
PARALLEL VOLUME RENDERING OF

IRREGULAR GRIDS

A Dissertation Presented

by

Jos�e Cl�audio Teixeira e Silva Junior

to the graduate school in partial fulfillment

of the requirements for the Degree of

Doctor of Philosophy

in

Computer Science

State University of New York at Stony Brook

December 1996

c Copyright 1996

by

Jos�e Cl�audio Teixeira e Silva Junior

State University of New York at Stony Brook

The Graduate School

Jos�e Cl�audio Teixeira e Silva Junior

We, the dissertation committee for the above candidate for the Doctor of Phi-

losophy degree, hereby recommend acceptance of this dissertation

Arie E. Kaufman, Dissertation Diretor
Leading Professor, Computer Science

Theo Pavlidis, Committee Chair
Leading Professor, Computer Science

Joseph S. B. Mitchell
Associate Professor, Applied Mathematics

Amitabh Varshney
Assistant Professor, Computer Science

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

ii

Abstract of the Dissertation

Parallel Volume Rendering of Irregular Grids

by

Jos�e Cl�audio Teixeira e Silva Junior

Doctor of Philosophy

in

Computer Science

State University of New York at Stony Brook

1996

This dissertation contains our contributions in methods to speed up vol-

ume rendering, an important sub�eld of scienti�c visualization. We develop

a framework composed of a system and a set of algorithms for handling large

datasets of various forms (e.g., regular and irregular volumetric grids). A

special emphasis of our framework is on the development of practical parallel

algorithms for visualization.

For the regular grid case, where research of e�cient techniques is fairly

advanced, we propose a parallelization of a known rendering algorithm. Our

major contributions in this case are the introduction of content-based load

balancing and the pipelined compositing approach. We present the new algo-

rithms and their implementation.

For irregular grids, we propose a fast rendering algorithm. Our method

uses a sweep-plane approach to accelerate ray casting, and it can handle dis-

connected and nonconvex (even with holes) unstructured irregular grids with

a rendering cost that decreases as the disconnectedness decreases. The al-

gorithm is carefully tailored to exploit spatial coherence even if the image

iii

resolution di�ers substantially from the object space resolution. We estab-

lish the practicality of our method through experimental results, and we also

provide theoretical results, both lower and upper bounds, on the complexity

of ray casting of irregular grids. Our work in irregular grids also includes a

proposal for a parallelization of the method for distributed-memory machines.

Our �nal contribution is in the simpli�cation of irregular grids. Because

the size of the grids can sometimes be overwhelming, we discuss the simpli�-

cation problem to approximate representations of irregular grids. We present

a complete solution for the two-dimensional case (e.g., height-�eld terrains),

and preliminary work on extensions to general polyhedral surfaces and three-

dimensional irregular grids.

iv

Contents

1 Introduction 1

2 Overview of Volume Rendering 8

2.1 Volumetric Data . 9

2.2 Interpolation Issues . 10

2.3 Optical Models for Volume Rendering 11

2.4 Ray Tracing . 14

2.5 Projection . 16

2.6 Summary . 18

3 Parallel Rendering of Regular Grids 19

3.1 Performance Considerations 21

3.2 Content-Based Load Balancing 23

3.3 The Parallel Ray Casting Rendering Pipeline 32

3.4 Implementation Issues . 41

3.5 Performance Analysis . 44

3.6 Conclusions and Future Work 49

v

4 Rendering of Irregular Grids 51

4.1 Introduction . 52

4.2 Sweep-Plane Approaches . 59

4.3 Our Algorithm . 62

4.3.1 Performing the Sweep 63

4.3.2 Processing a Scanline 65

4.4 Analysis: Upper and Lower Bounds 66

4.5 Experimental Results . 72

4.6 Conclusions and Future Work 81

5 Parallel Rendering of Irregular Grids 84

5.1 Introduction . 84

5.2 Previous Work . 86

5.3 Algorithm Overview . 88

5.4 Summary . 90

6 Simpli�cation 92

6.1 Introduction . 93

6.2 The Greedy-Cuts Algorithm (Terrain Case) 97

6.3 Miscellaneous Topics . 105

6.3.1 Terrain Sampling . 105

6.3.2 Maintaining Structural Fidelity 106

6.3.3 Termination . 107

6.3.4 Complexity . 108

6.4 Experimental Results . 109

6.5 Algorithm Extensions and Optimizations 111

vi

6.6 Conclusions and Future Work 121

7 The PVR System 124

7.1 Introduction . 124

7.2 The PVR System . 127

7.2.1 The pvrsh . 128

7.2.2 The PVR Renderer . 130

7.2.3 Volume-Rendering Pipeline 133

7.2.4 Rendering with PVR 134

7.3 Miscellaneous Topics . 136

7.3.1 Related Work . 136

7.3.2 Distributed Visualization Environments (DVEs) 138

7.3.3 Visualization Services 139

7.3.4 Results . 140

7.4 Conclusions . 141

8 Conclusions 147

vii

List of Figures

1 Polygon Assisted Ray Casting. 16

2 Slab-based load balancing decomposition. 25

3 Number of cubes per processor under naive load balancing. . . 28

4 Number of cubes per processor under content-based load balancing. 28

5 Rendering times under naive load balancing. 29

6 Rendering times under content-based load balancing. 29

7 The partition scheme used for load balancing. 31

8 A cut through the partition generated by content-based load bal-

ancing on an MRI head. 32

9 The parallel volume rendering pipeline. 34

10 Data partitioning shown in two dimensions. 37

11 The internal cluster structure. 38

12 PARC versus naive ray casting. 45

13 Rendering times for the 512-by-512-by-1877 visible human. . . 47

14 Rendering times for the 256-by-256-by-937 visible human. . . . 48

15 3 triangles that have no depth ordering. 56

viii

16 A sweep-plane (perpendicular to the y-axis) used in sweeping

3-space. 61

17 Lower bound construction. 68

18 Illustration of a sweep in one slice. 72

23 Number of active edges as a function of the scanline. 79

24 Total rendering time as a function of the scanline. 81

19 Tetrahedralization process of the Blunt Fin. 83

20 Typical con�guration during the sweep. 83

21 A volume rendering of the Blunt Fin. 83

22 A volume rendering of the Liquid Oxygen Post. 83

25 Weak and strong feasibility. 100

26 Illustration of the Greedy-Cuts initialization step. 103

27 Bu�alo terrain triangulation comparison. 112

28 Jackson terrain triangulation comparison. 112

29 Denver height-�eld data before simpli�cation. 113

30 Denver terrain triangulation, � = 20 units. 113

31 Denver terrain triangulation, � = 10 units. 114

32 Denver terrain triangulation, � = 5 units. 114

33 Denver terrain triangulation, � = 2:5 units. 116

34 Terrain decompositiong of the Mannequin model. 123

35 Terrain decomposition of the Goblet model. 123

36 Terrain decomposition of the minimal surface model. 123

37 Terrain decomposition of the minimal surface model into patches

homeomorphic to a disk. 123

ix

38 The relationship of a Distributed Visualization Environment (DVE)

system and PVR. 127

39 PVR Architecture. 128

40 Forking process used by the pvrd. 132

41 PVR rendering pipeline. 135

42 A simple PVR program with a set of PVR rendering commands. 137

43 Volume rendering of the Thymus tissue. 146

44 A volume rendering showing T-cell receptors on an immuno-

uorescent microscopy dataset. 146

45 Volume rendering of the MR data of a human head. 146

46 A subdivision of the MR data for 8 processors is shown, illus-

trating our content-based load balancing. 146

47 A snapshot of the simple PVR GUI. 147

48 Volume rendering of the 512-by-512-by-1877 visible human. . . 147

x

List of Tables

1 Comparisons of Franklin's algorithm with Greedy-Cutsd. 115

2 A list of a few external PVR commands. 145

xi

Acknowledgments

I would like to thank the numerous people who helped me throughout my grad-

uate studies. First of all, I would like to thank my advisor, Leading Professor

Arie Kaufman, for an endless supply of ideas, suggestions, criticisms and state-

of-the-art research facilities without which none of this work would have been

possible. I would like to express my gratitude to Professor Joseph Mitchell,

for being a mentor and friend; to the members of my committees, Professors

Jieh Hsiang, Theo Pavlidis, Steve Skiena, Amitabh Varshney, for their time

and useful criticisms; and the Stony Brook faculty, in particular, Professors

Amit Bandopadhay, Tzi-cker Chiueh, Ker I. Ko, I. V. Ramakrishnan, David

Warren, and Anita Wasilewska for their help and continuing support. Many

thanks to the computer science sta�, in particular, Kathy Germana, Betty

Knittweis, Stella Mannino, Peggy Thomas, and Brian Tria for making my life

at Stony Brook so much easier.

Thanks to Pat Crossno, George Davidson, Dino Pavlakos, and Brian Wylie,

from Sandia National Labs, who were special friends as well as contributors to

my work. To the members of the Visualization Lab, Rick Avila, Ingmar Bitter,

Dirk Bartz, Baoquan Chen, Rui Chiou, Akio Doi, Jihad Ell-Sana, Taosong

He, Lichan Hong, Shigeru Muraki, Hanspeter P�ster, Lisa Sobierajski, Ikuko

Takanashi, and Sid Wang, who helped me learn so much. Thanks also to

Yi-Jen Chiang, Martin Held and Jim Klosowski, for helpful discussions.

I would like to thank the people who directly contributed code to my

projects: Mauricio Fan Lok, for his work on PVR; Ashish Tiwari and Bernardo

Piquet, for their work on irregular grid rendering; Dan Evans, Francine Evans,

and Ken Gordon, for their work on surface decomposition into terrains and

simpli�cation; Professor Wm. Randolph Franklin, for making his triangulation

code available; Professor David Dobkin, for this 2D arrangement code; and the

members of the graphics community, who so often share their hard-developed

code through the Internet.

Thanks to Ivan Almeida, Tito Autrey, Karen Bernstein, Mauricio Cortes,

Steve Dawson, Patricia Gomez, Owen Kaiser, Daren Krebsbach, Greg�orio

Pacelli, Maria da Paz, C. R. Ramakhrisnan, Jairo Rocha, Lori and Toni Scar-

latos, Pedro Souto, Michael Vernick, Michael Wynblatt who made my life

at Stony Brook quite enjoyable. Many friends from Brazil helped to keep

this work in focus, in particular, J�ulio Martins, Professor Jos�e Evangelista,

Professor Jonas de Miranda, Professor Luqu�esio Petrola, Professor Antônio

Oliveira, and Professor Luis Velho; and my friends from GCCG, Rui Bastos,

Jo~ao Comba, Alexandre Cunha, Marcelo Walter and Marcelo Zu�o.

I thank Eduardo Prado and Renata Grumberg for being very special friends.

I would also like to thank my family for support throughout these long years.

Special thanks to my brother, Patriolino, my sister Mariana, and my grand-

mother Maria de Lourdes. My mother, Maria das Gra�cas, who has been a

great source of inspiration and support throughout my life, without her it

would have been impossible to �nish this work. Most of all, I thank my wife,

Juliana, she helped all throughout my graduate studies, in both technical and

non-technical matters.

Funding for this research has come from a variety of sources. I received

direct (e.g., stipend) funding from CNPq { Brazil (Ph.D. fellowship), Sandia

National Labs and the O�ce of Applied Mathematics of the U.S. Department

of Energy, and the National Science Foundation. Money for equipment and

other purposes have been provided by grants and donations from the National

Science Foundation, the State University of New York at Stony Brook, Intel

and Hewlett Packard.

A Juliana e Mam~ae.

Chapter 1

Introduction

This dissertation contains contributions primarily in volume rendering, a sub-

�eld of scienti�c visualization. The major focus of this work is in speeding

up volume rendering methods. Faster algorithms can be used in better user

interfaces and larger datasets, hence more e�ective visualization tools.

Scienti�c visualization has been formally de�ned only recently [74]. In

just a few years, it has grown to span a very large �eld of research with

several important distinct sub�elds. The reason for the rapid development of

visualization research lies in the intrinsic limitations of our perceptual systems.

Not only can the human mind make sense of only a very limited amount of

information, but also our perceptual systems are well suited for di�erent types

of data [43]. Research in scienti�c visualization encompasses methods that

transform raw data into di�erent representations where it is easier for us to

understand. This transformation is usually into images, sound or touch (see

[52] for details on the use of virtual environments, including haptic feedback).

The use of dynamic displays and other immersive technology can help the

1

CHAPTER 1. INTRODUCTION 2

human mind process information that normally would be completely outside

of the capacity of our senses.

The best way to de�ne scienti�c visualization is by example. One use of

visualization techniques, is to study the interaction between di�erent cells of

our immune system. For instance, in [80] a collaboration between biologists

and visualization experts lead to the better understanding of the 3D structure

of the bonding between Helper T-cell and B-cells. Advanced visualization

techniques make it possible for us to look at T-cell receptor densities on the

surface of a T-cell/B-cell interaction. With this information, the biologists

are able to understand in more detail how our immune system works at the

microscopic level, what hopefully can lead to better drugs and treatment of

diseases. Without these visualization techniques it is virtually impossible to

infer the spatial relationship of the structures. Another application in medicine

is in computer-assisted radiation treatment. With the aid of 3D visualization,

it is much easier to calculate the correct amount of radiation and its target

with the necessary precision. Other applications include surgery planning,

prosthesis simulation, etc.

Another completely di�erent set of applications comes from engineering.

Over the last century, several techniques for simulating physical processes

have been created (e.g., computational uid dynamics, �nite element anal-

ysis). Some typical applications are weather prediction, engine simulations,

etc. Most of these applications generate large volumes of scalar and vector

�elds on the order of several gigabytes of data. It is clearly impossible for

any human being to inspect this data in raw format (usually matrices of real

number). The development of useful and insightful representations of such

CHAPTER 1. INTRODUCTION 3

data is a very hard research problem in scienti�c visualization (see [105] for

an excellent text on visualization techniques).

Our particular focus in this work is on volume visualization [54], which is

concerned with the representation, modeling, manipulation and rendering of

volumetric objects. See Chapter 2 for a short introduction to volume visual-

ization techniques. In general, volumes are three-dimensional objects de�ned

over some closed domain, where, at every point in space, a scalar or vector

�eld is de�ned. Unlike polygon representations, one important property of vol-

umetric representations is that it also contains information from the interior

of regions, not only their boundary.

