
Time-Critical Rendering of Irregular Grids

RICARDO FARIAS1 , JOSEPH S. B. MITCHELL1, CLÁUDIO T. SILVA2 , BRIAN WYLIE3

1Department of Applied Mathematics and Statistics,
State University of New York at Stony Brook, Stony Brook, NY 11794-3600

frfarias,jsbmg@ams.sunysb.edu
2AT&T Labs-Research, 180 Park Ave., PO Box 971, Florham Park, NJ 07932

csilva@research.att.com
3Sandia National Laboratories, PO Box 5800, MS 0318 Org 9215, Albuquerque, NM 87185

bnwylie@sandia.gov

Abstract. Many papers have presented rendering techniques and simplification ideas with the objective of speed-
ing up image generation for irregular grid data sets. For large data sets, however, even the current fastest algorithms
are known to require seconds to generate each image, making real-time analysis of such data sets very difficult,
or even impossible, unless one has access to powerful and expensive computer hardware. In order to synthesize
a system for handling very large data sets analysis, we have assembled algorithms for rendering, simplification
and triangulation, and added to them some optimizations. We have made some improvements on one of the best
current algorithms for rendering irregular grids, and added to it some simple approximation methods in both image
and object space, resulting in a system that achieves high frame rates, even on slow computers without any specific
graphic hardware. The algorithm adapts itself to the time budget it has available for each image generation, using
hierarchical representations of the mesh for faster delivery of images when transformations are imposed to the
data. When given additional time, the algorithm generates finer images, obtaining the precise final image if given
sufficient time. We were able to obtain frame rates of the order of 5Hz for medium-sized data sets, which is about
20 times faster than previous rendering algorithms. With a trade-off between image accuracy and speed, similar
frame rates can be achieved on different computers.

1 Introduction

Direct volume rendering methods are very useful tools in
the visualization of scalar and vector fields. Techniques for
volume rendering work primarily by modeling the volume
as cloud-like cells composed of semi-transparent material
that emits its own light, partially transmits light from other
cells, and absorbs some incoming light [8]. In this paper,
we address the problem of rendering (non-curvilinear) ir-
regular grids (or unstructured meshes), having no implicit
connectivity. Such structures are effective at representing
disparate field data. Irregular grid data comes in several
different formats; see, e.g., [11]. The introduction of new
methods for generating high-quality adaptive meshes has
made the general unstructured irregular grids a most impor-
tant data type to be visualized.

Several papers have presented efficient methods to ren-
der irregular grids, including re-sampling techniques, ray-
casting techniques [5, 10], sweep-based algorithms [13, 9],
and projective methods [12, 3]. This large body of work,
mostly done in the past decade, has dramatically increased
the efficiency with which we can render irregular grids. In
studying the computational complexity of these techniques,
one finds a wide range of tradeoffs. Consider an irregu-
lar grid composed of n cells (b of the cells being in the

boundary), and a given screen (image) of size k-by-k pix-
els. Projective techniques work by projecting, in visibility
order, the polyhedral cells that comprise the mesh onto the
image plane, and incrementally compositing the cell’s color
and opacity into the final image. Regardless of the screen
resolution, an image is only complete once each of its n
cells have been correctly depth-sorted and projected onto
the screen. This does not take into consideration the fact
that some of the cells may be too small to make a signifi-
cant contribution by themselves. In contrast, in ray casting
techniques, for each pixel potentially only the cells that ac-
tually intersect a ray through that pixel need to be touched.
This effectively is the case for the technique proposed in
[2], which, if r is the average number of cells intersecting a
given ray, takes time O(b+ rk2).

Our focus in this paper is on achieving real-time ex-
ploration, while possibly trading accuracy for speed. For
real-time exploration, there are usually hard bounds on the
overall rendering time T ; e.g., for 30Hz, T = 1

30
sec. Here,

we explore tradeoffs necessary to design such time-critical
irregular grid rendering systems. We utilize algorithms,
based on extensions to existing techniques, which are scal-
able, allowing them to run on a wide range of machines.
Our goal is to provide essentially the same level of interac-



tivity, regardless of the machine speed, while trading accu-
racy for speed in a consistent way.

2 The Rendering Algorithm

At the core of our time-critical volume rendering system
is a variation of the ray-casting algorithm proposed in [2].
The algorithm is outlined as follows:

(1) We transform each of the n cells into screen space.

