of-detail meshes by adapting the spacing between the
traced parameter lines. A coarse-to-fine approach for generating
quad shape approximation is proposed in [Guskov et al. 2002].

Divide-and-conquer quadrilateral remeshing schemes segment the
input model then individually remesh each region. Paving [Blacker
and Stephenson 1991] is an early advancing front scheme that gen-
erates quadrilateral meshes of segmented and bounded regions of
a model. Krishnamurthy and Levoy [1996] proposed a method
based on using a grid for resampling regions extracted by a user-
guided segmentation technique. A two step algorithm [Marinov and
Kobbelt 2006] automatically segments the model with a clustering
method similar to variational shape approximation [Cohen-Steiner
et al. 2004]. Samples are defined uniformly along the boundary
edges to obtain water-tight boundaries between adjacent regions;
then, the vertices are optimally paired using Bezier curves to define
the quadrilateral elements internal to each region. Morse-Smale
complexes automatically segment a surface into regions homeo-
morphic to a disc [Ni et al. 2004], and parameterization methods
can guide the quadrilateral-based remesh [Dong et al. 2006; Tong
et al. 2006]. These divide-and-conquer approaches require careful
attention along boundary edges to obtain a piece-wise continuous
surface representation across the divided regions. By modifying
the density of samples during the conquer phase, these techniques
are able to output models of varying element counts.

Another method of quadrilateral mesh generation is the direct con-
version of triangular mesh elements into quadrilaterals. Splitting
schemes based on Catmull-Clark subdivision [Catmull and Clark
1978] and its square root extension [Kobbelt 1996], directly trans-
form the triangles into quadrilaterals. However, these techniques
greatly increase the number of elements describing the model and
tend to result in unstructured meshes.

Complete matching conversion, another direct conversion scheme,
pairs neighboring triangles to define a single quadrilateral, the
method seeks pairing combinations that will couple every element
with another. Q-Morph [Owen et al. 1999] is an advancing front
conversion mechanism that builds on this concept. Bubble packing
[Shimada 1993; Shimada and Gossard 1995], in particular rectan-

Figure 2: The dual structure of a highly structured mesh is itself
highly structured (left); whereas, a non-structured mesh contains a
complex dual representation (right).

gular cell based algorithms [Shimada 1999; Viswanath et al. 2000],
build quadrilateral-dominant meshes through near complete match-
ings of Delaunay triangulations. Vertices are distributed over the
surface using repulsion forces, where each rectangular cell encodes
multiple functions similar to a clustered group of charged particles.

Other quadrilateral mesh generation methods [Eck and Hoppe
1996; Takeuchi et al. 2000] leverage conversion methods in com-
bination with triangular-based simplification methods. Conversion
back-and-forth between the quadrilateral and triangular mesh rep-
resentations allows the use of established triangle mesh simplifica-
tion algorithms while modeling quadrilateral elements. The con-
trol of the final element quality is not supported, and may prove
difficult, for such approaches because the triangle-based simplifica-
tion is unaware of the related quadrilateral elements. Additionally,
conversion between representations can become expensive and un-
stable, as it is not guaranteed to be one-to-one and onto. Instead,
we propose a simplification method to directly reduce quadrilateral
elements that does not require such conversions.

Simplification methods execute deletion operations to reduce the
number of elements until breaching a prescribed error threshold
[Luebke et al. 2002]. In our work, we propose a generalization
of the triangle edge collapse (see Sec. 3) that provides promis-
ing adaptability to quadrilateral meshing; whereas, quadrilateral
vertex merging does not maintain quadrilateral-only meshes and
neighborhood reconfiguration is an inherently expensive operation.
Triangular-based simplification methods generate an automated pri-
oritization method using a quadric error metric (QEM) [Garland
and Heckbert 1997], with extended development [Hoppe 1999;
Lindstrom 2002; Lindstrom and Silva 2001], which defines a mea-
surement tool to compare and minimize the collapse affects on the
geometric structure. The QEM matrix encodes the planar equations
of the neighboring triangles to store geometric data per vertex or
edge. We accumulate the QEM data for the mesh vertices by vir-
tually subdividing each quadrilateral into four triangular elements
connecting each edge to the centroid. For further discussion of tri-
angular mesh simplification, we direct the reader to [Cignoni et al.
1998] and [Luebke et al. 2002].