Volume rendering is a general solution to address the complex problem

of generating meaningful pictures of volumetric data. The goal is to create

insightful graphical representations for the engineer, scientist or physician and

to help them understand collections of numerical and physical data. Volume

rendering consists of color mapping the properties of the volumetric data in

an intuitive and consistent way.

Even though volume rendering applications are being used by some scien-

tists, there are still several obstacles to its e�ective use. Among these obstacles,

the most visible is the response time. Generating volume rendered images is

slow, even for relatively simple optical models [70] (e.g., no global illumina-

tion) and small datasets. The slowness of volume rendering applications and

lack of interactivity prevents it from being widely used, which in turn is the

main reason for the widespread use of (lower quality) polygonal isosurface ren-

dering techniques. The latter, even though less accurate and exible, can be

sped up by graphics workstations enabling interactivity between the model

CHAPTER 1. INTRODUCTION 4

and the scientist. At times, scientists just use the isosurface models [63] for

interactivity and experimentation, and perform the �nal rendering using more

costly volume rendering techniques. But this de�es one of the real advantages

of volume rendering.

There are several reasons for requiring faster volume rendering, among

them is the fact that post-mortem visualization can be improved with the

addition of computational steering. That is, for long running scienti�c sim-

ulations the ability to steer the computation would be very useful, especially

in environments where computations take days to run to completion, and re-

sources are precious (large machines usually have a relatively large batch job

queue). Interactive visualization techniques could help the user change sim-

ulation parameters and see the results in real-time (see [92] for a real-time

volume visualization architecture for regular grid datasets). Virtual reality

environments also have a need for real-time volume visualization.

Many of the important scienti�c visualization applications are actually vol-

ume rendering applications. These include the previously discussed medical

and biological applications, as well as scienti�c data visualization. Regardless

of the speci�c application, a common ground to all of them is the large com-

putational requirements by today's standards. For instance, a high resolution

computer tomography of the human body is over half a gigabyte in size, not

only taking up a lot of storage, but rendering it can take several hours on the

most powerful workstations. With technological advances in medical imaging,

even larger datasets are expected.

The grand challenge problems are another source of extremely large datasets.

CHAPTER 1. INTRODUCTION 5

In these problems, scientists are trying to simulate real phenomena for sev-

eral purposes, including the design of more e�cient, less pollutant and crash-

resistant cars, studying the earth atmosphere, weather prediction, and even

military goals, such as the simulation of nuclear explosions. A major di�er-

ence between these problems and medical imaging (that is hard to notice for

non-experts) is the fact that for these latter problems the datasets are given

in irregular format and thus are much harder to render.

In this dissertation we propose methods to speed up volume rendering.

We develop a framework composed of a system and a set of algorithms for

handling large datasets of various forms (e.g., regular and irregular volumetric

grids). A special emphasis of our framework is on the development of practical

parallel algorithms for visualization.

For the regular grid case, where research of e�cient techniques is fairly

advanced, we propose a parallelization of a known rendering algorithm. Our

major contributions in this case are the introduction of content-based load

balancing and the pipelined compositing approach. We present the new algo-

rithms, their implementation, and performance results.

We also propose a fast algorithm for rendering general irregular grids. Our

method uses a sweep-plane approach to accelerate ray casting, and can han-

dle disconnected and nonconvex (even with holes) unstructured irregular grids

with a rendering cost that decreases as the disconnectedness decreases. The

algorithm is carefully tailored to exploit spatial coherence even if the image

resolution di�ers substantially from the object space resolution. We estab-

lish the practicality of our method through experimental results, and we also

provide theoretical results, both lower and upper bounds, on the complexity

CHAPTER 1. INTRODUCTION 6

of ray casting of irregular grids. Our work in irregular grids also includes a

proposal for a parallelization of our method for distributed-memory machines.

Our �nal contribution is in the simpli�cation of irregular grids. Because

the size of the grids can sometimes be overwhelming, we discuss the simpli�-

cation problem to approximate representations of irregular grids. We present

a complete solution for the two-dimensional case (e.g., height-�eld terrains),

and preliminary work on extensions to general polyhedral surfaces and three-

dimensional irregular grids.

This dissertation is organized as follows:

In Chapter 2 we review basic issues of volume visualization which is needed

in later chapters. In Chapter 3 we discuss our work on parallelizing regular

grid volume rendering. In particular, we describe content-based load balancing,

a technique for keeping all the processors of a parallel machine busy during

rendering. We also discuss our approach to achieve more e�cient overall ren-

dering implementation with pipelined volume rendering. A preliminary version

of this work appeared in [110, 113].

Rendering of irregular grids is described in Chapter 4, where we propose

a new algorithm, as well as practical and theoretical results. The importance

of this method lies in the fact that previous software-based techniques were

just too slow or inaccurate for practical use for large datasets. This chapter is

based on work published in [112]. In Chapter 5, we describe a parallelization

scheme of our algorithm to render irregular grids.

Our preliminary results on the simpli�cation of irregular grids is presented

in Chapter 6 [111], where we introduce theGreedy-Cuts triangulation technique

and describe its implementation for the case of height-�eld terrains.

CHAPTER 1. INTRODUCTION 7

The PVR system, described in Chapter 7, serves as our testbed for most of

our work. PVR is a state-of-the-art parallel rendering system and it is currently

being used in a number of research institutions for interactive visualization of

very large datasets. Further information can be found in [80, 113].

Finally, Chapter 8 summarizes our work and sets forth some directions of

research for the future.

Chapter 2

Overview of Volume Rendering

Volume rendering [54] is a powerful computer graphics technique for the vi-

sualization of large quantities of 3D data. It is specially well suited for three

dimensional scalar [59, 29, 121, 97] and vector �elds [19, 71]. Fundamentally,

it works by mapping quantities in the dataset (such as color, transparency)

to properties of a cloud-like material. Images are generated by modeling the

interaction of light with the cloudy materials [130, 73, 72]. Because of the type

of data being rendered and the complexity of the lighting models, the accuracy

of the volume representation and of the calculation of the volume rendering in-

tegrals [9, 51, 50] are of major concern and have received considerable interest

from researchers in the �eld.

A popular alternative method to (direct) volume rendering is isosurface

extraction, where given a certain value of interest � 2 R, and some scalar

function f : R3 ! R, a polygonal representation for the implicit surface

f(x; y; z) = � is generated. There are several methods to generate isosur-

faces [63, 75, 82, 86], the most popular being the marching cubes method [63].

8

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 9

Isosurfaces have a clear advantage over volume rendering when it comes to

interactivity. Once the models have been polygonized (and simpli�ed [106] {

marching cubes usually generate lots of redundant triangles), hardware sup-

ported graphics workstation can be used to speed up the rendering. Isosurfaces

have several disadvantages: they lack �ne detail, they lack exibility during

rendering (especially for handling multiple transparent surfaces), they do not

represent the interior information, they are not good for amorphous data,

and the binary decision process, where surfaces are either inside or outside a

given voxel, tends to create artifacts in the data. (There is also an ambiguity

problem, that has been addressed by later papers such as [86]).

2.1 Volumetric Data

Volumetric data comes in a variety of formats, the most common being carte-

sian or regular data. (We are using the taxonomy introduced in [118].) Carte-

sian data is typically a 3D matrix composed of voxels. A voxel can be de�ned

in two di�erent ways, either as the datum in the intersection of each three

coordinate aligned lines, or as the small cube, either de�nition is correct as

long as used consistently. While the regular data has the same representation

but can also have a scaling matrix associated with it.

Irregular data comes in a large variety, including curvilinear data, that is

data de�ned in a warped regular grid, or in general, one can be given scattered

(or unstructured) data, where no explicit connectivity is de�ned. In general,

scattered data can be composed of tetrahedra, hexahedra, prisms, etc. An

important special case is tetrahedral grids. They have several advantages,

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 10

including easy interpolation, simple representation (specially for connectivity

information), and the fact that any other grid can be interpolated to a tetra-

hedral one (with the possible introduction of Steiner points). Among their

disadvantages is the fact that the size of the datasets tend to grow as cells

are decomposed into tetrahedra. In the case of curvilinear grids, an accurate

decomposition makes the cell complex contain �ve times as many cells. More

details on irregular grids are postponed until Chapter 4.

2.2 Interpolation Issues

In order to generate the cloud-like properties from the volumetric data, one

has to make some assumptions about the underlying data. This is necessary

because the rendering methods typically assume the ability to compute values

as a continuous function, and (for methods that use normal-based shading)

at times, even derivatives of such functions anywhere in space. On the other

hand, data is given only at discrete locations in space usually with no explicit

derivatives. In order to correctly interpolate the data, for the case of regular

sampled data, it is generally assumed the original data has been sampled at a

high enough frequency (or has been low-pass �ltered) to avoid aliasing artifacts

[40]. Several interpolation �lters can be used, the most common by far is to

compute the value of a function f(x; y; z) by trilinearly interpolating the eight

closest points. Higher order interpolation methods have also been studied

[12, 69], but the computational cost is too high for practical use.

In the case of irregular grids, the interpolation is more complicated. Even

�nding the cell that contains the sample point is not as simple or e�cient as in

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 11

the regular case [83, 94]. Also, interpolation becomes much more complicated

for cells that are not tetrahedra (for tetrahedra a single linear function can be

made to �t on the four vertices). For curvilinear grids, trilinear interpolation

becomes dependent on the underlying coordinate frame and even on the cell

orientation [127, 38]. Wilhelms et al. [127] proposes using inverse distance

weighted interpolation as a solution to this problem. Another solution would

be to use higher order interpolation. In general, it is wise to ask the creator

of the dataset for a suitable �tting function.

2.3 Optical Models for Volume Rendering

Volume rendering works by modeling volume as cloud cells composed of semi-

transparent material which emits its own light, partially transmits light from

other cells and absorbs some incoming light [128, 70, 72]. Because of the

importance of a clear understanding of such a model to rendering both, regular

and irregular grids, the actual inner workings of one such mechanism is studied

here. Our discussion closely follows the one in [128].

We assume each volume cells (di�erentially) emits light of a certain color

E�(x; y; z), for each color channel � (red, green and blue), and absorbs some

light that comes from behind (we are assuming no multiple scattering of light

by particles { our model is the simplest \useful" model { for a more complete

treatment see [70]).

Correctly de�ning opacity for cells of general size is slightly tricky. We

de�ne the di�erential opacity at some depth z to be
(z). Computing T (z),

the fraction of light transmitted through depth 0 to z (assuming no emission

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 12

of light inside the material), is simple, we need to notice that the amount

of transmitted light at z + �z is just the amount of light at z minus the

attenuation
(z) over a distance of �z:

T (z +�z) = T (z)�
(z)T (z)�z (1)

what (after making a division by �z and taking limits) implies

dT (z +�z)

dz
= �
(z)T (z) (2)

The solution to this linear equation of the �rst order [17] with boundary

condition T (0) = 1 is:

T (z) = e�
R z

0

(u)du (3)

The accumulated opacity over a ray from front-to-back inside a cell of

depth d is (1�T (d)). An important special case is when the cell has constant

di�erential opacity
, in this case T (z) = e�
z. Before we continue, we can

now solve the question of de�ning di�erential opacity
 from the unity opacity

(usually user de�ned and saved in a transfer function table). A simple formula

can express
 in terms of O:

 = log(
1

1�O
) (4)

If the model allows for the emission of light inside the material, a similar

calculation can be used to calculate the intensity I� for each color channel

inside a cell. In this case using an initial intensity I�(0) = 0, the �nal system

and solutions are as follows:

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 13

dI�(z)

dz
= �
(z)I�(z) + E�(z) (5)

I�(z) = T (z)
Z z

0

E�(v)

T (v)
dv (6)

Specializing the solution for constant color and opacity cells (as done above)

we get the simple solution:

I�(z) =
E

(1� e�
z) (7)

Usually, for computational e�ciency, the exponential in the previous equa-

tion is approximated by its �rst terms in the Taylor series. [128, 70, 72] describe

in detail analytical solutions under di�erent assumptions about the behavior

of the opacity and emitted colors inside the cells, extensions to more complex

light behavior and the several tradeo�s of approximating the exponentials with

linear functions.

The previous equations show how to calculate the continuous color and

opacity intensity, usually this calculation is done once for every cell, and the

results from each cell are composited in a later step. Compositing operators

were �rst introduced in [93], and are widely used. The most used operator in

volume visualization is the over operator, its operation is basically to add the

brightness of the current cell to the attenuated brightness of the one behind,

and in the case of front-to-back compositing update the opacities of the cells.

The equations for the over operator are:

Co = Ca + Cb(1� Oa) (8)

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 14

Oo = Oa +Ob(1� Oa) (9)

It is important to note, that in these equations the colors are saved pre-

multiplied by the opacities (i.e., the actual color is Co=Oo), this saves one

multiplication per compositing operation.

2.4 Ray Tracing

A popular method to generate images from volume data is to use ray tracing

or ray casting [39, 59]. Ray casting works by casting (at least) one ray per

image pixel into volume space, point sampling the scene with some lighting

model (like the one just presented) and compositing the samples as described

in the previous section. This method is very exible and extremely easy to

implement. There are several extensions of basic ray casting to include higher

order illumination e�ects, like discrete ray tracing [131], and volumetric ray

tracing [117]. Both of these techniques take into account global illumination

e�ects incorporating more accurate approximations of the more general ren-

dering equation [50].

Because of the large size of volumes, volumetric ray casting (and ray trac-

ing) is very expensive. Several optimizations have been applied to ray tracing

[60, 61, 20]. One of the most e�ective optimizations are the presence accel-

eration techniques, that exploit the fact volumetric data is relatively sparse

[60, 61, 20, 134, 133]. Levoy [60] introduced the idea by using an octree [99]

to skip over empty space. His idea was further optimized by Danskin and

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 15

Hanrahan [20] to not only skip over empty space, but also to speed up sam-

pling calculations over uniform regions of the volume. Another important

acceleration techniques include adaptive image sampling and early ray termi-

nation. Recently, Lacroute and Levoy [55] have introduced a hybrid method

that combines some of the previous optimizations in a very e�cient class of

volume rendering algorithms.

