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Progressive point set surfaces (PPSS) are a multilevel point-based surface representation. They

combine the usability of multilevel scalar displacement maps (e.g. compression, filtering, geometric
modeling) with the generality of point-based surface representations (i.e. no fixed homology group

or continuity class). The multiscale nature of PPSS fosters the idea of point-based modeling. The

basic building block for the construction of PPSS is a projection operator, which maps points
in the proximity of the shape onto local polynomial surface approximations. The projection

operator allows the computing of displacements from smoother to more detailed levels. Based on

the properties of the projection operator we derive an algorithm to construct a base point set.
Starting from this base point set, a refinement rule using the projection operator constructs a

PPSS from any given manifold surface.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Model-
ing: Object hierarchies, Boundary representations; G.1.2 [Mathematics of Computing]: Approximation: Ap-
proximation of surfaces and contours

General Terms: Algorithms

Additional Key Words and Phrases: Moving least squares, Point-based modeling, Surface representation and
reconstruction

1. INTRODUCTION

Point sets are emerging as a surface representation. The particular appeal of point sets
is their generality: every shape can be represented by a set of points on its boundary,
where the degree of accuracy typically depends only on the number of points. Point sets
do not have a fixed continuity class or are limited to certain homology groups as in most
other surface representations. Polygonal meshes, in particular, have a piecewise linear
C0 geometry, resulting in an unnatural appearance. To overcome the continuity problem,
research has been devoted to image space smoothing techniques (e.g. Gouraud shading),
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Fig. 1. The progressive series of the Isis model, on the left a model with 19K points progressively refined up to
189K points in the model on the right.

or procedures to smooth the model’s geometry such as subdivision surfaces.
To define a manifold from the set of points, the inherent spatial interrelation among

the points is exploited as implicit connectivity information. A mathematical definition or
algorithm attaches a topology and a geometric shape to the set of points. This is non-trivial
since it is unclear what spacing of points represents connected or disconnected pieces of
the surface. Moreover, most surfaces are manifold, which limits the possibilities of using
functions for global interpolation or approximation. Recently, Levin gave a definition of a
manifold surface from a set of points [Levin 2000], which was used in [Alexa et al. 2001]
to render shapes.

To achieve a certain geometric fidelity many points are needed to describe a shape. The
necessary uniformity of the point’s density might further increase the number of points.
The relation between point density and accuracy calls for the definition of levels of detail
and the notion of progressiveness. That is, the point set should have a base set that rep-
resents a coarse and a smooth version of the surface, which can be refined by a series of
point insertions in the spirit of progressive meshes [Hoppe 1996], yet more analogous to
MAPS [Lee et al. 1998; Guskov et al. 2000].
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Progressive or multi-scale representations are useful not only to cut down on the amount
of data but also for modeling and visualization purposes (See Figure 1). This is because
of the connection between detail levels and spectral bands [Kobbelt et al. 1998; Kobbelt
et al. 1998; Zorin et al. 1997]. Ideally, the geometric representations of the levels are
relative to each other and independent of the position and orientation of the shape. This
is achieved by decomposing the geometric components into a normal and a tangential
direction, and encoding each level as a displacement of a coarser level [Khodakovsky et al.
2000; Guskov et al. 2000]. Furthermore, tangential components can be described implicitly
by the refinement rule so that a single scalar per point is sufficient to encode the shape. Note
that this also leads to an efficient geometry compression scheme.

This approach has been described and analyzed for mesh geometry using subdivision
techniques by [Guskov et al. 2000; Lee et al. 2000]. Based on the method of moving least
squares (MLS) presented in [Alexa et al. 2001; Levin 2000], in this paper we define a
projection operator and a refinement rule. Together, they allow us to refine a given base
point set towards a reference point set (input model). The projection operator defines a
local tangential coordinate frame, which allows us to specify the position of inserted points,
with a scalar representing the normal component. The tangential components are defined
by the refinement rule. As such, the scheme is reminiscent of subdivision techniques for
meshes.