(2) For each pixel, we compute a (sorted) list containing
the boundary cells that intersect the ray through the
pixel center.

(3) For each pixel, we perform ray casting incrementally
by computing cell intersections, one cell at a time, in
front-to-back order along the ray, using a traversal of
the cell adjacency information (similar to [5]).

This algorithm is very simple to implement, and quite
fast in practice. Step (1) takes O(n) time. Step (2) takes
O(
P

i;j bi;j log bi;j) time, where bi;j is the number of bound-
ary faces that project onto pixel (i; j). Step (3) is an output-
sensitive step, depending linearly on the total number of
ray-cell intersections. We note that a straightforward method
for obtaining a time-critical performance is simply to sam-
ple a regular subimage (performing l-by-l ray casts instead
of k-by-k, for l < k), then rescale to the full-size im-
age (which can be efficiently performed in hardware using
OpenGL). Another feature of this ray-casting method is the
fact that the computation is “embarrassingly parallel” ([10])
in the shared-memory model, allowing for a readily imple-
mented parallel version. In order to understand better how
the rendering algorithm works and why our optimizations
were necessary, we now discuss in more details steps (2)
and (3).

Boundary Projection. The algorithm projects each “vis-
ible” boundary face onto the screen, creating for each pixel
in the projection a list with the intersected “visible” faces.
(Visible faces are the ones whose outward normal makes
an angle greater than 90 deg with the viewing direction.)
Assuming that the boundary is generally not highly erratic,
these lists should be short; in practice, we expect that the
maximum boundary-list complexity (max i;j bi;j) to be con-
stant (i.e., O(1)). Thus, while we could sort the lists (each
in time O(bi;j log bi;j)) as we create them, we do not bother
to do so in practice; instead, each time we need to know the
next visible boundary face that occurs along a ray, we sim-
ply step through the short list to find the one remaining with
lowest z-coordinate.

p
i

p
i+1

RayCast

RayCast

X

Z

Sc
re

en

Figure 1: In this cross section of the volume to be visual-
ized, the indices pi and pi+1 represent two neighboring pix-
els through which two rays are cast. The visible boundary
faces are highlighted, while the intersected faces are repre-
sented in red. Notice that in the middle of the mesh there is
a set of cells, not stabbed by any of the rays, which do not
need to be transformed.

Ray Casting. The current face is initialized to be the first
boundary face intersected along the ray through a given
pixel. We then compute where the ray exits the cell (on the
next face) it just entered, and we compute the scalar value
at both the entry point and exit point of the cell (using bilin-
ear interpolation). We then compute the contribution of the
current cell to the pixel’s color and opacity, adding this to
the running sum that represents the integration. If the next
face is a boundary face, the computation continues only if
the remaining list of visible boundary faces is nonempty;
the current face is then advanced to the next visible bound-
ary face in the list, and we continue along the ray. If the
next face is an interior face, we determine the neighbor cell
on the other side of the next face, set the current face to the
next face, and compute the new next face based on where
the ray exits the neighbor cell. (Each face has pointers to its
neighboring cells. A boundary face has only one neighbor-
ing cell.) This “walking” along rays is simple, in principle;
however, we note that special care must be taken for the de-
generate situations when the ray hits an edge or a vertex of
the mesh.

Optimizations. In order to use this algorithm in a time-
critical setting, we modify step (1) to have running time
dependent on image-quality. Instead of transforming all the
vertices and faces in the mesh, we transform only the ones
on the boundary. Then we project them on the screen, and
from then on, we incrementally transform the interior faces
(and their defining vertices) that are intersected by the rays
cast. Once transformed, we tag them as such to avoid du-
plicate transformations. Depending on the image resolu-
tion, which determines the number of rays to be cast, and



on the viewing position, only a fraction of the data is actu-
ally touched. See Fig. 1. While there is some overhead in
testing whether a primitive (vertex or cell) has already been
transformed, we have found, in all data sets tested, that this
optimization decreases the rendering time.

(Below, we discuss a parallelization of step (2).)

3 Time-Critical Algorithm

Our goal is to achieve the highest frame rate possible by
using a highly optimized rendering algorithm (discussed
in the previous section), together with both image-space
and object-space approximations. Beyond improvements in
speed, these techniques will allow us to have greater con-
trol over the rendering procedure, giving us the flexibility
to trade off between the image generation time and its ac-
curacy. Such a trade-off will heavily depend on the ma-
chine’s speed and the maximum acceptable simplification,
to be controlled by the user.