Avila, Sobierajski and Kaufman [8, 116] introduced the idea of exploiting

the graphics hardware on workstations to speed up volume rendering. First,

they introduce PARC (Polygon Assisted Ray Casting) [8], a technique that

uses the Z-bu�er [31] to �nd the closest and farthest possibly contributing

cells. Later, a revised technique [116] is proposed that (still using the Z-bu�er)

can produce a better approximation of the set of contributing cells.

Their algorithm consists of �rst creating a polygonal representation of the

set of contributing cells (based on axis aligned quadrilaterals) from a coarse

volume (see Figure 1). The coarse volume is calculated by grouping neighbor-

ing voxels together, creating supervoxels. Each supervoxel is then tested for

the presence of interesting voxels (i.e., voxels that belong to the range of voxels

mapped to non-zero intensities and opacities by the transfer functions). All six

external faces of supervoxels are then marked based on its possible visibility

(the second method seems to need to project all the faces).

In order to perform the actual rendering, in the �rst method (called Depth

Bu�er PARC), all the visible quadrilaterals are transformed and scan-converted

twice. Once for �nding the �rst non-empty front voxel, and again to deter-

mine the �nal integration location. In the second method (called Color Bu�er

PARC), a sweep along the closest major axis is generated by coloring the

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 16

Eye

PARC Sampling Points

Figure 1: Polygon Assisted Ray Casting.

PARC cubes with power of two numbers (so they do not interfere with each

other), what leaves a footprint of the intervals (ti; ti+1) that can be used to bet-

ter sample the regions having interesting voxels. This can be quite a savings,

given that volumes are quite sparse (most of the time, only 5-10% of a vol-

ume contains any lighting and shading information for a given set of transfer

functions).

2.5 Projection

Ray casting, described in Section 2.4, works from the image space to the object

space (volume dataset). Another way of achieving volume rendering is to

reconstruct the image from the object space to the image space, by computing

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 17

for every element in the dataset its contribution to the image. Several such

techniques have been developed [29, 126].

Westover's PhD dissertation [125] describes the Splatting technique. In

splatting, the �nal image is generated by computing for each voxel in the

volume dataset its contribution to the �nal image. The algorithm works by

virtually \throwing" the voxels onto the image plane. In this process every

voxel in the object space leaves a footprint in the image space that will rep-

resent the object. The computation is processed by virtually \peeling" the

object space in slices, and by accumulating the result in the image plane.

Formally the process consists of reconstructing the signal that represents

the original object, sampling it and computing the image from the resampled

signal. This reconstruction is done in steps, one voxel at a time. For each voxel,

the algorithm calculates its contribution to the �nal image, its footprint, and

then it accumulates that footprint in the image plane bu�er. The computation

can take place in back-to-front or front-to-back order. The footprint is in fact

the reconstruction kernel and its computation is key to the accuracy of the

algorithm.

Westover [126] proves that the footprint does not depend on the spatial

position of voxel itself (for parallel projections), thus he is able to use a lookup

table to approximate the footprint. During computation the algorithm just

need to multiply the footprint with the color of the voxel, instead of having to

perform a more expensive operation.

Although projection methods have been used for both regular and irregular

grids, they are more popular for irregular grids. In this case, projection can be

sped up by using the graphics hardware (Z-bu�er and texture mapping) [108].

CHAPTER 2. OVERVIEW OF VOLUME RENDERING 18

We leave a complete discussion of these methods for Chapter 4.

2.6 Summary

Volume rendering is a powerful computer graphics technique for the visual-

ization of large quantities of 3D data, especially well suited for three dimen-

sional scalar and vector �elds. It works by modeling the volume as cloud cells

composed of semi-transparent material which emits its own light, partially

transmits light from other cells and absorbs some incoming light. The most

common input data type is a regular (Cartesian) grid of voxels. Ray tracing

is the most popular rendering technique for regular datasets, while projection

is a popular method for irregular grids.

Chapter 3

Parallel Rendering of Regular

Grids

In this chapter we present our research in developing a high performance par-

allel volume rendering engine for our Parallel Volume Rendering system (de-

scribed in Chapter 7). Our research has introduced two contributions to paral-

lel volume rendering: content-based load balancing and pipelined compositing.

Content-based load balancing (Section 3.2) introduces a method to achieve

better load balancing in distributed memory MIMD machines. Pipelined com-

positing (Section 3.3) proposes a new component dataow for implementing

the Parallel Ray Casting pipeline.

The major goal of the research presented in this chapter is to develop

and implement algorithms for volume rendering extremely large datasets at

reasonable speed with an aim on achieving real-time rendering on the next

generation of high-performance parallel hardware. The sizes of volumetric

19

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 20

data we are primarily interested in are in the approximate range of 512-by-

512-by-512 to 2048-by-2048-by-2048 voxels. Our primary hardware focus is

on distributed-memory MIMD machines, such as the Intel Paragon and the

Thinking Machines CM-5.

A large number of parallel algorithms for volume rendering have been pro-

posed. Schroeder and Salem [104] have proposed a shear based technique for

the CM-2 that could render 1283 volumes at multiple frames a second, using a

low quality �lter. The main drawback of their technique is low image quality.

Their algorithm had to redistribute and resample the dataset for each view

change. Montani et al. [81] developed a distributed memory ray tracer for the

nCUBE, that used a hybrid image-based load balancing and context sensitive

volume distribution. An interesting feature of their algorithm is the use of

clusters to generate higher drawing rates at the expense of data replication.

However, their rendering times are well over interactive times. Using a di�er-

ent volume distribution strategy but still a static data distribution, Ma et al.

[64] have achieved better frame rates on a CM-5. In their approach the dataset

is distributed in a K-d tree fashion and the compositing is done in a tree struc-

ture. Others [48, 11, 84] have used similar load balancing schemes using static

data distribution, for either image compositing or ray dataow compositing.

Nieh and Levoy [85] have parallelized an e�cient volume ray caster [58] and

achieved very impressive performance on a shared memory DASH machine.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 21

3.1 Performance Considerations

In analyzing the performance of parallel algorithms, there are many consid-

erations related to the machine limitations, like for instance, communication

network latency and throughput [84]. Latency can be measured as the time it

takes a message to leave the source processor and be received at the destination

end. Throughput is the amount of data that can be sent on the connection

per unit time. These numbers are particularly important for algorithms in

distributed memory architectures. They can change the behavior of a given

algorithm enough to make it completely impractical.

Throughput is not a big issue for methods based on volume ray casting

that perform static data distribution with ray dataow as most of the commu-

nication is amortized over time [81, 48, 11]. On the other hand, methods that

perform compositing at the end of the rendering or that have communication

scheduled as an implicit synchronization phase have a higher chance of expe-

riencing throughput problems. The reason for this is that communication is

scheduled all at the same time, usually exceeding the machines architectural

limits. One should try to avoid synchronized phases as much as possible.

Latency is always a major concern, any algorithm that requires commu-

nication pays a price for using the network. The start up time for message

communication is usually long compared to CPU speeds. For instance, in the

iPSC/860 it takes at least 200�s to complete a round trip message between

two processors. Latency hiding is an important issue in most algorithms, if

an algorithm often blocks waiting for data on other processors to continue its

execution, it is very likely this algorithm will perform badly. The classic ways

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 22

to hide latency is to use pipelining or pre-fetching [46].

Even though latency and throughput are very important issues in the de-

sign and implementation of a parallel algorithm, the most important issue by

far is load balancing. No parallel algorithm can perform well without a good

load balancing scheme.

Again, it is extremely important that the algorithm has as few inherently

sequential parts as possible if at all. Amadahl's law [46] shows how speed

up depends on the parallelism available in your particular algorithm and that

any, however small, sequential part will eventually limit the speed up of your

algorithm.

Given all the constraints above, it is clear that to obtain good load balanc-

ing one wants an algorithm that:

� Needs low throughput and spreads communication well over the course

of execution.

� Hides the latency, possibly by pipelining the operations and working on

more than one image over time.

� Never causes processors to be idle and/or wait for others without doing

useful work.

A subtle point in our requirements is in the last phrase, how do we classify

useful work ? We de�ne useful work as the number of instructions Iopt executed

by the best sequential algorithm available to volume render a dataset. Thus,

when a given parallel implementation uses a suboptimal algorithm, it ends

up using a much larger number of instructions than theoretically necessary as

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 23

each processor executes more instructions than Iopt
P

(P denotes the number of

processors). Clearly, one needs to compare with the best sequential algorithm

as this is the actual speed up the user gets by using the parallel algorithm

instead of the sequential one.

The last point on useful work is usually neglected in papers on parallel

volume rendering and we believe this is a serious aw in some previous ap-

proaches to the problem. In particular, it is widely known that given a transfer

function and some segmentation bounds, the amount of useful information in

a volume is only a fraction of its total size. Based on this fact, we can claim

that algorithms that use static data distribution based only on spatial consid-

erations are presenting \e�ciency" numbers that can be inaccurate, maybe by

a large margin.

To avoid the pitfalls of normal static data distribution, we present in the

next section a new way to achieve realistic load balancing. Our load balancing

scheme, does not scale linearly, but achieves very fast rendering times while

minimizing the \work" done by the processors.

3.2 Content-Based Load Balancing

This section explains our new approach to load balancing, which is able to

achieve accurate load balancing even when using presence acceleration opti-

mizations. The original idea of our load balancing technique came from the

PARC [8] acceleration technique. We notice that the amount of \work" per-

formed by a presence accelerated ray caster is roughly directly proportional to

the number of full supervoxels contained in the volume.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 24

We use the number of full supervoxels a given processor is assigned as the

measure of how much work is performed by that particular processor. Let

P denote the number of processors, and ci the number of full supervoxels

processor i has. In order to achieve a good load balancing (by our metric)

we need a scheme that minimizes the following function for a partition X =

(c1; c2; : : :):

f(X) = max
i6=j

jci � cjj; 8i; j � P (10)

Equation 10 is very general and applies to any partition of the dataset D

into disjoint pieces Di. In our work we have tried to solve this optimization

problem in a very restricted context. We have assumed that each Di is convex.

(We show later that this assumption makes it possible to create a �xed depth

sorting network for the partial rays independently calculated each disjoint

region.) Furthermore, we only work with two very simple subdivisions: slabs

and a special case of a BSP-tree.

Before we go any further, it is interesting to study the behavior of our

load balancing scheme in the very simple case of a slab subdivision of the

volume D. Slabs (see Figure 2) are consecutive slices of the dataset aligned

on two major axes. Given a volume D, with s superslices and p processors

with the restriction that each processor gets contiguous slices, the problem

of calculating the \best" load balancing partition for p processors consists of

enumerating all the (s� 1)(s� 2) : : : (s� p + 1) ways of partitioning D, and

choosing the one that minimizes Equation 10.

The problem of computing the optimal (as de�ned by our heuristic choice)

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 25

Figure 2: During slab-based load balancing, each processor gets a range of
continuous data set slabs. The number of full supervoxels determines the exact
partition ratio.

load balance partition indices can be solved naively as follows. We can compute

all the possible partitions of the integer n, where n is the number of slabs, into

P numbers, where P is the number of processors (it is actually a bit di�erent,

as we need to consider addition non-associative). For example, if n = 5, and

P = 3, then 1 + 1 + 3 represents the solution that gives the �rst slab to the

�rst processor, the second slab to the second processor and the remaining three

slabs to the third processor. Enumerating all possible partitioning to get the

optimal one is a feasible solution but can be very computationally expensive

for large n and P . We use a slightly di�erent algorithm for the computations

that follows, we choose the permutation with the smallest square di�erence

from the average.

In order to show how our approach works in practice, let us work out the

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 26

example of using our load balancing example to divide the neghip dataset (the

negative potential of a high-potential iron protein of 663 resolution) for four

processors. Here we assume the number of superslices to be 16, and the number

of supervoxels to be 64 (equivalent to a level 4 PARC decomposition). Using

a voxel threshold of 10-200 (out of a range up to 255), we get the following 16

supervoxel count for each slab, out of the 1570 total full supervoxels:

12, 28, 61, 138, 149, 154, 139, 104, 106, 139, 156, 151, 129, 62, 29, 13

A naive approach to load balancing (such as the ones used in other parallel

volume renderers) would assign regions of equal volume to each processor

resulting in the following partition:

12 + 28 + 61 + 138 = 239

149 + 154 + 139 + 104 = 546

106 + 139 + 156 + 151 = 552

129 + 62 + 29 + 13 = 233

Here processors 2 and 3 have twice as much \work" as processors 1 and 4.

Using our metric, we get:

12 + 28 + 61 + 138 + 149 = 388

154 + 139 + 104 = 397

106 + 139 + 156 = 401

151 + 129 + 62 + 29 + 13 = 384

One can see that some con�gurations will yield better load balancing than

others but this is a limitation of the particular space subdivision one chooses

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 27

to implement, the more complex the subdivision one allows, the better load

balancing but the harder it is to implement a suitable load balancing scheme

and the associated ray caster. Figure 3 plots the examples just described for

the naive approach. Figure 4 shows how well our load balancing scheme works

for a broader set of processor arrangements.

Figures 5 and 6 show the rendering times on the Intel Paragon, showing

the correlation between the number of supervoxels (or cubes) a processor has

and the amount of work it has to perform. By comparing these graphs and

those in Figures 3 and 4, one can observe that our load balancing is e�ective,

compared to the naive approach of equally subdividing the dataset. If one

was calculating a single image, the total rendering time of the image subparts

would be the maximum of every processor plus the compositing time.

So far we have shown that our load balancing metric (Equation 10) contains

an accurate metric for parallel load balancing for the case of slab subdivisions.

Unfortunately, as a domain subdivision scheme, slabs have a few limitations:

� Slabs can have a huge di�erence in projected screen area due to its

unbounded aspect ratio.

� Slabs induce a linear compositing tree, what introduces a large amount

of latency (that grows linearly with the number of processors). (Details

in Section 3.3).

These shortcomings of slabs led us to an alternative space decomposition

structure previously used by Ma et al. [64, 65], the Binary Space Partition

(BSP) tree, originally introduced by Fuchs et al. [35].

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 28

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

N
um

be
r

of
 c

ub
es

Processor Number

out of 4 processors
out of 8 processors

Figure 3: The graph shows the number of cubes per processor under naive load
balancing.