Based on the properties of the refinement process we develop a simplification scheme for
point sets to construct a base point set, which represents a smoother version of the original
shape. The base point set is then refined by point insertion to add levels of detail. The
surface could be refined adaptively creating point sets with densities varying with respect,
say, to the viewing parameters or the local geometric behavior of the surface. In this paper
we:

—introduce a point-based geometric modeling technique that is based on the MLS projec-
tion mechanism.

—present a progressive scheme for point set surfaces, where the levels of an object repre-
sent both coarse–to–fine and smooth–to–detailed hierarchy.

—use a local operator that allows accurate computation of local differential surface prop-
erties.

—apply an encoding scheme for compressing progressive point sets.

In Section 2, we proceed with a presentation of related work. We define the MLS surface
and how to compute it in Section 3. In Section 4, we describe the progressive point set
surfaces in detail. Section 5 describes how a progressive point set surface is encoded and
discusses its efficiency. Results are shown in Section 6. We end with a discussion on the
progressive point set surface and conclude in Sections 7 and 8.

2. RELATED WORK

Our work is related to the recent research efforts in developing point-based representa-
tions for shapes [Grossman and Dally 1998; Pauly and Gross 2001; Pfister et al. 2000;
Rusinkiewicz and Levoy 2000]. Most of the mentioned techniques are targeted at fast pro-
cessing and rendering of large point-sampled geometry. Our techniques are focused on
advancing the “modeling” of primitives with points. In this respect our work fits into the
field of Digital Geometry Processing(DGP) [Desbrun et al. 1999; Guskov et al. 1999;
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Guskov et al. 2000; Lee et al. 1998; Taubin 1995], which aims at extending standard sig-
nal processing concepts to the manifold surface domain. Pauly and Gross [2001], have
shown how to extend these techniques to point-based representations by collecting sets
of points to patches, over which the points define an irregularly sampled function. Most
approaches for meshes also construct a multiresolution representation by progressively re-
fining a base domain and exploiting the connection of the refinement levels to spectral
properties. Meshes are generally composed of two parts: the connectivity of the mesh;
and the geometry (i.e., the position of the vertices). Few DGP techniques can be directly
applied to such a representation (one example is the pioneering work presented in [Taubin
1995]). DGP algorithms require parameterization of the surface, which could be repre-
sented in mesh form as a subdivision surface [Lee et al. 1998; Kobbelt et al. 1999; Eck
et al. 1995].

A recent work related to our surface representation is the work of Carr et al. [2001] which
reconstructs 3D objects by fitting a global radial basis function (RBF) to point clouds. An
RBF forms a solid model of an object, allowing analytic evaluation of surface normal,
direct rendering and iso-surface extraction, similar to the properties of the surface repre-
sentation we use.

Several different hierarchical representations have been proposed for geometric objects.
Object simplification [Cignoni et al. 1994; Cohen et al. 1996; He et al. 1996; Hoppe et al.
1993; Zhou et al. 1997] is often used to generate a hierarchical representation, which could
be used for many purposes, e.g. rendering [Duchaineau et al. 1997; El-Sana and Varshney
1999; Xia et al. 1997].

Linsen [2001] also describes a multiresolution representation of point-based objects.
Similarly to our method, the detail points are inserted using a prediction operator. In our
work we focus on a space efficient progressive representation of a point set. Another recent
related work is the one by Pauly et al. [2002], which describes a number of point-based
simplification methods. The method we present here for building the base point set is
similar to their clustering method.

A leading technique for representing hierarchical meshes isProgressive Meshes[Hoppe
1996], a mesh representation of varying resolution where a series of edge-split operations
progressively refines a base mesh up to the original resolution of the source. This repre-
sentation motivates solutions to mesh simplification, progressive transmission and load-
ing from a disk or from a remote server. A number of mesh compression and streaming
techniques are based on this concept [Cohen-Or et al. 1999; Pajarola and Rossignac 2000;
Taubin et al. 1998]. For a recent survey of mesh simplification and compression techniques
see [Gotsman et al. 2001].