3 Quadrilateral Mesh Simplification

Our simplification algorithm is based on a set of operations that
modify the dual structure of the quad mesh in a controlled manner.
The dual representation of a quadrilateral mesh [Borden et al. 2002]
(see Figs. 2 and 3) is defined to have the following components:

• the dual of a quadrilateral element is its centroid,

• the dual of a quadrilateral edge is the chord that connects the
centroids of neighboring quadrilaterals,

• the dual of a vertex is the polygon formed by connecting the
centroids, in a cyclic order, of neighboring quad elements.



Figure 3: Three deletion operations utilized throughout this paper: poly-chord (a-c), quadrilateral (d-f) and doublet collapse (g-l). For
a quadrilateral mesh with the dual representation (a), deletion of the selected poly-chord (b) merges the vertex groups (red) creating the
simplified mesh (c). A quadrilateral collapse (d) merges two opposing vertices thus modifying the topology of two highlighted chords in
the simplified mesh (e). Deletion of a doublet, two neighboring quadrilaterals that share two consecutive edges (h), removes the common
edges to create a single element, altering the dual structure (i). In the presence of an annotated feature, the doublet quadrilaterals (k) are
simultaneously collapsed to preserve the topology of the feature (l).

An important structure is the poly-chord, a polyline whose adja-
cent segments are chords that meet at a common centroid and are
dual to opposing edges in that quadrilateral. On a closed quadrilat-
eral mesh without boundaries, the poly-chords always form closed
loops. That is, starting at a single edge on a closed quadrilat-
eral mesh and traversing opposite edges on adjacent quadrilater-
als, the traversal will always end at the starting edge. The poly-
chord is a generalization of the ring structure constructed in related
quadrilateral-based research [Bremer et al. 2002; Dewey 2008].

Many simplification techniques for triangle meshes are based on
edge-collapse operations. Unfortunately, if an edge is collapsed
in a quad structure, triangles are introduced and structure is lost.
We adapt ideas proposed in [Shepherd 2007] who showed, in the
context of hexahedral mesh generation, that the quality of a hex
mesh is related to properties of its dual structure. In our case, we use
the dual structure as a tool for designing simplification operators.

In order to sharpen our intuition, consider the dual structure of the
two different quad representations of a torus shown in Fig. 2. A
high-quality quad mesh of a torus (shown on the left) with uni-
form valence 4 vertices has a similar dual structure, with chords
that tend to meet at approximately right angles, poly-chordal loops
that exhibit low curvature, and polygons that are dual to the ver-
tices are generally rectangular (i.e., four-sided). The lower-quality
quad mesh (shown on the right) has chords intersecting with non-
right angles, poly-chordal loops that exhibit higher curvature, and
the polygons that are dual to the vertices of the mesh are typically
non-rectangular (i.e., typically, are not four-sided).

Below, we design operators that are used to modify the dual struc-
ture of the quad mesh to improve its overall quality. To raise ge-
ometric fidelity, we extend the well-known quadric-error metric to
assist prioritization of the simplification operators based on the ge-
ometric error incurred by each operation, as well as to determine
the locations of created vertices.

3.1 Simplification Operations

We introduce three different simplification operators, each designed
to modify the dual representation of a quadrilateral mesh, as illus-
trated in Fig. 3. The poly-chord collapse is a global operator while
and the quadrilateral and doublet collapses induce modification of
the dual structure through localized deletions.