In this section we discuss the image-space and object-
space approximations we employ in our system. An alter-
native technique for the simplification of irregular grids is
presented in [6].

Multi-Resolution Images

To generate multi-resolution images, we choose the sim-
plest image-space simplification algorithm possible, to avoid
spending time with both expensive computations and bound-
ary constraints. We render the exact color for one pixel and
duplicate it over a p-by-p pixels square, for a small value
of p. (In our tests, we allow p to range from 1 to 9.) As
will be shown later, the multi-resolution approximation has
a narrow limit of its effectiveness for both speed-up and in-
versely for its error. For a 3-by-3 resolution, the gain in the
rendering speed is high, while the visual impact is accept-
able, still allowing the user to distinguish small details in
the approximated image. Depending on the data set, larger
values of p will only decrease the render time by a small
amount, while resulting in very crude images.

Mesh Simplification Algorithm

To further improve the rendering time, we made use of
object-space levels of detail, creating simplified meshes that
are cheaper to render. We employ a method that is relatively
simple, based on ignoring mesh connectivity, simplifying
the point data (scalar values at mesh vertices), and then re-
constructing an approximating mesh by re-triangulating the
simplified point data. Special care is given to approximat-
ing the mesh boundary, while ensuring that the retriangu-
lation of the interior point data does not induce artifacts
from concavities in the boundary. We now elaborate on
the steps of the algorithm: (1) interior mesh simplification;

�
�
�
�

����
����

��
��
��
����
��
��
��

�
�
�
�

��
��
��
��

��
��

������
��
��
��
��

����

F

A B C

D

E

G

H

I

K

L

M

J ��
��
��
��

��
����

����
����

��
��
��
��

�
�
�
�

����
��
��
��
��

��������

����

E

A B C

F

G

D

����

��
��
��
��
�� ��

��
��
��

�
�
�
�

��

����

A
B C

D’

E’

F

G

��
��
��
��

��
��
��
��
�� ��

��
��
��

��

����

��
��
��
��

A
B C

D’

E’

F

G

Figure 2: Loss of boundary information if the kd-tree is
used to simplify the entire mesh. (a) Original mesh. (b) All
points are sent to the kd-tree. (c) The averaged center for
each region, or the result points for each region. (d) The
final simplified mesh, where the dotted line represents the
original contour detail that was lost.

(2) boundary mesh simplification; (3) preserving concave
boundary regions; (4) re-triangulating the simplified mesh;
and elimination of transparent cells.

Interior Mesh Simplification. We propose a simple and
very fast algorithm for volumetric data simplification based
on the use of a kd-tree. The criteria for internally arrang-
ing the vertices inside the kd-tree is as follows. A vertex
inserted into the kd-tree will lie inside an existing region
if its distance to the center of a region is smaller than a
given value, called the radius of the region. (The radius is
obtained from the user-specified simplification rate; see be-
low.) If the current vertex does not lie inside any existing
region, it will define a new region and its coordinates will
determine the center. After inserting all vertices into the kd-
tree, the new (simplified) mesh will have one vertex corre-
sponding to each region of the final kd-tree. These vertices
will have coordinates and scalar values equal to the aver-
aged coordinates and scalar values of all vertices inserted
into the region. See Fig. 2.

One way around the problem of loss of boundary in-
formation if the kd-tree is used to simplify the entire mesh
is to send only the interior points to the kd-tree and at the
end, merge the simplified set of points with the boundary
points. See Fig. 3.

The algorithm computes the radius for the regions in
the following way. It computes the number of vertices equiv-
alent to the percentage of simplification input by the user
(say S). Now it remains to be found the radius for the re-



��

��
��
��
��
��

����
�
�
�
�
��
��
��
��

����

�
�
�
�

��������

��������

A B C

D

E
F

G

I

K

L

H J M
��
��
��
��
��
��
��
��
�� �

�
�
�

��

��������

��
��
��
���
�
�
�

��
�
�
�
�

�
�
�
�

A B C

D

E
F

G

I

K

L

H J M

����

��
��
��
��
�� �

�
�
�

��
��
��
��

����������

��
��
��
����
��
��
��

��
��

�
�
�
�

A B C

D

E
F

G

I

K

L

H J M

��
��
��
��

�
�
�
�

��������

�
�
�
�

��

��
��
��
��

��
��
��
��

��
��
��
��

����

A B C

D

E
F

G

H

I

J

Figure 3: (a) The original mesh. (b) Only interior points are
inserted into the kd-tree. Note that the sequence in which
the points are sent to the kd-tree is the same regardless of
whether or not we choose to preserve the boundary. That is
true once the code scans the points and just skips the points
labeled as boundary. (c) The averaged center for each re-
gion, or the result points for each region. (d) The final sim-
plified mesh.