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

ub
es

Processor Number

out of 2 processors
out of 3 processors
out of 4 processors
out of 8 processors

out of 10 processors

Figure 4: Load balancing measures for our algorithm. The graph shows the
number of cubes the processor receives in our algorithm.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 29

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e
to

 R
en

de
r

(m
se

c)

Node Number

time to render with 4 processors

Figure 5: Naive load balancing on the Paragon. The graph shows the actual
rendering times for 4 processors using the naive load balancing.

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e
to

 R
en

de
r

(m
se

c)

Node Number

time to render with 4 processors

Figure 6: Our load balancing on the Paragon. The graph shows the actual
rendering times for 4 processors using our load balancing.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 30

Our implementation of BSP trees is quite di�erent from Ma et al. [64, 65],

even without considering the load balancing scheme (another major di�erence

is explained in Section 3.3). There, partition cuts are made along each di-

rection, while in our case we perform cuts always along the axis that has the

longest span. If the cut is always performed on the middle of the longest span

axis, it is easy to prove we get a bounded aspect ratio on the the �nal subdi-

vision (assuming that enough cuts are made). In our case, because the load

balancing scheme makes the cuts non-uniform (e.g., not in the middle), we can

not guarantee a bounded aspect ratio.

Our decomposition method works by performing axis aligned cuts on the

rectangular volume dataset, using the following two rules:

� Always generate a cut subdividing the volume along the largest axis.

The intuition is to minimize variations of the sizes of the volumes, that

is, try to generate partitions as close to cubic as possible. The reason to

generate partitions as close to a cube as possible is so that the projection

of these partitions from any angle tend to be relatively of the same size,

what aids in distributing rendering and compositing load across all the

processors. (See Figure 7.)

� Instead of performing a geometric based partition only (like in the mid-

dle), always choose the coordinate along the axis of partition that sub-

divides the (remaining) volume into relatively equal number of full (sub-

sampled) cubes. (See Figure 8.) This guarantees a good load balancing

across all the processors.

The cuts are performed recursively m times until we have divided the

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 31

original volume D into 2m regions. Usually m processors will be used for

rendering.

We should note here that for the slab case, we were trying all the possible

partition combinations in order to optimize the load balancing. This was only

possible due to the small number of processors and to the simplicity of the

decomposition. In our BSP-tree based optimization, we simply use the recur-

sive decomposition exampled above, not trying to �nd global minimum, but

simply using the binary search strategy. Section 3.4 and Section 3.5 describe

implementation and performance issues of our rendering engine in detail.

Figure 7: An example of the partition scheme we used for load balancing.
The bottom represents a possible decomposition for 8 nodes. Notice that a cut
can be made several times over the same axis to optimize the shape of the
decomposition.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 32

Figure 8: A cut through the partition accomplished using our load balancing
scheme on an MRI head. It is easy to see that if a regular partition scheme were
used instead, as the number of processors increase, large number of processors
would get just empty voxels to render.

3.3 The Parallel Ray CastingRendering Pipeline

The Parallel Ray Casting rendering pipeline (we are using the same termi-

nology as [31]) is the way the di�erent pieces of a parallel ray caster are put

together. In our research we introduce a new volume rendering pipeline, that

separates rendering nodes and compositing nodes.

In most other algorithms, the same processors are used for both sampling

and shading the volume, as well as for compositing images (in some cases sub-

images) without regard to the fact compositing is of a di�erent computation

nature than rendering (in much the same way geometric transformations are

di�erent from scan-conversion). Compositing two images is a relatively in-

expensive operation, but when performed in parallel (because of the dataset

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 33

partitioning) it uses a considerable number of messages and is also highly syn-

chronized. Given the fact that messages are slow as compared to processors

speed (e.g., a modern CPU can execute hundreds of thousands of instructions

for the cost of a single message), it is a waste of processing power to use the

same number of rendering processors for compositing , and to have a phase of

computation for compositing (like in [64, 65]).

Instead, it is more e�cient to overlap compositing and rendering. In our

�rst attempt at this (presented in [110]), we tried to use spare time from the

rendering nodes to composite the images. This scheme seems to work well

when the number of nodes is small, but it introduces a very high memory

overhead (due to bu�ering of partial results and the linear compositing tree).

An interesting aspect of separating the compositing and rendering nodes,

is that one can allocate di�erent number of nodes depending on the expected

performance. With all of this in mind, we introduce the idea of having a

rendering pipeline composed of clusters. In Montani et al. [81], this idea is

proposed in the context of replicating the dataset multiple times and allo-

cating disjoint scan-lines for each cluster. Our cluster scheme is similar but

more general. Here, clusters represent a \computational unit of some sort",

not necessarily only for rendering, but each cluster represents a phase of the

computation being performed. For instance, in a given pipeline con�guration,

we may have not only rendering and compositing, but also a caching cluster,

whose purpose is to bu�er copies of the dataset for later viewing, or a compu-

tational cluster, where scienti�c code runs concurrently with the visualization

process. An interesting aspect of the PVR system is actually to allow for a

exible and intuitive con�guration of the pipeline and cluster con�guration.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 34

Rendering
Cluster

Rendering
Cluster

Rendering
Cluster

Cluster
Compositing

Cluster
Compositing

Single
Node

Nodes
Multiple

Low Bandwidth

High Bandwidth

Cluster

Rendering Pipeline

Caching

Figure 9: Representation of the rendering pipeline. Commands come from
the top into the respective clusters. Each cluster is considered as a di�erent
functional unit of the rendering process and hides its internal structure from
the other clusters. Flexible con�guration of the nodes into clusters, and their
respective functions are provided by the PVR system.

Figure 9 shows a typical con�guration during rendering. Each cluster func-

tion needs to be speci�ed for a complete understanding of the rendering pro-

cess.

Caching Cluster

The caching cluster has the simplest function of all. Its purpose is just to serve

as an I/O cache for data that is to be sent for rendering. Its primary use lies

in the fact that for computing the necessary information for load balancing

(number and location of full supervoxels), it is necessary to have access to

the full dataset, and at least two passes of the complete dataset would be

needed (one for computing the information, another for sending the data to

the corresponding nodes). Because it is very slow to read data of the disks,

we choose to \waste" a few nodes as cache only. Once one has put away

these nodes, they can be used for other purposes, such as data preparation, or

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 35

caching for time-dependent data. This way, the during a large computation,

the compute nodes can o�oad raw data into the caching nodes for preparation

for further rendering. This is an useful property in large parallel machines as

it is very slow to write data to disk, specially when there is a limited amount

of external disk space. Also, this allows for fast data preparation, and change

in parameters without increasing the amount of necessary rendering nodes.

An important aspect of the data distribution performed by the caching

nodes, is that distributed data has to be moved to each cluster that needs that

data in an e�cient manner.

Rendering Cluster

The rendering nodes are responsible for sampling and compositing their part of

a ray. In order to avoid global communication, each sub-volume region assigned

to a rendering node is convex, and actually belongs to a global BSP-tree that

makes compositing much simpler (see Figure 10). The data is distributed to

each node according to the load balancing criteria described earlier.

Currently, each node has a corresponding screen it computes (a subset of

the scanlines can be speci�ed, to lower the computational burden on a given

rendering cluster, or on groups thereof { see the Chapter 7 for more details). As

each rendering cluster computes its images, it waits for an available composit-

ing cluster to receive its output in the form of n images of the predetermined

size. Because rendering clusters may be grouped (as shown later), the output

of the images might have to be synchronized across clusters, but we chose

a method of synchronization that is local and minimizes the synchronization

overhead. The basic idea is to keep \access tokens", that are kept by the

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 36

compositing nodes, and passed on (in a lazy fashion) from compositing to the

rendering nodes during computation. A rendering node just sends its image

down the pipeline if it has a token, otherwise it just waits for the token to ar-

rive. As long as there is enough \compositing capacity" to handle the amount

of rendering messages, the rendering nodes never wait.

The structure of the rendering nodes makes each of its nodes completely

synchronization and communication free during rendering (amongst them-

selves). The only requirement of rendering nodes relative to the composit-

ing nodes is that the later accept a set of n messages with n images, every

time these are computed. With this in mind, it is possible to abstract the

exact number of nodes in each cluster, in other to exploit other types of load

balancing. For instance, nothing prevents a set of n rendering nodes, from par-

titioning the volume into 4n pieces, and sending 4n images down the pipeline.

In such a way, one can incorporate the load balancing of Karia [53] in our

system. Memory is the major bottleneck in this kind of organization.

Compositing Cluster

The compositing nodes are responsible for regrouping all the sub-rays back

together in a consistent manner, in order to keep image correctness. This is

only possible because composition is an associative operation, so if we have

to sub-ray samples where one ends where the other starts, it is possible to

combine their samples into one sub-ray recursively until we have a value that

constitutes the full ray contribution to a pixel.

Ma et al. [65] use a di�erent approach to compositing, where instead of

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 37

Ray

00

010

000 001

010

011

A

B

C

D

E

F

G

H

Figure 10: Data partitioning shown in two dimensions. The dataset is parti-
tioned into 8 pieces (marked A . . .H) in a canonical hierarchical manner by the
7 lines (planes in 3D) represented by binary numbers. Once such a decompo-
sition is performed, it is relatively easy to see how the samples get composited
back into a single value.

having separate compositing nodes, the rendering nodes switch between ren-

dering and compositing. Our method is more e�cient (in his latest paper, Ma

[66] adopts a similar decomposition of the nodes into two classes) because we

can use the special structure of the sub-ray composition to yield a high per-

formance pipeline, where multiple nodes are used to implement the complete

pipeline (see Figure 11). Also, the structure of compositing requires synchro-

nized operation (e.g., there is an explicit structure to the composition, that

needs to be guaranteed for correctness purposes), and light weight computa-

tion, making it much less attractive for parallelization over a large number of

processors, specially on machines with slow communication compared to CPU

speeds (almost all current machines).

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 38

A B C D E F G H

00 01

0

010 011000 001

Compositing Cluster

Rendering Cluster

Figure 11: The internal structure of one compositing cluster, one rendering
cluster and their interconnection is shown. In PVR, the communication be-
tween the compositing and the rendering clusters is very exible, with several
rendering clusters being able to work together in the same image. This is ac-
complished by using a set of tokens that are handled by the �rst level of the
compositing tree in order to guarantee consistency. Because of its tree struc-
ture, one properly synchronized compositing cluster can work on several images
at once, depending on its depth. The compositing cluster shown is relative to
the decomposition shown in Figure 10.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 39

It is easy to see that compositing has a very di�erent structure than ren-

dering. Here, nodes need to synchronize at every step of the computation,

making the depth of the compositing tree a hard limit on the speed of the

rendering. That is, if one uses 2m nodes for compositing, and it takes tc time

to composite two images, even without any synchronization or communication

factor in, it takes at least mtc time to get a completely composited image.

Fortunately, most of this latency can be hidden by pipelining the compu-

tation. Here, instead of sending one image at a time, we can send images

continuously into the compositing cluster, and as long as we send images at

a rate lower than one for every tc worth of time, the compositing cluster is

able to composite those at full speed, and after mtc times, the latency is fully

hidden from the computation. As can be seen for our discussion, this latency

hiding process is very sensitive to the rate of images coming in the pipeline.

One needs to try to avoid \stalls" as much as possible. Also, one can not pipe

more than the overall capacity of the pipeline.

Several implications for real-time rendering can be extracted from this

simple model. Even though the latency is hidden from the computation, it is

not hidden from the user, at least not totally. The main reason is the overall

time that an image takes to be computed. Without network overhead, if an

image takes tr time to be rendered by the rendering cluster, the �rst image

of a sequence takes (at least) time tr +mtc to be received by the user. Given

that people can notice even very small latencies, our latency budget for real-

time volume rendering is extremely low and will de�nitely have to wait for the

next generation of machines to be build. We present a detailed account of the

timings later in this chapter.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 40

Virtualization

Going back to the previous discussion, we see that as long as tr is larger than

tc we don't have anything to worry about with respect to creating a bottleneck

in the compositing end. As it turns out, tr is much larger than tc, even for

relatively small datasets. With this in mind, an interesting question is how to

allocate the compositing nodes, with respect to size and topology.

The topology is actually �xed by the corresponding BSP-tree, that is, if

the �rst level of the tree has n = 2h images (if one image per rendering

node, than n would be the number of rendering nodes), than potentially the

number of compositing nodes required might be as high as 2h � 1. There

are several reasons not to use that many compositing nodes. First, it is a

waste of processors. Seconds, the �rst-image latency grows with the number

of processors in the compositing tree.

Fortunately, we can lower the number of nodes required in the compositing

tree by a process known as virtualization. Here, each actual node simulates a

group of nodes of the topology tree. There are a couple of interesting caveats

in this \simulation". First, the number of image messages every compositing

node has to execute increases from two, to some higher power of two, thus

potentially increasing the amount of memory required in an exponential fash-

ion. This can be easily solved by performing the compositing computation in

a breadth-�rst fashion, including the distribution of tokens. This increases the

latency and synchronization, but dramatically decreases the number of nodes

necessary for compositing. Second, the virtualization process is not arbitrary,

and nodes have to be allocated in some power of the original number of nodes

in the tree.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 41

Types of Parallelism

Due to the fact that each rendering node gets a portion of the dataset, this

type of parallelism is called \object-space parallelism". The structure of our

rendering pipeline makes it possible to exploit other types of parallelism. For

instance, by using more than a single rendering cluster to compute an image,

we are making use of \image-space parallelism" (in PVR, it is possible to

specify that each cluster compute disjoint scanlines of the same image; see [114]

for the issues related to image-space parallelism). The clustering approach

coupled with the inherent pipeline parallelism available in the compositing

process (because of its recursive structure) gives rise to a third parallelism type,

namely \time-space parallelism" or \temporal parallelism". In the latter, we

can exploit multiple clusters by concurrently calculating sub-rays for several

images at once, that can be sent down the compositing pipeline concurrently.

Here, it is important for the correctness of the images, that each composition

step be done in lockstep, in order to avoid mixing of images. It should be clear

by now that there are several advantages to our separation of nodes into our

two types.

3.4 Implementation Issues

We have implemented a parallel volume renderer within the PVR system. The

current implementation was developed for the Intel Paragon running SUNMOS

(Sandia-University of New Mexico Operating System) and uses a subset of the

Intel's NX communication library (it also runs under Intel OSF/1). The code

was written to be portable to other architectures and an MPI port is currently

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 42

planned. The parallel renderer consists of four main parts, some of which are

based on earlier code described in [110].