Poly-Chord Collapse. Removal of a poly-chord from the dual rep-
resentation simultaneously deletes all quadrilaterals through which

it passes by merging the vertices of each edge dual to the selected
poly-chord. A poly-chord, as it is related to hexahedral meshing,
is equivalent to the intersection of a hexahedral dual sheet [Mur-
doch et al. 1997] with the boundary surface. Because removal of
hexahedral sheets has been shown to preserve the hexahedral con-
nectivity during mesh improvement [Borden et al. 2002], it follows
that the lower dimensional equivalent, poly-chord deletions, pre-
serve quadrilateral-only surface elements.

Quadrilateral Collapse. The quadrilateral collapse is a localized
deletion operator that removes a selected element by merging di-
agonally opposing vertices (also described as a quadrilateral close
[Kinney 1997]). By imagining the quadrilateral as two triangle el-
ements connected by an edge between the merging vertices, ob-
serve that the described quadrilateral collapse is a generalization of
the triangle edge collapse. The elements modified by a quadrilat-
eral collapse are limited to a local neighborhood and maintains our
quadrilateral-only constraint. We emphasize the modifications that
result to the connectivity of the dual poly-chords, observing that the
collapse describes a swap in the connectivity of two poly-chords.

Doublet Collapse. Doublets, neighboring quadrilaterals that share
two consecutive edges, are removed from the quadrilateral mesh
following each collapse operation. The valence 2 doublet vertex
describes a degenerate critical point, associated with a degenerate
dual polygon. Under normal circumstances, a doublet is removed
by merging the two faces into a single quadrilateral element modi-
fying the connectivity of the highlighted dual chords. The removal
of a doublet may generate new doublets, requiring additional dele-
tions, and, similar to the quadrilateral collapse, modifies the struc-
ture of two poly-chords.

3.2 Prioritizing Operations

To improve the mesh connectivity and maintain geometric fidelity,
it is important that the algorithm selects the elements for deletion in-
telligently. The prioritization of the collapse operations is achieved
by queuing the elements based on the impact of the deletion on
the resulting mesh. A combination of factors is considered by the
weighting scheme, including the quality of the final vertex valences,
the geometric loss, and the area distortion associated with each col-
lapse operator. Consequently, our prioritization scheme is able to
reduce the accumulated geometric error while improving the ele-
ment quality during sequential deletions.

The poly-chord collapse is a more complicated operator than the
quadrilateral deletion so the weighting scheme discussion focuses



Figure 4: A poly-chord may form a complex knot over a significant
portion of the mesh (a single poly-chord is shown in the image on
the right) complicating, and often invalidating, its collapse. The lo-
calized quadrilateral collapse is used to modify the chord structure,
unwinding such knots.

on this operator. The error metric E assigned to a poly-chord p is

E(p) = αq(1− e−Eq(p)) + αd(1− e−Ed(p)) + αv(1− e−Ev(p))

where αs are user defined positive scalars that sum to 1. This func-
tion considers multiple contributors, written as 1 − ex to scale the
terms to the range [0, 1], that weigh the impact of the deletion, sim-
ilar in purpose to [Smith and Boier-Martin 2005]. The user defined
α’s allow control of each term’s influence.

The function Eq(p) returns the worst case QEM error over all of the
groups of merging vertices for the poly-chord p, representing an up-
per bound on the geometric impact of the collapse. QEM matrices
are computed for the mesh vertices by virtually subdividing each
quadrilateral into four triangular elements connected at the quadri-
lateral centroid. This allows for a hinging effect to accommodate
for non-planar quadrilaterals while accumulating the planar equa-
tions for the original mesh vertices using the established triangle-
based QEM scheme. The function Ed(p) evaluates the length of
the longest edge collapse (or group of edges) due to the collapse of
the poly-chord p. The purpose of Ed is to prioritize collapses in
order to construct square elements.