gions that will result in a number of regions approximately
equal to the number S. The algorithm starts by comput-
ing the diagonal (D) of the data set and then generates the
kd-tree with half this value, or R = D=2. If the result-
ing number is greater than S the algorithm updates R as
R = R + R=2; otherwise, if the number of regions is less
than S, the algorithm updates R as R = R � R=2 and
regenerates the kd-tree for the new region radius. This pro-
cedure is repeated until the desired number S of regions is
obtained. Note that this search for the radius is a binary
search, requiring at most O(log(n)) steps. Once we find a
mesh with the desired number of points, the algorithm pro-
ceeds to simplify the boundary.

This algorithm can be used to simplify the whole mesh,
but it can cause undesired loss of boundary information.
We choose alternatively to use a surface simplification al-
gorithm to obtain the approximation of the boundary of the
data set. This is discussed in the next section.

Boundary Mesh Simplification. In our first approach,
we did not consider surface simplifications. However, we
noticed that the surfaces of some data sets can contain a sig-
nificant fraction of the total number of the data set vertices,
so we devised a way to make it available as an option. This
flexibility is necessary because some data sets in our tests
presented problems with the surface simplification even if
the rate of simplification was very small, of the order of
10%.

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

N
avr 1

N
avr

2 N
avr

3

N
avr 4

N
avr 5

a

b

c

d

e

Figure 4: (a) The vertices from a to e are tagged as belong-
ing to a concave region of the boundary. (b) This is the final
triangulation if we naively triangulate the data set without
taking precautions to preserve concave regions. (c) Ghost
vertices are inserted in the direction of the averaged normal
for each concave vertex. (d) After the triangulation we can
retrieve the concavity of such regions by eliminating any
face that contains at least one ghost vertex.

As we mentioned above, the simplification of the bound-
ary requires a different approach because care must be taken
to avoid destroying the form of the data set and still preserve
its topology. Changes in the shape will be noticed more im-
mediately then errors introduced to the color of the data set.
In our current system we use the popular algorithm pre-
sented in [4], which allows not only surface simplification
taking into account an expected error, but also allows the
simplification to be performed over surface meshes whose
vertices possess colors1.

In the preprocessing phase, the algorithm tags all faces
and vertices belonging to the boundary and make sure that
each face has its vertices in counterclockwise order with re-
spect to the exterior of the data set. (It is mandatory that the
face normals are pointing outwards.) We then send these
faces and vertices, with the desired rate of simplification, to
QSlim2.

All vertices of the new simplified mesh will be re-
trieved from the kd-tree and from QSlim. We expect that
the vertices retrieved from the kd-tree will still be interior
vertices. If any vertex retrieved from the kd-tree becomes
exterior due to the boundary simplification, it will be elim-
inated in a future step; we note that this can cause holes in
the simplified data set.

Preserving Concave Boundary Regions. After retriev-
ing all vertices from the kd-tree and from QSlim, we have

1Remember that each vertex has a scalar value associated with it, re-
quiring the simplification algorithm to be able to handle colored surfaces.

2QSlim code is available at Michael Garland’s Home Page: graph-
ics.cs.uiuc.edu/˜garland/



Data Set Vertices Faces Tetrahedra Memory

SPX 2,896 27,252 12,936 11M
Blunt Fin 40,960 381,548 187,395 75M

Combustion 47,025 437,888 215,040 86M
Post 109,744 1,040,588 513,375 191M

Delta 211,680 2,032,084 1,005,675 370M

Table 1: Data sets, and their characteristics, used in our
experiments. The memory usage is reported to render an
image at resolution of 1282.

to rebuild the mesh connectivity, which will be explained
in the next section. We use a Delaunay triangulation for
rebuilding the mesh connectivity.