Subdivision surfaces [Catmull and Clark 1978; Warren and Weimer 2001] are defined
by a topological refinement operator and a smoothing rule. Given a mesh of arbitrary
topology, they refine the mesh towards a smooth limit surface. Point set surfaces are similar
to subdivision surfaces, in that it is possible to add points to the defined smooth surface
without additional information. However, to describe an arbitrary surface using subdivision
techniques, inserted points need to be displaced. Normal Meshes [Guskov et al. 2000]
as well as Displaced Subdivision Surfaces [Lee et al. 2000] demonstrate this idea of a
multiresolution subdivision mesh where vertices are displaced by a single scalar value
in the normal direction. These approaches are attractive since a single scalar value is
easier to manipulate or store. The underlying concept could be understood as decomposing
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the surface representation into a tangential and a normal component (see [Guskov et al.
2000]). Note that we use the same idea, however without coding the tangential component
explicitly as the mesh connectivity but implicitly as point proximity.

3. MLS SURFACES

The MLS surfaceSP of a set of pointsP = {pi},pi ∈ R3, i ∈ {1, . . . , N} is defined
implicitly by a projection operator. To project a pointr ontoSP two steps are necessary:
First, a local reference domainH = (n, d), whered is the origin of the plane andn is
the normal to the plane is computed. Then, a local bivariate polynomial is fitted overH
to the point set. More precisely, the local reference domainH = {x|〈n,x〉 − d = 0,x ∈
R3},n ∈ R3, ‖n‖ = 1 is determined by minimizing

N∑
i=1

(〈n,pi − r− tn〉)2 e−‖pi−r−tn‖2/h2
(1)

in all normal directionsn and offsetst. Hered = r + tn. A local coordinate system over
H is defined by taking the standard basis forR3, e1, e2, e3 and compute a rotation matrix
M such thatn = M · e3. The local coordinate system is defined by(M · e1,M · e2). This
rotation matrix is not uniquely defined. For our purposes, any solution will do as long as
we use the same procedure to computeM in all of our computations.

Letq be the projection ofpi ontoH, andfi the height ofpi overH, i.efi = n·(pi−q).
The polynomial approximationg is computed by minimizing the weighted least squares
error

N∑
i=1

(g(xi, yi)− fi)
2
e−‖pi−r−tn‖2/h2

. (2)

The projection ofr is given by

MLS(r) = r + (t + g(0, 0))n. (3)

Formally, the surfaceSP is the set of points (Ω ⊂ <) that project onto themselves. In
this definition,h is the anticipated spacing of the points. Thus, the point set together with
an adequately chosen value forh defines the surface. As part of the projection procedure,
we not only determine the position on the surface where a point projects to, but we also
obtain high-order derivative information analytically, which can be used to accurately de-
termine normal, curvature, etc. Detailed description on computing the reference domain
and polynomial is presented in [Alexa et al. 2002] In the following,SX will generally be
the surface with respect to a point setX defined by the above procedure. We will call this
the MLS-surface ofX.

4. PROGRESSIVE POINT SET SURFACES

First, we give an overview of the concept of progressive point set surfaces and then explain
the details in the following sections.

Given a reference (input) point setR = {ri} defining a reference surfaceSR. The point
setR is reduced by removing points to form a base point setP0 ⊂ R. This base point set
defines a surfaceSP0 which differs fromSR. Next, we will resample the surface adding
more points so that the difference between our surface andSR decreases.
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The base point setP0 is refined by inserting additional points yielding the setP1. The
refinement operator first inserts points independent of the reference setR, which means
P1 6⊂ R. Then, the inserted points are displaced so that the difference between the surfaces
decreases, i.e.d(SP1 , SR) < d(SP0 , SR).