The final weighting term, Ev(p), measures the change in vertex
valences from the ideal 4 and penalizes poly-chord collapses that
deteriorate the valences of neighboring vertices. The poly-chord p

is decomposed into multiple vertex groups Vi = {vNi
i,j=0}

M
i=0 that

merge to a single new vertex ṽi, illustrated in Fig. 3b. The valence
weighting term sums the worst created valence with the average,

Ev(p) = max
i

max
j

βi,j(|ν(vi,j)− 4| − |ν(ṽi)− 4|))

+ 1/M
MX

i=0

1/Ni

NiX
j=0

βi,j(|ν(vi,j)− 4| − |ν(ṽi)− 4|))

βi,j =

(
0, if |ν(vi,j)− 4| ≤ |ν(ṽi)− 4|
1, otherwise

where ν(v) returns the valence of v. Thus, Ev penalizes poly-chord
collapses that result in non-ideal vertices while sorting the deletions
with equivalent worst cases based on their average created valence.

The weighting metric assigned to each quadrilateral element for the
quadrilateral collapse is computed similarly as E(p), allowing the

user to vary the influence of the geometric-, area-, and valence-
based functions. For a quadrilateral q with vertices (in counter-
clockwise order) a, b, c, d, the QEM measurement Eq(q) associ-
ated with a quadrilateral collapse is based on the loss of shape fi-
delity induced by merging the chosen opposing vertices, for exam-
ple, merging a and c to ṽac. The area term Ed(q) measures the
distance between the two merging vertices of q.

The final weighting term, Ev(q), measures the difference between
the current vertex valences and the new configuration and is biased
to favor collapses that improve the local connectivity. The valence
term sums the difference of the created valences from the originals,

Ev(q) = βa(|ν(a)− 4| − |ν(ṽac)− 4|)
+ δb(|ν(b)− 5| − |ν(b)− 4|)
+ βc(|ν(c)− 4| − |ν(ṽac)− 4|)
+ δd(|ν(d)− 5| − |ν(d)− 4|)

βi =

(
0, if |ν(i)− 4| ≤ |ν(ṽ)− 4|
1, otherwise

δi =

(
0, if |ν(i)− 5| ≤ |ν(i)− 4|
1, otherwise

Thus, Ev penalizes quadrilateral collapses that lower the quality of
the local vertex valences. Note that for a given quadrilateral two
collapse configurations exist, each with distinct metrics. Finally,
doublets are given the highest priority and collapsed when detected.

3.3 Naı̈ve Simplification

The repeated iteration of any single collapse operator, while ideal in
some circumstances, proves inadequate when applied to a broader
spectrum of quadrilateral mesh connectivity. In particular, illus-
trated in Fig. 7, the poly-chord simplification scheme ideally re-
duces the structured Pensatore quadrilateral mesh, maintaining the
high quality elements at all levels of detail. However, in an un-
structured model, poly-chord deletions create many high valence
vertices and poorly shaped quadrilaterals. Furthermore, the method
terminates early, unable to generate lower resolution models, due to
the creation of a complex poly-chord structure. Even for quadrilat-
eral meshes that exhibit a relatively structured connectivity (Fig. 4)
the poly-chords may exhibit a knotting effect, winding over a sig-
nificant portion of the model, prohibiting further deletions.

On the other hand, the quadrilateral-based scheme is not impeded
by the dependence on the dual structure. Given unstructured
meshes, the weighting scheme prioritizes the collapses such that
the number of ideal vertices significantly improves through simpli-
fication, illustrated in Fig. 7. However, this technique increases the
number of non-ideal valence vertices undesirably during simplifi-
cation of structured quadrilateral meshes.

3.4 Simplification Algorithm

We propose a novel quadrilateral mesh simplification, that we call
QMS, algorithm that balances the poly-chord and quadrilateral col-
lapses to achieve a flexibility that generates high quality results in-
dependent of the structure of the mesh connectivity, further ana-
lyzed in Sec. 4. As shown in the state diagram, illustrated in Fig. 5,
the algorithm favors the poly-chord collapse, iteratively choos-
ing the deletion that best improves the mesh’s connectivity while
least affecting its geometry (looping over state transitions a and b).
When no further poly-chord collapses are available, bounded by
threshold tolerances, the algorithm selects a quadrilateral element
for deletion (state transition c). The quadrilateral collapse modifies



the local neighborhood’s adjacencies and alters the dual poly-chord
structure. Consequently, the algorithm returns to the poly-chord
collapse state (via state transitions d and b), to inspect the dele-
tion eligibility of the newly configured poly-chords. By removing
the doublets after each collapse (state transitions a and d), as op-
posed to implementing a final pass, our experiments indicated a
better control over the element count and quality of the final mesh.