Communication Structure

SUNMOS implementation of NX, does not allow for interrupt-driven receives

(NX hrecv), that is, it is not possible to specify functions to be called upon

receiving certain types of messages. The �rst version of our code (originally

developed for the Intel iPSC/860) required this capability. In order to avoid

this, the implementation is loosely based on RPC calls. Basically, when a node

wants to enter a certain protocol exchange with some other node, it sends in

an RPC call specifying what function the other node is to perform, the other

node \jumps" to the speci�ed function and the communication is performed

in lockstep until the end of the function (the synchronization actually can be

performed only in the end). This can also be used with global operations.

For instance, the code a compositing node sends to a compositing node to

send it a token is:

tmp_f = &NodeToken;

csend(PVR_MSG_DISPATCHER, &tmp_f, sizeof(int (*)()), node, 0);

At the receiving end, upon receiving a dispatcher message, it just calls the

function, which in turn increments the token ag. It processor do not have

the same address space, the same behavior is easy to achieve with function

tables, but requires the modi�cation of the main function table �le every time

a function is added to the program.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 43

Memory Requirements

In a distributed-memory environment, memory is a very important resource,

because unused memory on one node, can not be used by another node. Fur-

thermore, the machine we have implemented our results on, the Intel Paragon

installed at Sandia National Labs in Albuquerque, New Mexico, has only 16MB

of memory on the majority of its nodes, and only 512 nodes with 32MB of

memory. (The smaller Paragon installed at Stony Brook has 32MB in each

node.)

In order to see the limitation, we have to note that the internal repre-

sentation of every pixel requires 4 oating point numbers, one for each color

channel (Red, Green and Blue) and another one for opacity. The major rea-

son for using oating point numbers is the pressing need for speed. With this

representation, each 512-by-512 image needs 4MB of memory by itself, not

counting the memory necessary for performing the Z-bu�er scan-conversion

that our PARC-based ray caster needs. In the compositing nodes, who need

to save at least two images at a time, the memory requirements for images

is over 8MB, plus the communication bu�er space necessary to receive asyn-

chronous messages (required by SUNMOS). This means between 12{16MB of

image memory is necessary to composite 512-by-512 images.

When saving images to disk, or sending them over the network we use a

di�erent representation. The oating point images are transformed into 8-bit

per channel images, requiring considerable less space. When transmission over

the network is necessary (mostly for interactive viewing purposes), a simple

lossless compression is performed (RLE based).

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 44

3.5 Performance Analysis

In this section we present a few performance �gures of our algorithm that

demonstrate our approach is sound and fast. The main points that we are

discussing are: the e�ectiveness of PARC load balancing, the communication

overhead of the compositing scheme, and overhead as compared to a sequential

implementation. The e�ectiveness of our PARC load balancing was studied

extensively in a previous section, but to complete our choice of using PARC

as our ray casting algorithm, it is interesting to compare its advantages to a

more naive ray casting approach where no presence accelerations are adopted.

E�ectiveness of PARC Optimization

A conventional ray caster where the rays are cast from start to end by calculat-

ing intersections with the bounding box of the object is only slightly di�erent

from a PARC ray caster. A PARC ray caster actually does more work than

a naive one, as it needs to scan convert and to �nd t0 and t1 from the Z

bu�er. The place that a PARC ray caster really gains performance is in the

fact that it better approximates the volume bounds. It should be clear that

the higher the cost of the shading function per step, the more advantageous

it is to calculate these bounds well. In Figure 12, we can see how a PARC

based ray caster performs against a naive ray caster under di�erent shading

functions. For our purposes we consider \light" shading a method that uses

5-10 instructions per sample, \medium" a method that uses 50 instructions

per sample, and \heavy" shading functions require about 300 instructions per

sample. Nieh and Levoy [85] have reported that trilinear interpolating a ray

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 45

sample takes 320 instructions. One can see from Figure 12 that not only times

but also the rate of increase of cost decreases as one computes more samples.

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

R
en

de
ri

ng
 T

im
es

 (
se

c)

Shading cost in # of instructions.

naive
parc

Figure 12: PARC versus naive ray casting. Times were calculated on a
Sparc1000.

The work performed during rendering each ray can be broken into Ir, the

initialization work, and Wr, the work performed to calculate and shade the

samples along the ray. If perfect load balancing is achieved for every ray,

each processor will perform Wr

P
+ Ir work per ray, that is, the initialization

time is replicated for every ray. If Wr � Ir, then we can achieve very high

scalability with the algorithm, otherwise, as the number of processors increases

the amount of work done on the initialization by all the processors PIr gets

larger than Wr, thus limiting the performance. This makes optimization of

the initialization time critical to the performance of the algorithm.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 46

Load Balancing Performance and Overall Scalability

Figure 13 shows the rendering times for each frame of a 72-frame animation

sequence of the visible human dataset. This is a full 360-degree rotation along

the y-axis. The times are wall-clock times calculated at the collector node as

it receives the images and saves them to a local disk. Each image is 400-by-

400, with three color channels. For rendering, the images are represented as

an array of pixels, each of which is represented as four oating point numbers

(what amounts to 16 bytes per pixel). At 400-by-400, each image is over

2.5MB. Images are transmitted from the rendering nodes to the compositing

nodes, until they reach the root node of the compositing tree. There, images

are converted to RGB format, with one byte per color channel and transmitted

to the collector node. The �nal images (with 480,000 bytes) are saved to disk

by the collector. Computing the complete animation takes 129.23 seconds, or

1.79 seconds per frame, resulting in 32MB of data being saved to disk. There

are noticeable sparks in the image generation rate and these deserve further

study. We hypothesize the source of the stalls in the pipeline are due to load

imbalance and also contention in writing the images to the disk (the collector

node stalls the pipeline whenever an image is received before the previous

image is saved). One can see the �rst image takes considerable longer than

the others | this is the pipeline initialization cost.

Our next step is to extend the system to render the full RGB visible human

(14GB) with high temporal resolution (a 72-frame rotation uses 5 degree in-

crements. Smaller increments are highly desirable, but a 0.5 degree increment

would make the animation �les huge, at over 300MB). This will require the use

of parallel I/O, a capability that currently we do not have, and dedicated use

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 47

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

T
im

e
(s

ec
on

ds
)

Frame Number (out of 72 frames)

Rendering times for each frame

Figure 13: Rendering times for a 72-frame animation sequence of the 512-by-512-

by-1877 visible human dataset. Each image is 400-by-400.

of a very large parallel machine, such as the entire 1840-node Intel Paragon at

Sandia.

In order to show PVR's scalability, we use a 256-by-256-by-937 version of

the visible human dataset. Figure 14 shows the rendering times for 5 di�erent

con�gurations, varying the number of rendering and compositing nodes. The

�ve con�gurations are: 16 rendering nodes (RN) and 15 compositing nodes

(CN) (total rendering time { TRT { is 104.10 seconds, or 1.44 seconds per

frame); 32 RN (2 clusters of 16) and 15 CN (TRT is 67.24 seconds, or 0.93

seconds per frame); 64 RN (4 clusters of 16) and 15 CN (TRT is 56.73 sec-

onds, or 0.78 seconds per frame); 32 RN (1 cluster) and 31 CN (TRT is 71.42

seconds and 0.99 seconds per frame); 64 RN (1 cluster) and 63 CN (TRT is

58.79 seconds, or 0.81 seconds per frame). A simple conclusion that can be

drawn from this data is that it is not cost e�ective to increase the size of the

compositing cluster for relatively small images.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 48

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

T
im

e
(s

ec
on

ds
)

Frame Number (out of 72 frames)

16 rendering/15 compositing
32 rendering/15 compositing
64 rendering/15 compositing

(a) Scaling the number of clusters in a rendering group.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

T
im

e
(s

ec
on

ds
)

Frame Number (out of 72 frames)

16 rendering/15 compositing
32 rendering/31 compositing
64 rendering/63 compositing

(b) Scaling both the rendering and compositing nodes.

Figure 14: Rendering times for a 72-frame animation sequence of a 256-by-256-by-

937 version of the visible human dataset. Each image is 250-by-250.

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 49

3.6 Conclusions and Future Work

We have shown that using PARC cubes for measuring useful work generates

an intuitive way to load balance volume ray casting on distributed memory

parallel machines. This not only generates a method that is theoretically sound

but its implementation seems to present a method that is both e�cient and

scalable. We believe our method is simple, fast, uses coherency and achieves

high resource utilization on a given machine. As we use PARC, we achieve a

high utilization of the compute processors and thus a very fast rendering time

on every processor. Because of our pipelined compositing scheme, we achieve

a much higher network utilization than other methods.

There are several directions of research to be taken. First of all, in order

to eliminate the stalls on the compositing pipeline, one might consider using

feedback synchronization techniques, based on previous work by Van Jacobson

[49], who designed a set of techniques to avoid congestion in TCP/IP networks.

A variation of his slow-start and round-trip-time estimation technique, where

the host slowly sends requests and adaptively changes the rate of requests with

the feedback it receives from the network, could be used for that purpose. This

can be implemented by having the master keep the number of outstanding

image render requests, and setting a maximum on this number based on the

number of processors and the amount of memory each has (depending on

the compositing capacity). At the start of the computation the master begins

sending image requests to the processors, and for every image received it sends

two requests to the processors until the maximum is achieved. Also the master

might keep a running average of the time taken to compute an image, computed

CHAPTER 3. PARALLEL RENDERING OF REGULAR GRIDS 50

as Tf = �Ti + (1 � �)M , where Tf is the new estimate, Ti was the initial

estimate, M is the time measured in the last image computation, and � is an

amortization constant. By changing �, it is possible to make the master more

or less responsive to changes in rendering times. By using this procedure, when

this time increases the master can adaptively decrease the rate of requests or

increase the rate if the processors begin computing images faster.

Another possible improvement is in the load balancing. The current load

balancing works well for some datasets, but in others, sometimes to spread

the load, the size of volume allocated to a particular node is larger than the

amount of available memory. We currently avoid this problem by calculating

sub-optimal partitions. A possible solution would be to incorporate scattered

decompositions, where the volume is initially partitioned in sub-pieces, each

of which is assigned to nodes depending on the number of full supervoxels it

contains.

Finally, because the �nal bottleneck is always the sequential algorithm

rendering speed (running in the rendering clusters), experimenting with other

faster renderers, such as Lacroute's shear-warp renderer, might lead to big

performance improvements.

Chapter 4

Rendering of Irregular Grids

We propose a fast algorithm for rendering general irregular grids (also in [112]).

Our method uses a sweep-plane approach to accelerate ray casting, and can

handle disconnected and nonconvex (even with holes) unstructured irregular

grids with a rendering cost that decreases as the \disconnectedness" decreases.

The algorithm is carefully tailored to exploit spatial coherence even if the image

resolution di�ers substantially from the object space resolution.

In this chapter, we establish the practicality of our method through exper-

imental results based on our implementation, and we also provide theoretical

results, both lower and upper bounds, on the complexity of ray casting of

irregular grids.

51

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 52

4.1 Introduction

Volume rendering methods are used to visualize scalar and vector �elds by

modeling a volume as \cloud-like" cells composed of semi-transparent mate-

rial that emits its own light, partially transmits light from other cells, and

absorbs some incoming light [128, 72]. The most common input data type is a

regular (Cartesian) grid of voxels. Given a general scalar �eld in <3, one can

use a regular grid of voxels to represent the �eld by regularly sampling the

function at grid points (�i; �j; �k), for integers i; j; k, and some scale factor

� 2 <, thereby creating a regular grid of voxels. However, a serious drawback

of this approach arises when the scalar �eld is disparate, having nonuniform

resolution with some large regions of space having very little �eld variation,

and other very small regions of space having very high �eld variation. In such

cases, which often arise in computational uid dynamics and partial di�eren-

tial equation solvers, the use of a regular grid is infeasible since the voxel size

must be small enough to model the smallest \features" in the �eld. Instead,

irregular grids (or meshes), having cells that are not necessarily uniform cubes,

have been proposed as an e�ective means of representing disparate �eld data.

Irregular grid data comes in several di�erent formats [118]. One very com-

mon format has been curvilinear grids, which are structured grids in computa-

tional space that have been \warped" in physical space, while preserving the

same topological structure (connectivity) of a regular grid. However, with the

introduction of new methods for generating higher quality adaptive meshes,

it is becoming increasingly common to consider more general unstructured

(non-curvilinear) irregular grids, in which there is no implicit connectivity

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 53

information. Furthermore, in some applications disconnected grids arise.

In this chapter, we present and analyze a new method for rendering general

meshes, which include unstructured, possibly disconnected, irregular grids.

Our method is based on ray casting and employs a sweep-plane approach,

as proposed by Giertsen [38], but introduces several new ideas that permit a

faster execution, both in theory and in practice.

De�nitions and Terminology

A polyhedron is a closed subset of <3 whose boundary consists of a �nite

collection of convex polygons (2-faces, or facets) whose union is a connected 2-

manifold. The edges (1-faces) and vertices (0-faces) of a polyhedron are simply

the edges and vertices of the polygonal facets. A convex polyhedron is called a

polytope. A polytope having exactly four vertices (and four triangular facets)

is called a simplex (tetrahedron). A �nite set S of polyhedra forms a mesh

(or an unstructured, irregular grid) if the intersection of any two polyhedra

from S is either empty, a single common edge, a single common vertex, or a

single common facet of the two polyhedra; such a set S is said to form a cell

complex. The polyhedra of a mesh are referred to as the cells (or 3-faces). If

the boundary of a mesh S is also the boundary of the convex hull of S, then S

is called a convex mesh; otherwise, it is called a nonconvex mesh. If the cells

are all simplices, then we say that the mesh is simplicial.

We are given a mesh S. We let c denote the number of connected compo-

nents of S. If c = 1, we say that the mesh is connected; otherwise, the mesh

is disconnected. We let n denote the total number of edges of all polyhedral

cells in the mesh. Then, there are O(n) vertices, edges, facets, and cells.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 54

The image space consists of a screen of N -by-N pixels. We let �i;j denote

the ray from the eye of the camera through the center of the pixel indexed

by (i; j). We let ki;j denote the number of facets of S that are intersected by

�i;j. (Then, the number of cells intersected by �i;j is between ki;j=2 and ki;j.)

Finally, we let k =
P

i;j ki;j be the total complexity of all ray casts for the

image. We refer to k as the output complexity.