This process is repeated to generate a sequence of point setsPi with increasing size
and decreasing difference from the reference surface. A progressive point set surfaces
is defined as the MLS surface ofP = P0, P1, . . .. Where each point setPi is encoded
by the (scalar) displacements of inserted points, yielding a compact representation of the
progressive point set surface.

In the following we explain the necessary steps for this procedure in detail. We denote
the reference domain plane of a pointp with respect to a point setS asHS(p) and the
polynomial is similarly denoted bygS(p).

4.1 The refinement operator

Let R be the reference point set as before andP be the point set to refine. The setP is
refined by generating additional pointsA = {aj}, which are sampled in the local neigh-
borhoods of thepi.

More specifically, let the local reference domainHp(pi) of a pointpi (see Figure 2a) be
determined as the local minimum of Eq. (1) with respect to the points inP . The reference
planeHp(pi) is sampled regularly at intervalsρ, yielding a set of(u, v) coordinates for the
pointsa′j on the plane. These points are placed in the neighborhood of the surface using the
polynomialg = gp(pi) (defined by Eq. (2) ), yielding the set of pointsaj = (u, v, g(u, v)).

To find and encode the positions of the additional points, the planeHp(aj) of aj is com-
puted, and then two local polynomial fits are computed on the basis of the given reference
domainHp(aj): The first polynomialgp is with respect to the points inP and the second,
gr, is with respect to the points inR. The height of a pointaj is given asgr(0, 0), i.e. on
the local polynomial fit to the points in the reference set (see Figure 2b).

Since the coordinate(u, v) is generated implicitly by specifying the regular sampling
parameterρ, only the height has to be encoded. Based on Eq. (3), the height ofaj can be
expressed as the difference:

∆ = gr(0, 0)− gp(0, 0). (4)

Since the distance betweengr andgp is significantly smaller than the distance betweengr

and the reference plane, the∆ can be efficiently encoded.
The regular sampling pattern has to be adapted to avoid oversampling and sampling of

empty regions. We introduce two criteria for deciding whether to insert a point. A pointai

is inserted only if

(1) none of the already inserted pointsP ∪ {aj, j < i} is closer thanρ and
(2) it is in the convex hull of points inP closer thanh or, more formally, iff ai ∈

CH{pi|‖pi − ai‖ < h}.

The first criterion avoids oversampling, and the second aims at detecting boundaries of
the manifold by defining the extent of the local neighborhood.

The sampling parameterρ can be used to specify the refinement convergence. Ifρ is
halved in every refinement step the number of points approximately quadruples from one
point set to the next. However,ρ can also be used to adapt the sampling density to the
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Fig. 2. An illustration of the point set refinement process: (a) a new pointa is generated in the neighborhood of
the surface of the current level (the blue points). The reference planeHp(pi) and polynomialg = gp(pi) of pi

are computed. By scanning the neighborhood ofpi, a new pointa′ onHp(pi) is generated and projected on the
polynomialg, i.e. a = g(a′). In (b),a is projected onMLSp (the blue curve) by computing its reference plane
Hp(a) and polynomialgp(a). Next, a is projected again onSR (defined by the black points) using the same
reference plane, but with the appropriate polynomialgr(a). Finally, the detail value∆ = ar − ap is computed.
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Fig. 3. Close-ups of smooth renderings for different levels in the hierarchy of a PPSS. The
base level of a PPSS defines a smooth surface, which is visualized here by upsampling the
smooth surface by adding points without displacing them. Note that higher levels add the
missing details to the PPSS representation.

application needs, e.g. visible regions of the surface or local curvature if piecewise linear
approximations are needed.

As the point density increases from one refinement level to the next, alsoh should be
adapted. We adapth to the change inρ, for example, ifρ is halved in every step, so ish.
We assume, however, that a suitableh is given for the base point set. This is discussed in
the following section.