The state transition from the poly-chord collapse to the
quadrilateral-based collapse enables the adaptive nature of our
simplification method. This approach relies on the quadrilateral
collapse to unwind complex knots that prevent poly-chord col-
lapses, illustrated in Fig. 4, to continue simplification. Furthermore,
given unstructured meshes, the algorithm quickly transitions to the
quadrilateral collapse, avoiding the poor quality results associated
with poly-chord deletions.

Alpha Terms. For the simplification results shown throughout this
paper, mesh connectivity is the dominant factor of the sorting met-
rics (αv = 0.9, αq , αd = 0.05). With these settings, the collapses
are sorted primarily by the quality of the valences created during the
deletion, greedily selecting the best possible vertex valence config-
uration after each iteration. The small weights given to the QEM
and area metrics allow similar valence generating collapses to be
sorted based on their geometric impact.

The rationale for the three different error terms is to offer user con-
trols to allow for tuning, necessary in pathological cases. For in-
stance, the rook model (Fig. 5) has a latitude-longitude based con-
nectivity with two polar points. For this model, the classic valence-
based weighting scheme deletes all longitudinal poly-chords prior
to any of the latitude oriented poly-chords. This creates many elon-
gated rectangles, prompting, instead, a weighting scheme that split
the QEM and area terms evenly with little or no emphasis on the
valence information (αv = 0.05, αq , αd = 0.475).

Mesh Smoothing. The QEMs associated with each collapse are
used primarily to influence the new vertex locations to better main-
tain the surface geometry. However, as illustrated in Fig. 6, these
vertex locations may not create high quality quadrilaterals. To im-
prove element quality, we implement a posteriori smoothing proce-
dure described by [Zhang et al. 2005], to modify vertex locations
applied after the simplification has finished. The mesh vertices are
perturbed in the normal direction to reduce mesh noise while pre-
serving the mesh volume; simultaneously, a tangential movement
is included to improve the quad aspect ratios. Note that one rea-
son to prioritize valence 4 vertices in the alpha parameters is that it
augments element quality obtained through smoothing.

Topology Preservation. To preserve the topology of the mani-
fold mesh, we virtually turn the quadrilateral mesh into a simplicial
mesh and use the Link condition [Edelsbrunner 2006]. In the neigh-
borhood of a quadrilateral collapse, the quadrilaterals are divided

Figure 5: Our QMS state diagram.

Figure 6: The original model, 22k quadrilaterals with 50% ideal
vertices, is reduced to 5k quadrilaterals with 96% ideal vertices.
The diagrams compare angle distributions, goal 90◦, before and
after the smoothing process.

into two triangles by inserting a cross-diagonal edge radiating from
the merging vertices, equating its link condition discussion to that
of the triangular edge collapse. Because the poly-chord collapse
consists of multiple simultaneous edge contractions, the discussion
is more complicated.

Deletion of the poly-chord p executes multiple edge collapses si-
multaneously, merging the vertex pairs Vi into the new vertices ṽi

for each mesh edge dual to p. Where the poly-chord is adjacent to
itself or self-intersects, illustrated in Fig. 3, multiple vertex pairs Vi

will merge into a single vertex; however, for this discussion, each
edge is inspected individually. While inspecting a vertex pair Vi,
the remaining vertex pairs are temporarily replaced with their col-
lapse vertex Vk = ṽk, ∀k, k 6= i, to account for the multiple edge
collapses occurring. The remaining quadrilaterals sharing the ver-
tices in Vi are virtually divided into two triangles by inserting the
cross-diagonal edge originating from one of the vertices in Vi. The
mesh topology is preserved during poly-chord deletions by com-
paring the intersection of Link conditions associated with the one-
neighborhoods of the vertices in Vi to the union of those associated
with the one-neighborhood of the mesh edge connecting Vi. For
further details, we refer the reader to [Edelsbrunner 2006].