Related Work

A simple approach for handling irregular grids is to resample them, thereby

creating a regular grid approximation that can be rendered by conventional

methods [127]. In order to achieve high accuracy it may be necessary to sample

at a very high rate, which not only requires substantial computation time, but

may well make the resulting grid far too large for storage and visualization

purposes. Several rendering methods have been optimized for the case of

curvilinear grids; in particular, Fr�uhauf [34] has developed a method in which

rays are \bent" to match the grid deformation. Also, by exploiting the simple

structure of curvilinear grids, Mao et al. [68] have shown that these grids can

be e�ciently resampled with spheres and ellipsoids that can be presorted along

the three major directions and used for splatting.

A direct approach to rendering irregular grids is to compute the depth

sorting of cells of the mesh along each ray emanating from a screen pixel.

For irregular grids, and especially for disconnected grids, this is a nontrivial

computation to do e�ciently. One can always take a naive approach, and

for each of the N2 rays, compute the O(n) intersections with cell boundary

facets in time O(n), and then sort these crossing points (in O(n logn) time).

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 55

However, this results in overall timeO(N2n logn), and does not take advantage

of coherence in the data: The sorted order of cells crossed by one ray is not

used in any way to assist in the processing of nearby rays.

Garrity [36] has proposed a preprocessing step that identi�es the boundary

facets of the mesh. When processing a ray as it passes through interior cells of

the mesh, connectivity information is used to move from cell to cell in constant

time (assuming that cells are convex and of constant complexity). But every

time that a ray exits the mesh through a boundary facet, it is necessary to

perform a \FirstCell" operation to identify the point at which the ray �rst

reenters the mesh. Garrity does this by using a simple spatial indexing scheme

based on laying down a regular grid of voxels (cubes) on top of the space, and

recording each facet with each of the voxels that it intersects. By casting a ray

in the regular grid, one can search for intersections only among those facets

stored with each voxel that is stabbed by the ray.

The FirstCell operation is in fact a \ray shooting query", for which the

�eld of computational geometry provides some data structures: One can ei-

ther answer queries in time O(logn), at a cost of O(n4+�) preprocessing and

storage [2, 4, 24, 91], or answer queries in worst-case time O(n3=4), using a

data structure that is essentially linear in n [3, 107]. In terms of worst-case

complexity, there are reasons to believe that these tradeo�s between query

time and storage space are essentially the best possible. Unfortunately, these

algorithms are rather complicated, with high constants, and have not been

implemented or shown to be practical. (Certainly, data structures with super-

linear storage costs are not practical in volume rendering.) This motivated

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 56

A

B

C

Figure 15: 3 triangles that have no depth ordering.

Mitchell et al. [77] to devise methods of ray shooting that are \query sensi-

tive" | the worst-case complexity of answering the query depends on a notion

of local combinatorial complexity associated with a reasonable estimate of the

\di�culty" of the query, so that \easy" queries take provably less time than

\hard" queries. Their data structure is based on octrees (as in [98]), but

with extra care needed to keep the space complexity low, while achieving the

provably good query time.

Uselton [122] proposed the use a Z-bu�er to speed up FirstCell; Ramamoor-

thy and Wilhelms [96] point out that this approach is only e�ective 95% of

the time. They also point out that 35% of the time is spent checking for exit

cells and 10% for entry cells. Ma [66] describes a parallelization of Garrity's

method. One of the disadvantages of these ray casting approaches is that they

do not exploit coherence between nearby rays that may cross the same set of

cells.

Another approach for rendering irregular grids is the use of projection

(\feed-forward") methods [72, 129, 108, 119], in which the cells are projected

onto the screen, one-by-one, in a visibility ordering, incrementally accumulat-

ing their contributions to the �nal image. One advantage of these methods

is the ability to use graphics hardware to compute the volumetric lighting

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 57

models in order to speed up rendering. Another advantage of this approach

is that it works in object space, allowing coherence to be exploited directly:

By projecting cells onto the image plane, we may end up with large regions

of pixels that correspond to rays having the same depth ordering, and this is

discovered without explicitly casting these rays. However, in order for the pro-

jection to be possible a depth ordering of the cells has to be computed, which

is, of course, not always possible; even a set of three triangles can have a cyclic

overlap, as shown in Figure 15. Computing and verifying depth orders is pos-

sible in O(n4=3+�) time [1, 23, 25]. In case no depth ordering exists, it is an

important problem to �nd a small number of \cuts" that break the objects in

such a way that a depth ordering does exist; see [23, 14]. BSP trees have been

used to obtain such a decomposition, but can result in a quadratic number of

pieces [35, 89]. However, for some important classes of meshes (e.g., rectilinear

meshes and Delaunay meshes [30]), it is known that a depth ordering always

exists, with respect to any viewpoint. This structure has been exploited by

Max et al. [72]. Williams [129] has obtained a linear-time algorithm for visibil-

ity ordering convex (connected) acyclic meshes whose union of (convex) cells

is itself convex, assuming a visibility ordering exists. Williams also suggests

heuristics that can be applied in case there is no visibility ordering or in the

case of nonconvex meshes, (e.g., by tetrahedralizing the nonconvexities which,

unfortunately, may result in a quadratic number of cells). In [123], techniques

are presented where no depth ordering is strictly necessary, and in some cases

calculated approximately. Very fast rendering is achieved by using graphics

hardware to project the partially sorted faces.

Two important references on rendering irregular grids have not yet been

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 58

discussed here | Giertsen [38] and Yagel et al. [132]. We discuss Giertsen's

method in the next section. For details on [132], we refer to the reader their

paper.

In summary, projection methods are potentially faster than ray casting

methods, since they exploit spatial coherence. However, projection methods

give inaccurate renderings if there is no visibility ordering, and methods to

break cycles are either heuristic in nature or potentially costly in terms of

space and time.

Our Contribution

Our new algorithm for rendering irregular grids is based on a sweep-plane

approach. Our method is similar to other ray casting methods in that it does

not need to transform the grid; instead, it uses (as the projection methods) the

adjacency information (when available) to determine ordering and to attempt

to optimize the rendering. An interesting feature of our algorithm is that its

running time and memory requirements are sensitive to the complexity of the

rendering task. Furthermore, unlike the method by Giertsen [38], we conduct

the ray casting within each \slice" of the sweep plane by a sweep-line method

whose accuracy does not depend on the uniformity of feature sizes in the

slice. Our method is able to handle the most general types of grids without

the explicit transformation and sorting used in other methods, thereby saving

memory and computation time while performing an accurate ray casting of the

datasets. We establish the practicality of our method through experimental

results based on our implementation. We also discuss theoretical lower and

upper bounds on the complexity of ray casting in irregular grids.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 59

4.2 Sweep-Plane Approaches

A standard algorithmic paradigm in computational geometry is the \sweep"

paradigm [94]. Commonly, a sweep-line is swept across the plane, or a sweep-

plane is swept across 3-space. A data structure, called the sweep structure (or

status), is maintained during the simulation of the continuous sweep, and at

certain discrete events (e.g., when the sweep-line hits one of a discrete set of

points), the sweep structure is updated to reect the change. The idea is to

localize the problem to be solved, solving it within the lower dimensional space

of the sweep-line or sweep-plane. By processing the problem according to the

systematic sweeping of the space, sweep algorithms are able to exploit spatial

coherence in the data.

Giertsen's Method

Giertsen's pioneering work [38] was the �rst step in optimizing ray casting

by making use of coherency in order to speed up rendering. He performs a

sweep of the mesh in 3-space, using a sweep-plane that is parallel to the x-z

plane. Here, the viewing coordinate system is such that the viewing plane is

the x-y plane, and the viewing direction is the z direction; see Figure 16. The

algorithm consists of:

1. Transform all vertices of S to the viewing coordinate system.

2. Sort the (transformed) vertices of S by their y-coordinates; put the or-

dered vertices, as well as the y-coordinates of the scanlines for the view-

ing image, into an event priority queue, implemented in this case as an

array, A.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 60

3. Initialize the Active Tetrahedra List (ATL) to empty. The ATL repre-

sents the sweep status; it maintains a list of the tetrahedra currently

intersected by the sweep-plane.

4. While A is not empty, do:

(a). Pop the event queue: If the event corresponds to a vertex, v, then

go to (b); otherwise, go to (c).

(b). Update ATL: Insert/delete, as appropriate, the tetrahedra incident

on v. (Giertsen assumed that the tetrahedra are disjoint, so each v

belongs to a single tetrahedron.)

(c). Render current scanline: Giertsen uses a memory hash bu�er, based

on a regular grid of squares in the sweep-plane, allowing a straight-

forward casting of the rays that lie on the current scanline.

By sweeping 3-space, Giertsen reduces the ray casting problem in 3-space

to a 2-dimensional cell sorting problem.

Giertsen's method has several advantages over previous ray casting schemes.

First, there is no need to maintain connectivity information between cells of

the mesh. (In fact, he assumes the tetrahedral cells are all disjoint.) Second,

the computationally expensive ray shooting in 3-space is replaced by a simple

walk through regular grid cells in a plane. Finally, the method is able to take

advantage of coherence from one scanline to the next.

However, there are some drawbacks to the method, including: (1) The orig-

inal data is being coarsed into a �nite resolution bu�er (the memory hashing

bu�er) for rendering, basically limiting the resolution of the rendering, and

possibly creating an aliasing e�ect. Also, his memory scheme cannot be easily

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 61

Sweep Plane

Intersection with sweep plane

Z axis

Viewing Plane

Y axis

Scanline X axis

Figure 16: A sweep-plane (perpendicular to the y-axis) used in sweeping 3-
space.

resolved by increasing the resolution of the bu�er, as irregular grids have cell

size variation of the order from 1:100,000, making it impractical to have a large

enough bu�er. In his paper, Giertsen mentions that when cells get mapped

to the same location, this is considered a degenerate case, and the later cells

are ignored; however, this form of collision resolution might lead to temporal

aliasing when calculating multiple images. (2) Another disadvantage when

comparing to other ray casting techniques is the need to have two copies of

the dataset, as the transformation and sorting of the cells must be done before

the sweeping can be started. (Note that this is also a feature of cell projection

methods.) One cannot just keep re-transforming a single copy, since oating

point errors could accumulate.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 62

Yagel's Method

In [132], Yagel et al propose a method that uses a sweep-plane parallel to the

viewing plane. Their method consists of slicing the grid, �nding the collection

of primitives in the intersection, and using the graphics hardware to scan-

convert the current plane, that is then composited with the previous result.

Basically, their method uses a sweep-plane to achieve what the projection

method does.

Yagel's method can handle general polyhedral grids, and it seems to need

a high amount of extra information besides the minimum necessary to keep

the adjacency lists. Conceptually it can generate high quality images, but the

shading is limited to those o�ered by the hardware. The simplicity of the

method makes it very attractive. Using a RealityEngine2 machine, Yagel and

his co-workers achieved very impressive performance. One drawback of the

method seems to be the amount of memory necessary for rendering, but this

might just be a side e�ect of a very e�ciency oriented implementation.

4.3 Our Algorithm

The design of our new method is based on two main goals: (1) the depth

ordering of the cells should be correct along the rays corresponding to every

pixel; and (2) the algorithm should be as e�cient as possible, taking advantage

of structure and coherence in the data.

With the �rst goal in mind, we chose to explore ray casting algorithms, as

they have an inherent advantage for handling cycles among cells, a case causing

di�culties for projection methods. To address the second goal, we use a sweep

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 63

approach, as did Giertsen, in order to exploit both inter-scanline and inter-

ray coherence. Our algorithm has the following advantages over Giertsen's:

(1) It avoids the explicit transformation and sorting phase, thereby avoiding

the storage of an extra copy of the vertices; (2) It makes no requirements or

assumptions about the level of connectivity or convexity among cells of the

mesh; however, it does take advantage of structure in the mesh, running faster

in cases that involve meshes having convex cells and convex components; (3)

It avoids the use of a hash bu�er plane, thereby allowing accurate rendering

even for meshes whose cells greatly vary in size; (4) It is able to handle par-

allel and perspective projection within the same framework (e.g, no explicit

transformations).

4.3.1 Performing the Sweep

Our sweep method, like Giertsen's, sweeps space with a sweep-plane that is

orthogonal to the viewing plane (the x-y plane), and parallel to the scanlines

(i.e., parallel to the x-z plane).

Events occur when the sweep-plane hits vertices of the mesh S. But, rather

than sorting all of the vertices of S in advance, and placing them into an

auxiliary data structure (thereby at least doubling the storage requirements),

we maintain an event queue (priority queue) of an appropriate subset of the

mesh vertices.

A vertex v is locally extremal (or simply extremal, for short) if all of the

edges incident to it lie in the (closed) halfspace above or below it (in y-

coordinate). A simple (linear-time) pass through the data readily identi�es

the extremal vertices.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 64

We initialize the event queue with the extremal vertices, prioritized ac-

cording to the magnitude of their inner product (dot product) with the vector

representing the y-axis (\up") in the viewing coordinate system (i.e., according

to their y-coordinates). We do not explicitly transform coordinates. Further-

more, at any given instant, the event queue only stores the set of extremal

vertices not yet swept over, plus the vertices that are the upper endpoints

of the edges currently intersected by the sweep-plane. In practice, the event

queue is relatively small, usually accounting for a very small percentage of the

total data size. As the sweep takes place, new vertices (non-extremal ones) will

be inserted into and deleted from the event queue each time the sweep-plane

hits a vertex of S.

The sweep algorithm proceeds in the usual way, processing events as they

occur, as determined by the event queue and by the scanlines. We pop the

event queue, obtaining the next vertex, v, to be hit, and we check whether or

not the sweep-plane encounters v before it reaches the y-coordinate of the next

scanline. If it does hit v �rst, we perform the appropriate insertions/deletions

on the event queue; these are easily determined by checking the signs of the

dot products of edge vectors out of v with the vector representing the y-axis.

Otherwise, the sweep-plane has encountered a scanline. And at this point, we

stop the sweep and drop into a two-dimensional ray casting procedure (also

based on a sweep), as described below. The algorithm terminates once the

last scanline is encountered.