This scheme works fine for convex data sets; however,
for data sets that possess concave regions, further precau-
tions must be taken. When the vertices are sent to the qhull3

code, to generate the Delaunay triangulation, all concavities
in the boundary disappear, since we obtain a triangulation
of the convex hull of the points. In order to avoid losing this
important information, in the preprocessing phase we iden-
tify all vertices belonging to boundary concavities. This
identification is done by (a) marking all points belonging to
the boundary; (b) using qhull to create the convex hull of
the boundary; and (c) tagging the points that belong to the
boundary but are not on the convex hull.

Each concave point will have an associated ghost ver-
tex, very close to it, but just outside the boundary (in the
direction of the averaged outwards normal). These ghost
vertices will have a special associated scalar value that indi-
cates to our ray casting function its transparency. See Fig. 4.

The distance between the ghost vertex and its related
concave vertex is another parameter that can be controlled
by the user (by default, we use 3% of the length of the data
set’s diagonal).

Re-triangulating the Simplified Mesh. After the simpli-
fication, the new set of points (which may contain up to 2b
points in addition to the vertices in the simplified set) is sent
to qhull [1], which returns a (Delaunay) tetrahedralization.
The problem now is that any face that contains (at least) one
ghost vertex must be considered to be transparent; there can
be a significant number of such faces.

Eliminating Transparent Cells. At first, our code treated
transparent faces individually, disregarding the contribution
for any pair of faces in which at least one of them was trans-
parent. This, however, was very inefficient and slowed the
rendering function. Instead of thinking about transparent

3Qhull code is available at www.geom.umn.edu/software/down-
load/qhull.html

Data Set Resolution Bunyk et al. Optimized

128
2 2s 1s

Blunt Fin 256
2 8s 4s

512
2 27s 13s

1024
2 104s 50s

128
2 4s 2s

Combustion 256
2 10s 5s

512
2 37s 14s

1024
2 141s 52s

128
2 5s 3s

Oxygen Post 256
2 19s 8s

512
2 72s 27s

1024
2 271s 100s

128
2 4s 2s

Delta Wing 256
2 13s 6s

512
2 43s 23s

1024
2 157s 72s

Table 2: Our optimized version is consistently faster than
the previous implementation.

faces, one can think about transparent cells. Any tetrahe-
dron which contains at least one transparent face, can be
considered transparent and can be completely eliminated
from the tetrahedra set. This criterion enormously reduces
the number of tetrahedra in the resulting simplified mesh,
restoring the shape of the original mesh very accurately,
while simplifying our rendering code, since faces no longer
require special treatment for been transparent.

4 Experimental Results

We report our results on an SGI machine (with a single
300MHZ MIPS R12000 processor and 512 Mbytes of mem-
ory). Table 1 lists the data sets we used in our experiments
and measurements and all its relevant information, such as
number of vertices, faces and cells. In Table 2 we com-
pare the times obtained by the original algorithm [2] with
the times we obtained with our optimized version. Our op-
timized version of Bunyk et al’s algorithm, is, by itself, a
factor of two improvement. Our changes to step (1), uti-
lizing a lazy transformation of the vertices, is shown to be
very effective. See table 3.

The first approximation we use is to render the data set
at a lower resolution and use OpenGL efficient interpolation
to show the image in a larger resolution. In Fig. 5 we show
the exact image of Liquid Oxygen Post at the resolution
of 3002 (Fig. 5(a)) and the image interpolated (Fig. 5(b))
from 1282 to 3002. The error, measured as the mean dif-
ference for all three color components of the RGB equal
(3:53%; 2:43%; 23:38%). Note that even for a difference of
23% on the blue component, the interpolated image looks
just a little bit brighter than the exact one.



Data Set Resolution Vertices Cells
Transformed Transformed

128
2 25K 160K

Blunt Fin 256
2 30K 215K

512
2 35K 270K

1024
2 39K 319K

128
2 47K 433K

Combustion 256
2 47K 437K

512
2 47K 437K

1024
2 47K 437K

128
2 53K 315K

Oxygen Post 256
2 66K 431K

512
2 83K 588K

1024
2 96K 770K

128
2 83K 450K

Delta Wing 256
2 114K 708K

512
2 148K 1040K

1024
2 169K 1398K

Table 3: Compare the number of vertices and cells trans-
formed for each resolution; it becomes clear the source of
the speed-up.

Figure 5: (a) Exact image of Liquid Oxygen Post rendered
at 3002 pixel. (b) Image rendered at 1282 and interpolated
to 3002 pixels.

A two-time speed-up in running time is not enough,
our goal is to achieve much faster frame-rates in a scalable
framework. We basically explored two different ways to
achieve this goal: multi-resolution image generation and
hierarchical mesh simplification.