4.2 Constructing the base point set

The refinement operator uses local reference domains on the basis of the reduced point
set to compute polynomial fits to the reference point set. This requires the local reference
domain of a pointpi with respect to the points inP and to the points inR to be about the
same. We use this requirement as a criterion for reducing the reference point set to the base
point set.

Given a neighborhood sizeh and a maximum deviationε, let Qi be the point set which
results from removing the points in ah-neighborhood aroundri, i.e.

Qi = {rk|‖rk − ri‖ > h}. (5)

A point ri can be used in the base point set if its original reference domainHR(ri) is
close to the reference domainHQi

(ri) with respect to the reduced point setQi. More
specifically, the distance betweenHR(ri) andHQi

(ri) is measured as the scalar product
between their normal components (see Section 3).

In practice, the points inR are visited in random order. Ifri can be included inP0,
all points in theh-neighborhood aroundri are discarded for inclusion inP0. The process
terminates after all points were tested.
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Fig. 4. A color-coding of the magnitude of the displacement for the Venus model. Note that smooth regions
have small displacements, while regions containing fine detail need larger displacements The magnitude of the
displacements essentially corresponds to the energy in the respective frequency band.

5. THE PPSS ENCODING

Figure 4 illustrates the magnitudes of the displacements of the progressive set. Observing
that the vast majority of the displacements are of small magnitudes gives raise to a space
efficient encoding scheme. To create an encoding ofPi+1 givenPi, we perform the routine
described in Section 4.1. New points are generated and projected both onSPi

and onSR.
The difference between the two projections is thedisplacementdenoted by∆. Since the
distance between the two surfaces is small, the displacements are merely the details of the
surface and can be encoded in a small number of bits.

To decodePi+1, a reverse procedure is applied. New points are generated as described in
the encoding procedure. For each pointr, the reference plane and polynomial are computed
using Eqns. (1),(2). Then the point is projected using a modified Eq. (3) as follows:

MLS(r) = r + (t + g(0, 0) + ∆)n. (6)

For efficient storage, we quantize the displacement values to a user-specified accuracy.
An error bound defines the maximal tolerated error with respect to the diagonal of the
object’s bounding box. The range of the displacements and the error bound defines the
number of bits required to properly represent the displacements. Recall that the decoding
procedure is highly dependent on performing the exact same procedure that the encoder
performed. Quantizing the values and reconstructing them creates minor differences that
may lead to somewhat different sets of points that are added to each level. If this occurs the
encoder and decoder may no longer be synchronized. Therefore, in the encoding process
the displacements are quantized to guarantee that the decoder generates the exact set of
points that is encoded.
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Fig. 5. Rate distortion curve: shows a comparison of size vs. accuracy achievable with our compression method.
The error is measured on a scale of10−4 of the bounding box of the model.

bits / displacement
Points (error10−4)

Name Points in P0 0.001 0.01 0.1 0.5

Dragon 437K 16K 9.7 6.6 3.4 2.4
(0.026) (0.044) (0.29) (1.6)

Isis 187K 9K 9.9 6.9 4.7 1.8
(0.01) (0.04) (0.31) (1.9)

Venus 134K 7K 9.2 8.3 5.5 3.0
(0.08) (0.13) (0.27) (1.2)

Dino 56K 4K 10.9 8.1 4.9 2.9
(0.25) (0.24) (0.35) (0.97)

Table I. Achieved bit-rates for given error bounds. The user can specify an error bound on the displacement values.
Depending on the error bound, a quantization scheme is chosen, which influences the number of bits necessary to
encode the displacements. The small number of quantization levels typically results in a systematically smaller
error as compared to the error bound (shown in parentheses).