Complexity. The complexity of a single call to the different oper-
ators differ; while quadrilateral and doublet collapse operators take
Θ(1), a single poly-chord operation can take Θ(n). Still, it is not
hard to use amortized analysis to show that the overall cost of each
operation is still Θ(1). The argument is based on the fact that once
an element is deleted, it is not touched again.

Sharp Features. In some applications, the preservation of user an-
notated feature edges is important. Our method supports the preser-
vation of feature edges. Included in Fig. 11 are two manufacturable
models that contain user annotated features highlighting the sharp
edges of the mesh.

Our implementation ensures that the simplified feature edges are
homeomorphic to their original counterparts. Conceptually, trian-
gular facets are created by connecting each feature edge to a tem-
porary transition vertex. In this way, the feature edges belong to



Figure 7: Simplification results for a structured (left) and an unstructured (right) quad mesh using the poly-chord, quad-based and QMS
algorithms. The poly-chord method maintains high quality elements for a structured mesh, but generates high vertex valences for unstructured
meshes at intermediate resolutions and is unable to complete the simplification to lower resolutions. The quad-based simplification generates
additional critical points on the structured mesh, but improves the unstructured mesh’s structure. QMS mimics the poly-chord results for
structured meshes and the quad-based results for unstructured meshes, performing well, independent of the underlying connectivity.

three polygonal faces, thus defining degree-3 edges. The remain-
ing edges of the 2-manifold quadrilateral mesh are degree-2, shared
by only 2 quadrilateral elements. The Link condition supports the
preservation of the non-2-manifold edges to ensure topological iso-
morphism of the annotated features.

The preservation of feature edges defines additional constraints that
restrict the simplification operators and invalidate some potential
collapses. While this is terminal for the poly-chord and quadri-
lateral collapse operators, we define a special case to handle dou-
blet deletions along feature edges. Illustrated in Fig. 3, when the
shared edges of a doublet are annotated as part of a feature edge,
the two quadrilaterals are simultaneously collapsed. If the synchro-
nized quadrilateral collapse special case maintains the topology of
the mesh and features edges, the doublet is removed from the mesh.

4 Experimental Results and Applications

We have implemented the QMS algorithm as described in Sec. 3
in C++. Our code was written with flexibility in mind, with no
particular effort given to optimizations for speed at this time. The
running times reported in this section were performed on a dual
core AMD Opteron 2.21 GHz processor with 4GB memory. The
code is robust, and our implementation has been tested on a large
of quadrilateral meshes, including those shown in this paper.

For quad meshes, in addition to the visual quality of the simplified
models as shown in Fig. 11, we consider quality metrics measured
to assess the final results. Here, we examine the connectivity of
the simplified meshes as well as the quality of the quadrilateral el-
ements. An ideal vertex, important in finite element meshing, has a
valence of 4. Non-ideal vertices are critical points that complicate
parameterization solutions and geometric computations. Included
in Table 1 is the percentage of ideal vertices, the number of critical
points, and the worst case valence for each mesh. To further inves-
tigate the quality of the quadrilateral elements, in Fig. 8 we plot a
histogram of the original and simplified element angles and scaled
Jacobians. The scaled Jacobian is a metric equal to 1.0 for a rect-
angular element, 0.0 if three vertices (of the four) are co-linear, and
negated if the quadrilateral is not convex. Ideally, the angles of a
quadrilateral mesh are near 90◦ and the scaled Jacobians near 1.0,
corresponding to orthogonal corners in the mesh.

Figure 8: A comparison of the angle distributions and scaled Jaco-
bians measured on the original and QMS simplified meshes shown
throughout this paper, analyzed in Table 1. The QMS algorithm
produces angles near 90◦ and scaled Jacobians near 1.0 despite
the input distributions.