Multi-resolution Image Generation

Table 4 summarizes the rendering times to generate images
for the four bigger data sets, for different image resolutions,
obtained by running the code on a PC computer. We can see
that the running time continues to drop as we effective in-
crease the pixel size from 1-by-1 to 9-by-9. Unfortunately,
the larger the pixel size, the smaller the speed up, and the
improvement is negligible after 7-by-7. As the pixel size in-
creases, the image quality decreases accordingly. In Fig. 6,

Pixel size 1
2

2
2

3
2

5
2

7
2

9
2

Blunt Fin 2.8s 1.6s 1.2s 0.7s 0.5s 0.4s
Combustion 5.1s 2.9s 2.0s 1.2s 0.9s 0.8s

Oxygen Post 11.9s 5.1s 4.1s 3.0s 1.9s 1.7s
Delta Wing 34s 13s 14s 14s 11s 4.4s

Table 4: The times are all in seconds. The top row has the
effective pixel size used.

we show a typical set of images computed under these dif-
ferent approximations.

Figure 6: Renderings of the Blunt Fin under different image
resolutions. (a) exact image (1-by-1 pixel size); (b) 2-by-2;
(c) 3-by-3; (d) 5-by-5; (e) 7-by-7; (f) 9-by-9.

Mesh Simplification

By introducing mesh simplification in our algorithm, we
ended up with a large number of possible combinations be-
tween all these approximation algorithms; we include only
a sample of the results here. Taking into account the opti-
mization we made to the original Bunyk et al’s algorithm
and by combining all approximations we introduced in this
work, we were able to raise the frame rate from 0:35 Hz



(original data set at full resolution) to 3:5 Hz (with 90%
of mesh simplification at 92 pixel resolution. A speed up
factor of about 20 (remember that our optimized version
of the render algorithm is twice as fast as Bunyk’s original
algorithm). To conclude this section we include in Fig. 7
some pictures of the Oxygen Post data set in full resolution
and mesh simplification of 0%, 25%, 50%, 75% and 90%.
Each row of image shows the image generated using each
of these simplification. On the right column the image was
generated on full pixel resolution, while on the right col-
umn we show the image for 9 � 9 pixels approximation.
The error noticed on the edges the image is due to losses of
detail of the boundary of the original data set. This can be
avoided if one trades the simplification of the boundary that
is performed separately from the interior simplification. For
instance, see Fig. 8. The loss of information on the edges
is due to the fact that for larger simplification rates the sur-
face simplification algorithm generates meshes that contain
some faces whose normals point inwards. Thus, depending
on the data set characteristics and the desired rate of com-
pression, one must trade between between opting or not for
boundary simplification. Leaving the boundary unsimpli-
fied, even for 75% simplification of the interior points, the
image looks almost the same. The errors measured between
the image of Oxygen Post with simplification in (Fig. 7(a))
and its image for 75% of simplification only for the inte-
rior points in (Fig. 8(b)) led to an error, for (r,g,b) colors,
respectively equal to (1.86%,1.18%,9.06%). Note that the
error for the blue color is the only one to present a con-
siderable value. But as the predominant color in the image
depends on red and green, the error introduced by the sim-
plification, led just to a slightly brighter image.

5 Conclusion

In this paper, we started exploring time-critical techniques
for rendering irregular grids. We are primarily interested in
developing techniques that are scalable, in the sense of be-
ing able to trade accuracy for rendering time, while achiev-
ing acceptable image quality in most reasonable cases. We
have proposed a variation of the algorithm of [2]. Our tech-
nique differs from his in that it performs lazy transforma-
tions, it is able to generate images at multiple resolutions,
and it works in parallel, using both an image-space and
object-space technique. Our results are preliminary and ex-
pected to continue to improve. We have developed a simple
GUI for our rendering code which allows the user to ro-
tate moderately large data sets, including the Blunt Fin and
Combustion Chamber, and even the Delta Wing. See Fig. 9.

Exploiting pixel coherence, we were able to obtain a
frame rate of 3.5 Hz; this is to be compared with 3.5 sec-
onds per frame to generate the exact image. Even though
this result is far from the desirable 10-30 frames per second,

Figure 7: In the right column we show one pixel (full res-
olution) images for mesh simplification of 0%, 25%, 50%,
75% and 90%. In the left column we show for the same
mesh simplification, but for 9� 9 pixels image resolution.