6. RESULTS

We have implemented the progressive point set representation as described in the previous
sections and applied it to several models. Table I summarizes the results by showing the
average number of bits per displacement required with respect to error tolerance. The error
is expressed with respect to the diagonal of the bounding box of the given model. Note that
the error is merely subject to the quantization applied to the displacements. For the models
in Table I, five (for the dino model) to seven (for the dragon model) levels were generated.
Our experiments as shown in Table II and Figures 5 and 7 suggest that an average of
five bits per point yields a pleasing visual quality. The base point setP0 is compressed
by triangulating the points using the BPA [Bernardini et al. 1999] and applying a mesh
compression tool [Gotsman et al. 2001]. The time to compress the models in Table I range
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Inserted Bits / Total Total Average error
points ∆ points size b/p (10−4)
476370 2.3 493142 139K 3.66 2.7
472330 2.4 489102 144K 3.77 1.6
440907 3.5 457679 192K 4.92 0.29
439652 6.6 456424 364K 8.06 0.044
439840 9.7 456612 534K 11.1 0.026

Table II. A comparison of the size vs. accuracy for the Dragon model. Each line shows the size of the model as
a function of the number of bits used for quantization of the displacement values. The base point set contains
16772 points compressed to37.4 bits / point.

from several minutes to 120 minutes on PentiumTM III 1Ghz, our code was not optimized
and computes the MLS reference plane using non-linear optimization.

Table II shows the compression achieved by varying the number of bits for the displace-
ment values. We measured the accuracy of the reconstructed model in the spirit of Metro
[Ciampalini et al. 1997], i.e. by sampling distances in normal direction. To measure the
distance between an MLS surfaceS1 defined by a set of pointsP1 and the reference MLS
surfaceS defined byP , we sample arbitrary points in the neighborhood ofS1, and use the
MLS projection procedure to project each point onS1 and onS. The average difference
between the two projections is the error.

We compared the PPSS–based compression technique with techniques for multireso-
lution mesh compression. In particular, we have used Khodakovsky’s mesh compression
technique [Khodakovsky et al. 2000] to generate meshes with increasing accuracy with
respect to a reference mesh. The vertices of the reference mesh were used to build a PPSS.
Since we do not have connectivity information the BPA was used to generate meshes from
the point sets. The resulting meshes have been compared to the reference using Metro.
Figure 6 shows a visualization of the results. Note that the PPSS does not fit the piecewise
linear geometry of the reference mesh (as the mesh compression technique) but the MLS
surface defined by the vertices. This adds some bias to the resulting error for the PPSS.

Figure 7 shows a series of progressively refined point sets, where the shaded images are
rendered by an upsampling procedure [Alexa et al. 2001], which requires no displacements.
The rendering performs a local refinement of the surface around each point of the model.
The images in the second column of Figure 8 are rendered with the above upsampling
method and the images in the third column are rendered using the OpenGLTM glPointSize
function. Since the MLS surface is continuous and smooth, the quality of the upsampled
renderings is higher than a splat rendering.

The MLS surface is smooth and as such does not reconstruct sharp features (since it is
not able to model discontinuities in its derivatives). While reconstructing point samples
of CAD models with sharp features (see Figure 9, those sharp features are smoothed out,
while the rest of the object is reconstructed faithfully. Our method deals with boundaries
by computing the convex hull of the neighborhood of a point (as previously described in
Section 4.1). For sharp edges in boundaries like the rectangular hole in Figure 9c and d,
our method converges to round corners with radius of the size of the input feature size, that
is, the spacing between points.
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103K e=0.0038 516K e=0.002741K e=0.008

41K e=0.03 94K e=0.011 197K e=0.0042

Fig. 6. Comparison of meshes using Metro. The top row displays several steps during the refinement process
of Khodakovsky’s algorithm. The numbers below the figures show their size and mean error with respect of the
bounding box of the object, as reported by the I.E.I-CNR Metro tool. The bottom row displays three meshes
reconstructed from a PPSS and compared to the input mesh. Note that the PPSS does not fit the reference mesh
but rather the smooth MLS-surface over the vertices. The point sets are triangulated using BPA to be able to apply
Metro. Color ranges from blue to green with respect to the error. Note that the Metro tool normalizes the color
map to the maximal error of the model being colored.
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Fig. 7. A progressive series of the Venus and Dragon models.