As shown in Table 1, the QMS algorithm generates high quality
connectivity, maintaining low worst case valences and reducing the
number of extraordinary points. For unstructured models, i.e. the
bumpy torus and the Pensatore2, the simplification results signifi-
cantly improve the percent of ideal valence vertices. Simplification
of highly structured models, i.e. the Pensatore1 and Ra models, gen-
erates high quality results. In some cases, the number of extraordi-
nay points increases on the semi-structured models, i.e. the Bimba
and casting models. This is due to a number of quadrilateral col-
lapses executed in order to unwind complex poly-chords (Fig. 4).

The improved connectivity augments the quality of the correspond-



Time Vertex Valences
Model |Quads| (sec) % Ideal |Critical| Worst

Pensatore1
44k n/a 99.9% 8 3

5.2k 52 99.9% 8 3

2.5k 53 99.9% 8 3

Pensatore2
46k n/a 50% 23k 10

5.7k 157 76% 1.3k 7

2.9k 160 80% 556 6

Torus
95k n/a 50% 47.6k 13

23.5k 878 66% 8006 10

Bimba

62.8k n/a 98% 726 6

15.5k 479 94% 898 6

7.8k 500 92% 600 6

3.9k 505 89% 398 7

970 506 80% 189 6

Fish

32.4k n/a 97% 876 6

8k 115 91% 678 6

4k 119 88% 475 6

2k 120 84% 314 6

490 121 73% 131 6

Casting

20.8k n/a 98% 405 6

5.1k 30 90% 491 6

2.6k 31 86% 344 6

1.3k 32 79% 259 6

630 32 67% 205 6

Ra

3.9k n/a 98% 52 5

925 1 94% 52 5

450 1 90% 44 5

190 1 81% 36 5

95 1 69% 28 5

Table 1: Performance and vertex valence analysis of models shown
throughout the paper: the structured and unstructured pensatore
(1,2 respectively, Fig. 7), the bumpy torus (Fig. 10), and the bimba,
fish, casting and Ra (Fig. 11) models.

ing quadrilateral elements (Fig 8). Despite the quality of the input
models, our QMS algorithm results in simplified meshes with good
quality angles and scaled Jacobians. Some degradation is inherent,
similar to the geometric error incurred during the deletions. Im-
portantly, the element quality of the two models with poor original
distributions in Fig. 8, corresponding to the bumpy torus (Fig. 10)
and the Pensatore2 (Fig. 7), are improved through the QMS simpli-
fication. There are no similarly bad distributions evident in the sim-
plified histograms. The low quality mesh angles and corresponding
scaled Jacobians are attributed to the preservation of feature edges,
i.e. the casting and Ra models (Fig. 11), discussed in Sec. 5.

4.1 Quadrilateral Remeshing

We introduce a novel approach to quadrilateral remeshing of ar-
bitrary topological and polygonal surface meshes. Our remeshing
pipeline constructs a quad-only mesh by splitting the polygonal el-
ements based on the rules of Catmull-Clark subdivision then sim-
plifies to the desired element count, illustrated in Fig. 10. A single
iteration of Catmull-Clark subdivision constructs quad-only meshes
despite the polygonal types of the original model, shown in Fig. 9.

Figure 9: A single iteration of the Catmull-Clark splitting scheme
generates quad-only meshes despite the original polygonal type.

Figure 10: The elements of a triangular mesh (a) are split using a
Catmull-Clark based scheme to generate a quadrilateral-only mesh
(b) which is simplified to the original element count (c).

Because our simplification method preserves the quadrilateral con-
nectivity, the proposed remeshing technique generates quad-only
remeshes of polygonal, i.e. tri- and quad-dominant, models. Geo-
metric error thresholds during simplification are used to constrain
the output remesh within a bounded distance of the original model
surface. Additionally, our validation methods maintain mesh topol-
ogy and user-annotated feature edges, thus recreating important (i.e.
sharp) curves from the original model.