Figure 8: Liquid Oxygen Post. (a) Both interior and bound-
ary points were simplified resulting in 26K points and 328K
faces. (b) Only interior points were simplified, resulting in
37K points and 494K faces.

Figure 9: A screen shot of the GUI. On the left window
is shown the rendered image and on the right window is
shown the grid of the data set. The user can rotate up, down,
left and right, and zoom in and out.

it already allows us to rotate the data sets while keeping a
decent amount of detail.

Much work remains, particularly on the paralleliza-
tion. We are working to apply coherence to accelerate the
ray casting step, noting that neighboring pixels are likely to
be similar. Hence, if there is little time to compute a ray
(say, during a fast rotation), it is reasonable to assume a
filtered down-sampled version of the image might be a vi-
sually accurate representation. We are currently exploiting
extensions of these ideas further, in particular as it relates to
time coherence. For instance, in an environment where the
image is being computed at a lowered resolution, it might
not be necessary to perform step 2 (boundary face projec-
tion) all the time. The set of visible boundary cells com-
puted in the frame i may still be visible in frame i+1, albeit
they might not intersect the ray emanating from the middle
of the pixel from which it was originally visible. But, if the

resulting image will be filtered anyway, simply a reprojec-
tion of those faces, and the ray integration from them might
give a reasonably accurate picture. In fact, it might even be
possible to reuse the intersection calculations.

Because of space limitations, we were forced to shorten
the paper to a great extent. Relevant references and com-
parisons with previous works have been omitted and results
abridged. A more comprehensive description of this work
will be available in [7].

Acknowledgements
We thank Paul Bunyk (Stony Brook) for access to and help with his code.
NASA has gracefully provided the Blunt Fin, Liquid Oxygen Post, and
Delta Wing datasets. The Combustion Chamber dataset is from the Visu-
alization Toolkit (Vtk).

This work was made possible with the generous support of San-
dia National Labs and the Dept of Energy Mathematics, Information and
Computer Science Office. R. Farias acknowledges partial support from
CNPq-Brazil under a PhD fellowship. J. Mitchell acknowledges support
from HRL Laboratories, the National Science Foundation (CCR-9732221),
NASA Ames Research Center, Northrop-Grumman Corporation, Sandia
National Labs, Seagull Technology, and Sun Microsystems.

References
[1] C. Bradford Barber, D. Dobkin, and H. Huhdanpaa. The quickhull

algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–
483, December 1996.

[2] P. Bunyk, A. Kaufman, and C. Silva. Simple, fast, and robust ray
casting of irregular grids. In H. Hagen and H. Rodrian, editors, Sci-
entific Visualization.

[3] J. Comba, J. Klosowski, N. Max, J. Mitchell, C. Silva, and
P. Williams. Fast polyhedral cell sorting for interactive rendering
of unstructured grids. Computer Graphics Forum, 18(3):369–376,
September 1999.

[4] M. Garland and P. Heckbert. Simplifying surfaces with color and
texture using quadric error metrics. IEEE Visualization ’98, pages
263–270, October 1998.

[5] M. Garrity. Raytracing irregular volume data. In Computer Graph-
ics, pages 35–40, November 1990.

[6] A. Van Gelder, V. Verma, and J. Wilhelms. Volume Decimation of Ir-
regular Tetrahedral Grids. In Computer Graphics International, June
1999.

[7] R. Farias. Techniques for Rendering Unstructured Volumetric Grids.
PhD thesis (in preparation), SUNY, Stony Brook, 2000.

[8] N. Max. Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, June
1995.

[9] C. Silva and J. Mitchell. The lazy sweep ray casting algorithm for
rendering irregular grids. IEEE Transactions on Visualization and
Computer Graphics, 3(2), April–June 1997.

[10] S. Uselton. Volume rendering for computational fluid dynamics: Ini-
tial results. In Tech Report RNR-91-026, Nasa Ames Research Cen-
ter, 1991.

[11] J. Wilhelms. Pursuing interactive visualization of irregular grids. In
Visual Computer, vol. 9, no. 8, 1993.

[12] P. Williams. Visibility ordering meshed polyhedra. ACM Transac-
tion on Graphics, 11(2):103–125, April 1992.

[13] R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef. Hardware as-
sisted volume rendering of unstructured grids by incremental slicing.
In 1996 Volume Visualization Symposium, pages 55–62, 1996.