Fig. 8. Two intermediate representations of the Venus model in the hierarchy. On the left we show the set of
points. In the middle, the set of points are rendered by splatting using OpenGLTM . The images on the right are
rendered using an MLS upsampling procedure, requiring no additional data.
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(a) (b)

(c) (d)

Fig. 9. Reconstruction of sharp edges and boundaries: On the left (a) and (c), we show the input models. (b) and
(d) are the reconstructions of the models using our algorithm.
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7. DISCUSSION

As in other multilevel shape representations, the levels essentially correspond to different
bands in the spectrum of the shape. The Gaussian weight function leads to a Gaussian
filtering of the shape (compare Eqns. (1) and (2) ). The spatial radiush of the filter is in-
versely related to the Gaussian in the frequency domain. Thus, the base point set represents
the shape with the most relative energy in the low frequency bands, while the refinement
levels add higher frequency bands (see the shape hierarchy in Figure 1, and the details in
Figure 3). The projection operator allows us to compute the scalar displacement necessary
to lift a point from one level to the next. The displacements are with respect to local frames
(as in [Kobbelt et al. 2000]). The magnitude of this displacement is, thus, a measure of the
energy in the respective frequency band. This is illustrated with color codes in Figure 4.

The MLS surface definition is based on differential geometry, namely that the surface
can be locally approximated by a function. If this assumption is not met, we fail to define
the plane (Eq.1) and cannot reconstruct the surface. This ill condition happens when the
surface is not sampled densely enough in areas of high curvature or in areas with low
SNR, i.e., when the noise is larger than the expected feature size. These conditions can be
identified, see [Alexa et al. 2002] for more details.

Because point-sampled objects contain no explicit topological information, it is nec-
essary to make assumptions about the underlying sampling density in order to properly
reconstruct this connectivity information. In general, this is a tough problem, and substan-
tial practical and theoretical work has been performed in the area [Amenta and Bern 1999].
Provably good techniques, e.g. [Amenta et al. 1998], have been shown to be effective, but
quite slow for actual use, mostly due to the need to compute 3D Delaunay triangulation of
the complete point sets. For modeling point sets, simpler (and computationally cheaper)
techniques have been used. Zwicker et al. [2002] and Pauly et al. [2002] usek-nearest
neighbor queries to reconstruct a neighborhood. This works well for objects with fairly
isotropic and uniform sampling density; furthermore thek-nearest neighbor query may
unintuitively fill “real” holes in the model. Linsen [2001] uses theangle criterion for
choosing the neighbors of a points, assuming the object is of genus zero, or otherwise de-
fine some threshold on the point spacing. The approach we currently use for defining the
neighborhood of a point is to query for nearest neighbors in a user defined radius, assuming
that the distribution of points is fairly uniform. This assumption is reasonable for scanned
objects. As shown in [Alexa et al. 2002], this method can deal with some variation in the
input point density, but will fail if the density varies significantly.

Recently, Kalaiah and Varshney [Kalaiah and Varshney 2001] introduced an effective
method for rendering point primitives that requires the computation of the principal curva-
tures and a local coordinate frame for each point . This approach is natural for the MLS
surface representation since it requires a local coordinate frame and the principal curvature
for each. During the MLS projection procedure a local coordinate frame is computed, and
the principal curvatures can be estimated analytically from Eq. (2).

8. CONCLUSIONS

Our technique has several unique features. First of all, it works directly on points, avoid-
ing the need to triangulate the source point set, and the costly remeshing of the surface
into subdivision connectivity. This is especially important for large and detailed datasets.
Another important property of our technique is its locality. This leads to a numerically
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stable computation, linear time and space complexity and small memory footprint, which
may lead to the development of out of core algorithms. Furthermore, progressive point set
representations lead to a compression scheme, where the range of the error decreases with
each level in the hierarchy. As shown above, at each level it is possible to upsample the
surface from the sparse representation.