We remark here that, instead of doing a sort (in y) of all vertices of S at

once, the algorithm is able to take advantage of the partial order information

that is encoded in the mesh data structure. (In particular, if each edge is

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 65

oriented in the +y direction, the resulting directed graph is acyclic, de�ning

a partial ordering of the vertices.) Further, by doing the sorting \on the

y", using the event queue, our algorithm can be run in a \lock step" mode

that avoids having to sort and sweep over highly complex subdomains of the

mesh. This is especially useful, as we see in the next section, if the slices that

correspond to our actual scanlines are relatively simple, or the image resolution

(pixel size) is large in comparison with some of the features of the dataset.

(Such cases arise, for example, in some applications of scienti�c visualization

on highly disparate datasets.)

4.3.2 Processing a Scanline

When the sweep-plane encounters a scanline, the current sweep status data

structure gives us a \slice" through the mesh in which we must solve a two-

dimensional ray casting problem. Let S denote the polygonal (planar) subdivi-

sion at the current scanline (i.e., S is the subdivision obtained by intersecting

the sweep-plane with the mesh S.) In time linear in the size of S, we can re-

cover the subdivision S (both its geometry and its topology), just by stepping

through the sweep status structure, and utilizing the local topology of the cells

in the slice.

The two-dimensional problem is also solved using a sweep algorithm |

now we sweep the plane with a sweep-line parallel to the z axis. Events

now correspond to vertices of the planar subdivision S. At the time that we
construct S, we identify those vertices in the slice that are locally extremal in S
(i.e., those vertices that have edges only leftward in x or rightward incident on

them.) These are inserted in the initial event queue. The sweep-line status is

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 66

an ordered list, stored and maintained in a binary tree, of the edges of S crossed

by the sweep-line. The sweep-line status is initially empty. Then, as we pass

the sweep-line over S, we update the sweep-line status and the event queue

at each event when the sweep-line hits an extremal vertex, making insertions

and deletions in the standard way. This is analogous to the Bentley-Ottmann

sweep that is used for computing line segment intersections in the plane [94].

We also stop the sweep at each of the x-coordinates that correspond to the rays

that we are casting (i.e., at the pixel coordinates along the current scanline),

and output to the rendering model the sorted ordering (depth ordering) given

by the current sweep-line status (binary tree).

4.4 Analysis: Upper and Lower Bounds

We proceed now to give a theoretical analysis of the time required to render

irregular grids. We begin with \negative" results that establish lower bounds

on the worst-case running time:

Theorem 1 (Lower Bounds) Let S be a mesh having c connected compo-

nents and n edges. Even if all cells of S are convex,
(k + n logn) is a lower

bound on the worst-case complexity of ray casting. If all cells of S are convex

and, for each connected component of S, the union of cells in the component

is convex, then
(k + c log c) is a lower bound. Here, k is the total number of

facets crossed by all N2 rays that are cast through the mesh (one per pixel of

the image plane).

Proof. It is clear that
(k) is a lower bound, since k is the size of the output

from the ray casting.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 67

Let us start with the case of c convex components in the mesh S, each

made up of a set of convex cells. Assume that one of the rays to be traced lies

exactly along the z-axis. In fact, we can assume that there is only one pixel,

at the origin, in the image plane. Then the only ray to be cast is the one

along the z-axis, and k simply measures how many cells it intersects. To show

a lower bound of
(c log c), we simply note that any ray tracing algorithm

that outputs the intersected cells, in order, along a ray can be used to sort c

numbers, zi. (Just construct, in O(c) time, tiny disjoint tetrahedral cells, one

centered on each zi.)

Now consider the case of a connected mesh S, all of whose cells are convex.

We assume that all local connectivity of the cells of S is part of the input

mesh data structure. (The claim of the theorem is that, even with all of this

information, we still must e�ectively perform a sort.) Again, we claim that

casting a single ray along the z-axis will require that we e�ectively sort n

numbers, z1; : : : ; zn. We take the unsorted numbers zi and construct a mesh

S as follows. Take a unit cube centered on the origin and subtract from it a

cylinder, centered on the z-axis, with cross sectional shape a regular 2n-gon,

having radius less than 1/2. Now remove the half of this polyhedral solid that

lies above the x-z plane. We now have a polyhedron P of genus 0 that we

have constructed in time O(n). We refer to the n (skinny) rectangular facets

that bound the concavity as the \walls". Now, for each point (0; 0; zi), create

a thin \wedge" that contains (0; 0; zi) (and no other point (0; 0; zj), j 6= i),

such that the wedge is attached to wall i (and touches no other wall). Refer

to Figure 17. We now have a polyhedron P , still of genus 0, of size O(n), and

this polyhedron is easily decomposed in O(n) time into O(n) convex polytopes.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 68

Figure 17: Lower bound construction.

Further, the z-axis intersects (pierces) all n of the wedges, and does so in the

order given by the sorted order of the zi's. Thus, the output of a ray tracing

algorithm that has one ray along the z-axis must give us the sorted order of

the n wedges, and hence of the n numbers zi. The
(n logn) bound follows.

ut

Upper Bounds

The previous theorem establishes lower bounds that show that, in the worst

case, any ray casting method will have complexity that is superlinear in the

problem size | essentially, it is forced to do some sorting. However, the

pathological situations in the lower bound constructions are unlikely to arise

in practice.

We now examine upper bounds for the running time of the sweep algorithm

we have proposed, and we discuss how its complexity can be written in terms

of other parameters that capture problem instance complexity.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 69

First, we give a worst-case upper bound. In sweeping 3-space, we have

O(n) vertex events, plus N \events" when we stop the sweep and process

the 2-dimensional slice corresponding to a scanline. Each operation (inser-

tion/deletion) on the priority queue requires time O(logM), where M is the

maximum size of the event queue. In the worst case, M can be of the order

of n, so we get a worst-case total of O(N +n logn) time to perform the sweep

of 3-space.

For each scanline slice, we must perform a sweep as well, on the subdivision

S, which has worst-case size O(n). The events in this sweep algorithm include

the O(n) vertices of the subdivision (which are intersections of the slice plane

with the edges of the mesh, S), as well as the N \events" when we stop the

sweep-line at discrete pixel values of x, in order to output the ordering (of size

ki;j for the ith pixel in the jth scanline) along the sweep-line, and pass it to

the rendering module. Thus, in the worst case, this sweep of 2-space, for each

scanline slice, requires overall time O(
P

i;j ki;j +Nn logn) = O(k+Nn logn).

Overall, then, we get O(k +Nn logn).1

Now, the product term, Nn, in the bound of O(k = Nn logn) is due to the

fact that each of the N slices might have complexity roughly n. However, this

is a pessimistic bound for practical situations. Instead, we can let ns denote

the total sum of the complexities of all N slices; in practice, we expect ns

to be much smaller than Nn, and potentially ns is considerably smaller than

n. (For example, if the mesh is uniform, we may expect each slice to have

complexity of n2=3, as in the case of a n1=3-by-n1=3-by-n1=3 grid, which gives

1The upper bound of O(k+Nn logn) should be contrasted with the bound O(N2n logn)
obtained from the most naive method of ray casting, which computes the intersections of
all N2 rays with all O(n) facets, and then sorts the intersections along each ray.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 70

rise to ns = O(Nn2=3).) If we now write the complexity in terms of ns, we get

worst-case running time of O(k + n logn+ ns logn).

Theorem 2 (Upper Bound) Ray casting for an irregular grid having n edges

can be performed in time O(k + n logn + ns logn), where k = O(N2n) is the

size of the output (the total number of facets crossed by all cast rays), and

ns = O(Nn) is the total complexity of all slices.

Note that, in the worst case, k =
(N2n); e.g., it may be that every one

of the N2 rays crosses
(n) of the facets in the mesh. Thus, the output size

k could end up being the dominant term in the complexity of our algorithm.

Note too that, even in the best case, k =
(N2), since there are N2 rays.

The O(n logn) term in the upper bound comes from the sweep of 3-space,

where, in the worst case, we may be forced to (e�ectively) sort the O(n)

vertices (via O(n) insertions/deletions in the event queue).

Consider the sweep of 3-space with the sweep-plane. We say that vertex

v is critical if, in a small neighborhood of v, the number of connected compo-

nents in the slice changes as the sweep-plane passes through v. (Thus, vertices

that are locally min or max are critical, but also some \saddle" points may

be critical.) Let nc denote the number of critical vertices. Now, if we conduct

our sweep of 3-space carefully, then we can get away with only having to sort

the critical vertices, resulting in total time O(n+ns+nc lognc) for construct-

ing all N of the slices. The main idea is to exploit the topological coherence

between slices, noting that the number of connected components changes only

at critical vertices (and their y-coordinates are sorted, along with the N scan-

lines). In particular, we can use depth-�rst search to construct each connected

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 71

component of S within each slice, given a starting \seed" point in each com-

ponent. These seed points are obtained from the seed points of the previous

slice, simply by walking vertically (+y direction) from one seed to the next

slice (in total time O(n), for all walks); changes only occur at critical vertices,

and these are local to these points, so they can be processed in time linear in

the degree of the critical vertices (again, overall O(n)). This sweep of 3-space

gives us the slices, each of which can then be processed as already described.

(Note that the extremal vertices within each slice can be discovered during

the construction of the slice, and these are the only vertices that need to be

sorted and put into the initial event queue for the sweep of a slice.)

Another potential savings, particularly if the image resolution is low com-

pared with the mesh resolution, is to \jump" from one slice to the next, without

using the sweep to discover how one slice evolves into the next. We can instead

construct the next slice from scratch, using a depth-�rst search through the

mesh, and using \seed" points that are found by intersecting the new slice

plane with a critical subgraph of mesh edges that connects the critical vertices

of the mesh. Of course, we do not know a priori if it is better to sweep from

slice i to slice i + 1, or to construct slice i + 1 from scratch. Thus, we can

perform a \lock step" algorithm (doing steps in alternation, between the two

methods), to achieve asymptotically a complexity that is the minimum of the

two. This scheme applies not just to the sweep in 3-space, but also to the

sweeps in each slice.

As an illustration of how these methods can be quite useful, consider the

situation in Figure 18, which, while drawn only in 2 dimensions, can depict the

cases in 3-space as well. When we sweep from line 2 to line 3, a huge complexity

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 72

21 3 4 5 6 7

Figure 18: Illustration of a sweep in one slice.

must be swept over, and this may be costly compared to rebuilding from the

scratch the slice along line 3. On the other hand, sweeping from line 5 to

line 6 is quite cheap (essentially no change in the geometry and topology),

while constructing the slice along line 6 from scratch would be quite costly.

By performing the two methods in lock step (possibly in parallel, if a second

processor is available), we can take advantage of the best of both methods.

The resulting algorithm exploits coherence in the data and has a running time

that is sensitive, in some sense, to the complexity of the visualization task.

4.5 Experimental Results

We have implemented the main algorithm described in the previous sections.

Our implementation handles general disconnected grids, and has most of the

advantages of the complete algorithm described already, but we have not yet

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 73

implemented the \lock step" idea (used to avoid worst-case complexity in

disparate data sets), and our code does not currently handle perspective pro-

jections. (The implementation of perspective projection will be done soon and

is conceptually very simple, requiring only that the priority values in the queue

be based on an appropriate dot product.) Further, in our initial implementa-

tion, we have assumed that cells of the mesh are tetrahedra (simplices). Our

method does not require convex cells, even though they do make some of the

implementation issues simpler.

The rendering algorithm consists of about 5,000 lines of C code. It is

fairly naive in terms of optimization, so we expect that it can be further

improved. An interesting aspect of the code is the way it cleanly handles

geometric degeneracies. The major modules of the program include: 3D sweep,

which sweeps the vertices of the input mesh along a given direction, while

maintaining two dynamic sweep status data structures | the active tetrahedra

list (ATL) and the active edge list (AEL); 2D sweep, which orders the 3D edge

intersections, and is complemented with the code that incrementally depth

sorts the segments along the current ray. We also have a graphics module that

sets up the transformations and manages the other modules, and the transfer

function and the optical integration (or simple shading) modules. We do not

attempt to describe the implementation in detail, but we shall explain some

of the most relevant issues.

Due to the large sizes of irregular grids, e�cient data structures can sub-

stantially inuence the performance of the implementation. For priority queues

(we use two of them, one for the incremental 3D sweep sort, another for the

2D sweep), we use a simple heap implementation (the same code is shared for

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 74

3D/2D). Instead of performing the view-dependent O(n) search for extremal

vertices, we simply preprocess the external vertices of the grid and place them

in the heap before starting the sweep (all the internal vertices are still inserted

incrementally { see Figure 19 { in order to avoid the need for substantial ex-

tra storage). In order to keep the ATL and AEL, we need a dictionary data

structure that allows e�cient insertion/deletion. We have experimented using

a hash table and binary trees. The hash tables performed much better than

the binary trees in our examples, because of lower overhead, both in time and

space.

During the 2D sweep, a binary tree stores the sweep status. Edges are

inserted in depth order, and for rendering at the pixel locations, the binary

tree is sent to the shader. The handling of the binary tree is tricky, since

a consistent ordering of all the segments along each ray must be maintained

as edges are inserted and deleted during the sweep. Due to degeneracies,

geometric tests alone are not su�cient to keep a consistent ordering; edges may

have the same geometrical properties, but topologically they are di�erent, which

causes inconsistencies in the tree { for instance, an edge might be inserted along

a certain binary tree path when its �rst endpoint is reached, but might not

be found in the tree when its second endpoint is reached due to the insertion

of another edge along that path, resulting in an inconsistent sweep-status

state. This problem is solved by assigning a computational ordering, that is,

explicitly using an ordering function that depends on the memory position

of the edges (which are �xed for each scanplane), to break geometric \ties",

therefore forcing a globally consistent ordering among edges.

Another place where degeneracies have to be avoided is during the �nal

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 75

rendering. The problem arises because several vertices may lie on the same

plane. This leads to intersections that may have non-closed and/or null prim-

itives (e.g., a triangle with two coincident sides). The solution is to keep track

of the current status of the priority queue and only perform the rendering once

all the events with values lower than or equal to the current y-value (or x-value

when in ray casting) have been processed. This solution is conceptually simple,

correct and easy to implement.

Geomview, from the Geometry Center of the University of Minnesota, was

instrumental in the development of our renderer, helping to create animations

and visually debug our code. Without visual debugging it would have been

virtually impossible to write this code.