We can further improve the ratio of ideal valence vertices to critical
points by extending the remeshing pipeline, simplifying to a quarter
of the desired element count then subdivide the results via Catmull-
Clark. The additional simplification and subdivision increases the
geometric error of the final results. Consequently, it may necessitate
a projection of the final vertices to the original surface.

5 Discussion & Limitations

Our QMS algorithm balances poly-chord and quad-based simpli-
fication operators to generate quality meshes independent of the
underlying mesh structure. As illustrated in Fig. 7, QMS is an
improved approach over any single operation type. For the struc-
tured mesh, QMS behaves similarly to the poly-chord simplification
method, better maintaining mesh regularity with a minimal number
of critical points and near orthogonal edges. However, where the
poly-chord collapse performs poorly, terminating early on the un-
structured mesh, QMS instead mimics the results of the quad-based
simplification scheme.

Due to the global effects of the polychord collapse operator, it is
difficult to limit the deletions to localized regions. However, this
operator describes a deletion scheme that can not be duplicated by
any number of localized quadrilateral collapses, and it proves in-
strumental in the preservation of high quality connectivity. The as-
sorted deletion types enable a flexibility within our QMS algorithm,
generating quality LOD meshes for arbitrary mesh structures.

Quadric error metrics are used to reduce the loss of geometric fi-
delity experienced during the simplification process. Consequently,
even when the weighting metrics used to sort the simplification op-
erators heavily emphasize connectivity improvement, the reduced
meshes maintain high shape fidelity. Illustrated in Fig. 11 are sev-
eral organic and machined models simplified using the QMS algo-
rithm, weighing the deletions solely based on connectivity.



Figure 11: The hybrid simplification generates controlled level-of-
detail representations for quadrilateral-only models while preserv-
ing the topology of the mesh and annotated features.

Our simplification algorithm is unable to discern when too many el-
ements have been deleted from constrained regions surrounding the
user annotated feature edges. In practice, simplification to coarse
representations generates low quality edge angles (Fig. 8), some-
times resulting in negative scaled Jacobians, indicating inverted el-
ements. These poorly shaped elements typically reside in regions
of the constrained feature edges. While the mesh topology is pre-
served, the inverted elements may inhibit computations and visual-
ization of the mesh. Another issue is that when compared to triangle
simplification (Fig. 12), it is harder to maintain small detailed fea-
tures like the scales of the dragon because of the global nature of
the poly-chord collapses. However, it should be possible to anno-
tate such regions as feature edges to preserve these structures.

6 Conclusion

In this paper we show how it is possible to use the dual structure to
develop a quadrilateral mesh simplification (QMS) technique. To
the best of our knowledge, QMS is the first fully automatic tech-
nique for simplification of quad meshes using quality metrics. Ro-
bustness is one of the key strengths of this approach; we have suc-
cessfully experimented with our QMS implementation on a large
number of models. Another is simplicity; it is relatively easy to im-
plement our algorithm and reproduce our results. We only touched
on the potential applications of this framework with our description
of a simple quad remeshing approach. We believe this technique
can be used as a building block in many other geometry processing
algorithms for quad meshes.

There are many avenues for future research. We plan to investigate
improvements of the simplification weighting, stressing the rela-
tionship between the quad collapse and the dual structure. Cur-

Figure 12: The QMS algorithm generates controlled level-of-detail
representations, shown in the comparison between QEM triangle
mesh simplification and our method for the dragon model with 150k
elements (top) at 37.5k (middle) and 9.4k elements (bottom).

rently, the scheme implements a greedy prioritization, that focuses
on improving the connectivity of the mesh. It may be possible
to improve the final results of the QMS algorithm by intelligently
selecting quad collapses that better improve the poly-chord struc-
ture. We would like to further explore other optimizations, includ-
ing minimizing extraordinary vertices, controlling element size and
scaling, aligning elements to curvature vectors and other related
challenges. We are also interested in creating high-efficient imple-
mentations of this framework, including out-of-core and streaming
approaches. Furthermore, we are interested in other applications,
e.g., quality remeshing and progressive quad-based compression.
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