The lack of connectivity in the representation could also be the source of shortcomings.
As shown in [Amenta et al. 1998], there are limits on surface samplings which can be
proven to define a given surface. That is, our approach might need a relatively dense base
set to resolve possible ambiguities in the modeling of certain complex surfaces. Moreover,
it is considerably easier to handle discontinuities by triangulated models.

A considerable amount of research has been devoted to developing and optimizing the
“mesh-base world”. Many advanced methods require a local parameterization and local
differential properties. The MLS projection procedure inherently has these qualities, for
example, texture synthesis techniques may be applied on surfaces using surface marching
similar to [Turk 1992; 2001]. We believe that the importance of point set representation
and of MLS surfaces in particular is likely to play an increasing role in 3D geometric
modeling.

ACKNOWLEDGMENTS

Part of this work was done while Shachar Fleishman and Cláudio Silva were at AT&T
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LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN , D. 1998. Maps: Multiresolution
adaptive parameterization of surfaces.Proceedings of SIGGRAPH 98, 95–104. ISBN 0-89791-999-8. Held in
Orlando, Florida.

LEVIN , D. 2000. Mesh-independent surface interpolation. Tech. rep., Tel-Aviv University.
http://www.math.tau.ac.il/˜ levin.

L INSEN, L. 2001. Point cloud representation. Tech. Rep. 3, Fakultaet fuer Informatik, Universitaet Karlsruhe.
PAJAROLA, R. AND ROSSIGNAC, J. 2000. Compressed progressive meshes.IEEE Transactions on Visualization

and Computer Graphics 6,1 (January - March), 79–93. ISSN 1077-2626.
PAULY, M. AND GROSS, M. 2001. Spectral processing of point-sampled geometry.Proceedings of SIGGRAPH

2001, 379–386. ISBN 1-58113-292-1.
PAULY, M., GROSS, M., AND KOBBELT, L. 2002. Efficient simplification of point-sampled surfaces.to appear

IEEE Visualization.
PFISTER, H., ZWICKER, M., VAN BAAR , J., AND GROSS, M. 2000. Surfels: Surface elements as rendering

primitives. Proceedings of SIGGRAPH 2000, 335–342. ISBN 1-58113-208-5.
RUSINKIEWICZ, S. AND LEVOY, M. 2000. Qsplat: A multiresolution point rendering system for large meshes.

Proceedings of SIGGRAPH 2000, 343–352. ISBN 1-58113-208-5.
TAUBIN , G. 1995. A signal processing approach to fair surface design.Proceedings of SIGGRAPH 95, 351–358.

ISBN 0-201-84776-0. Held in Los Angeles, California.
TAUBIN , G., GUEZIEC, A., HORN, W., AND LAZARUS, F. 1998. Progressive forest split compression.Pro-

ceedings of SIGGRAPH 98, 123–132. ISBN 0-89791-999-8. Held in Orlando, Florida.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



18 · S. Fleishman; M. Alexa; D. Cohen-Or; C. T. Silva

TURK, G. 1992. Re-tiling polygonal surfaces. InComputer Graphics (Proceedings of SIGGRAPH 92). Vol. 26.
Chicago, Illinois, 55–64. ISBN 0-201-51585-7.

TURK, G. 2001. Texture synthesis on surfaces.Proceedings of SIGGRAPH 2001, 347–354. ISBN 1-58113-
292-1.

WARREN, J. AND WEIMER, H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach.
Morgan Kaufmann.

X IA , J. C., EL-SANA , J., AND VARSHNEY, A. 1997. Adaptive real-time level-of-detail-based rendering for
polygonal models.IEEE Transactions on Visualization and Computer Graphics 3,2 (April - June). ISSN
1077-2626.

ZHOU, Y., CHEN, B., AND KAUFMAN , A. E. 1997. Multiresolution tetrahedral framework for visualizing
regular volume data.IEEE Visualization ’97, 135–142. ISBN 0-58113-011-2.
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