Datasets

The code currently handles datasets composed of tetrahedral grids. The input

format is analogous to the Geomview \o�" �le. It simply has the number

of vertices and tetrahedra, followed by a list of the vertices and a list of the

tetrahedra, each of which is speci�ed using the vertex locations in the �le as

an index. This format is compact, can handle general grids (including discon-

nected), and it is fairly simple (and fast) to recover topological information.

Maintaining explicit topological information in the input �le would waste too

much space.

For our test runs we have used tetrahedralized versions of the well-known

Blunt Fin and Liquid Oxygen Post datasets, originally in NASA Plot3D for-

mat. The Blunt Fin contains 40-by-32-by-32 data points (40,960 vertices),

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 76

from which we create 187,395 tetrahedra by breaking each cell into 5 tetra-

hedra. Figure 21 depicts the decomposition used, and Figure 22 shows a

running con�guration of the algorithm. The Post dataset contains 38-by-76-

by-38 data points (109,744 vertices) and 513,375 tetrahedra after conversion.

We have generated several other arti�cial datasets for debugging purposes; in

particular, we generated simple datasets that have disconnected components.

Memory Requirements

Our algorithm is very memory e�cient. The dataset is stored as a collection

of vertices and tetrahedra. Each tetrahedron only stores indices to its vertices,

and a single ag that identi�es the external faces (no topological information is

saved at the tetrahedra). Each vertex contains, besides its position and scalar

value, a ag, used during the algorithm for various purposes, and a list of the

tetrahedra it belongs to. Because each tetrahedron contains four vertices, the

overall increase in memory cost for the topological information is minimal.

Besides the input dataset, the only other memory consumption is in the

priority queues, which are very small in practice. (For the Blunt Fin, the extra

storage is below half a megabyte.) This low storage requirement is due to our

incremental computations, which only touch a cross section of the dataset

at a time. The overall memory consumption for rendering the Blunt Fin is

about 8MB of memory total, of which over 95% is the dataset itself (about

36% is topology information). For the Post dataset, the storage requirement

is a bit over 21MB, of which 97% is the dataset itself (about 35% is topology

information).

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 77

Performance Analysis

Our primary system for measurements was a Sun UltraSparc-1. We present

numbers for the tetrahedralized version of the Blunt Fin and Post datasets,

described above. It is important to notice, that our rendering times will clearly

be higher than algorithms that treat the either dataset as a curvilinear grid

composed of hexahedral cells.

Reading the Blunt Fin dataset o� a local disk takes 9.8 secs (seconds) on the

UlraSparc. The Post dataset takes 27.32 secs. Our ASCII input �les require

parsing; thus, processing time dominates, not the actual disk access time.

(Our tetrahedralized Blunt Fin version has almost 6MB, and the Post has

over 16MB.) The use of binary �les would likely improve e�ciency, but using

ASCII �les simpli�es the manual creation of test samples. In a preprocessing

phase, we recover the adjacency information of the grid, and separate the

external vertices into a list (for the Blunt Fin, we classify 6,760 vertices as

externals, for the Post, 13,840 vertices). The complete preprocessing takes

2.95 secs for the Blunt Fin, and 8.48 secs for the Post.

Rendering can be decomposed into several stages: 3D sweep, 2D sweep

and 1D ray casting (including shading). All of them are embedded inside

each other. The complexity of the 3D sweep is independent of the image

size; it just depends on how many points need to be processed. For instance,

without performing any rendering, just sweeping (the 3D sweep) the Blunt

Fin grid takes about 3.5 secs. During this time, the ATL and AEL are being

updated at every event (the binary tree implementation takes over three times

as long). The AEL is used during the 2D sweep for calculating and ordering

the intersections for the �nal ray casting (see Figures 19 and 20).

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 78

Since the Blunt Fin projection is not square, it is not meaningful to give

performance numbers on a square screen. Instead we give numbers for a 527-

by-200 screen (105,400 pixels), which matches the aspect ratio of the Blunt

Fin for the direction in which we are looking. Figure 19 contains the number

of active edges for each scanline. It is easy to see that, because the structure

of the grid is irregular, the number of edges varies quite a bit. For the Post,

we used a 300-by-300 screen (90,000 pixels).

Rendering a scanline involves computing the intersection points, sorting

them along the direction of the scanline, and then performing a 1D sweep (or

sort) along each ray incrementally (which basically involves processing events

and shading). Figure 20 shows the rendering times for the 2D sweep, for each

scanline. The performance numbers indicate: the time to process a given

scanline is directly correlated to the number of active edges on that plane;

the cost per scanline varies depending on the complexity of the plane being

rendered; (and most important for future optimization) the event handling

time dominates the total time spent per scanline.

The event handling time is clearly the bottleneck of the rendering speed.

This was puzzling at �rst, specially because it is just performing a sweep of a

few thousand vertices (less than 5,500). In the 3D sweep, we handle over 40,000

vertices in about 3.5 secs. Pro�ling the code showed that \CompareEdge" (a

function that tells which of two edges is closer to the screen) is called over

68 million times, consuming over 40% of the overall rendering time. Further

study shows that the reason for such a high number of calls to \CompareEdge"

is related to the depth of the binary tree used to save the ordering. Because

the Blunt Fin comes from a curvilinear grid, it has lots of vertices that lie

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 79

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 A

ct
iv

e
E

dg
es

Scanline Number

Active Edges
External Active Edges

Figure 19: Number of active edges as a function of the scanline: the active
edges are the edges intersected at a given scanline by the current scanplane
during the 3D sweep. The number of external active edges is also shown.

(degenerately) on common planes, which causes extremely bad behavior in our

binary tree sorting. This indicates that we can potentially obtain a dramatic

improvement in performance, just by changing the data structure used (e.g.,

by employing a standard 2-3 tree or a Red-Black tree [18]). Another reason

the 2D sweep is taking so long is the fact that there is a scanline component

on its rendering time. As discussed later, the most time consuming parts of it

can be eliminated by making incremental changes to the depth sorting on the

segments.

Performance Comparisons

The total rendering time of our algorithm is 70 secs for a 190,000 tetrahedra cell

complex (the Blunt Fin), for a 527-by-200 image with almost complete pixel

coverage (see Figure 23 { the picture was actually padded with a black frame

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 80

after rendering for printing purposes). For the Blunt Fin, the performance

of our current code is 373�s (microseconds) per tetrahedron, and 664�s per

pixel. For the Post, a 500,000 tetrahedra cell complex, it takes 145 seconds

(see Figure 24) to render a 300-by-300 image.

The most recent report on an irregular grid ray caster is Ma [66], from

October 1995. Ma is using an Intel Paragon (with superscalar 50MHz Intel

i860XPs). He reports rendering times for two datasets, an arti�cially gener-

ated Cube dataset with 130,000 tetrahedra and a Flow dataset with 45,500

tetrahedra. He does not report times for single CPU runs, always starting

with two nodes. With two nodes, for the Cube, he reports taking 2,415 secs

(2234 secs for the ray casting { the rest is parallel overhead) for a 480-by-480

image, for a total cost of 10.5 (9.69) ms (milliseconds) per pixel. The cost per

tetrahedron is 18.5 (17.18) ms. For the Flow dataset he reports 1593 (1,585)

ms (same image size), for a cost of 6.9 (6.8) ms per pixel, and 35.01 (34.8) ms

per tetrahedron. All his performance numbers reect the use of 2 processors.

Giertsen [38] reports running times of 38 secs for 3,681 cells (10.32 ms per cell).

His dataset is too small (and too uniform) to allow meaningful comparisons,

nevertheless our implementation handles a cell complex that has over 100 times

the number of cells he used, at a fraction of the cost per cell. Yagel et al. [132]

reports rendering the Blunt Fin, using an SGI with a Reality Engine2 in just

over 9 secs, using a total of 21MB of RAM, using 50 \slicing" planes; with

100 planes, he reports the cost increases to 13{17 secs. (Their rendering time

is dependent on the number of \slicing" planes, which, of course, a�ects the

accuracy of the picture generated.) For a 50 slice-rendering of the Post, it

takes just over 20 secs, using about 57MB RAM.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 81

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

ec
on

ds
)

Scanline Number

Total Time
Event Handling Time

Integration Time
Plane Intersection Time

2D Projection Time
2D Sorting Time

Figure 20: Total rendering time as a function of the scanline: the intersection
time is the time it takes to calculate the 2D point of intersection of the active
edges with the scanplane; the event handling time is the time to process every
active edge after sorting, including the 1D ray sorting necessary for integration.
Note that event handling time dominates the total cost of a scanline.

Optimizations

There are at least a couple of directions for optimization of the current code

that may make it even more competitive. First, improvement in the data

structures for keeping the sorted rays should lower the cost of using \Compa-

reEdge". Second, at this time, we are starting the 2D sorting process over for

every scanplane, not using the previously sorted information.

4.6 Conclusions and Future Work

In this chapter, we propose a new algorithm for rendering irregular grids.

Our algorithm is carefully tailored to exploit spatial coherence even if the

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 82

image resolution di�ers substantially from the object space resolution. We

have also discussed some of the theoretical upper and lower bounds on ray

casting approaches.

We have reported timing results showing that our method compares fa-

vorably with other ray casting schemes, and is, in fact, a couple orders of

magnitude faster than other published ray casting results. Another advantage

of our method is the fact that it is very memory e�cient, making it suitable

for use with very large datasets.

It is di�cult to compare our method with hardware-based techniques (e.g.,

[132]), which can yield impressive speed-ups over purely software-based algo-

rithms. On the other hand, software-based solutions broaden the range of

machines on which the code can run (e.g., much of our code was developed

on a small laptop, with only 16MB of RAM). Also, we are optimistic that

implementation of the optimizations suggested in the last section will further

improve the performance of our software. More experimentation should help

us quantify exactly how our algorithm compares with other methods.

An interesting possible extension of our work would be to investigate issues

involving out-of-core operation. The spatial locality of our memory accesses

indicates that we should be able to employ pre-fetching techniques to achieve

fast rendering when the irregular grids are much larger than memory. Also,

our method is a natural candidate for parallelization.

CHAPTER 4. RENDERING OF IRREGULAR GRIDS 83

Figure 21: Outside faces of a lower

resolution version of the Blunt Fin

are shown to demonstrate the tetra-

hedralization process. Red and green

cells have to be tetrahedralized in op-

posite direction to allow for correct

matching between cells.

Figure 22: A typical con�guration

during the sweep is shown in red. (A

lower resolution version of the Blunt

Fin is used to avoid excessive clut-

tering.)

Figure 23: A volume rendering of

the Blunt Fin dataset generated with

our method.

Figure 24: A volume rendering of

the Liquid Oxygen Post dataset gen-

erated with our method.

Chapter 5

Parallel Rendering of Irregular

Grids

In this chapter we present a distributed-memory MIMD machine paralleliza-

tion of the method proposed in Chapter 4. Our parallelization is a true

distributed-memory parallelization, in the sense that each rendering node gets

only a portion of the dataset.

5.1 Introduction

Because irregular grids tend to be very large and they lack the simple geometric

coherency that regular grids have, there is a natural push for parallel methods.

The largest irregular grids currently being renderered are just breaking the

1,000,000 cell barrier. If only data sample points are taken into account, this

is equivalent to a 100-by-100-by-100 regular grid. Memorywise, such a grid

requires more than 50MB of memory, while its regular counterpart only needs

84

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 85

1MB. This is due in part to the fact that in irregular grids there is a need

to store several oating point values per cell, instead of a single 8-bit index

value. Regular grids of this size can be rendered in interactive time using o�-

the-shelf components (i.e., using Lacroute's Shear-Warp technique [55]), while

the irregular grids of this size take a considerable amount of time to render.

(Using accurate ray casting techniques it would take over an hour to render

such a dataset.)

The sizes of irregular grids of interest of computational scientists are much

larger than one million cells. Using our e�cient sweep-based ray casting,

it takes about 150 seconds to render a 500,000-cell complex. Assuming a

linear scaling behavior of our rendering algorithm (what is not quite correct)

it would takes over 10 minutes to generate images of a 2,000,000 cell complex.

Even though these numbers are quite reasonable, given the previous techniques

(Ma [66] needed over 40 minutes to render a dataset with only 130,000 cells),

it is still far from interactive.

Our goal is to develop a method that is both faster and scalable to larger

dataset. We believe the next generation of supercomputers, such as the ACSI

TeraFlop machine to be installed at Sandia National Labs later in the year,

will make it possible to generate much larger datasets. For instance, the ACSI

machine will have at least an order of magnitude more memory than the

current Intel Paragon installed at Sandia and even more usable memory (i.e.,

not taking OS overhead into account). This will enable the generation of very

large grids, possibly in ranges of 10,000,000-100,000,000 cells or larger.

Clearly, with improvements in rendering algorithms, we should be able to

steadily improve the rendering times. But in order to o�set such a large jump

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 86

in dataset size, a similar jump is necessary for the rendering machines. The

other main reason for the use of parallel machines comes from the size of the

datasets. The largest workstations available to us have 1GB{3GB of memory,

what is very small when compared to the 300GB of memory expected in the

ASCI machine. Yet another reason for parallel rendering is to avoid moving

large quantities of data in and out of the parallel machines. Network and disk

bandwidth are the biggest bottlenecks for moving such large quantities of data.

With all the points raised above in mind, we present our algorithm for ren-

dering irregular grid data in place, directly on the distributed-memory MIMD

machine.

5.2 Previous Work

Work on rendering irregular grid data on distributed memory architectures

has been quite sparse. This area has received relatively little attention. This

might be due to the fact that rendering irregular grids is much harder than

regular grids. Also, e�cient irregular grid rendering packages are not publically

available.

Uselton has parallelized his original ray tracing work [122] in a shared mem-

ory multiprocessor SGI, and reported that the implementation scales linearly

up to 8 processors. Challinger [13] reports on a parallel algorithm for irregu-

lar grids, implemented on a shared-memory BBN-2000 Buttery. Giertsen [37]

has also parallelized his sweep algorithm on a collection of IBM RS/6000, using

a master/slave scheme and total data replication in the nodes. His reported

scalability results are for just a handful of nodes (less than ten).

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 87

Ma [66] proposed a parallelization technique similar to ours. It is unfortu-

nate that he used a sequential ray casting technique that is shown to be at least

two orders of magnitude slower than the one we use. Because of this, he was

not able to �nd any interesting bottlenecks of the parallelization technique.

His technique works by breaking up the original grid into multiple, disjoint

cell complexes using Chaco [45], a graph-based decomposition tool developed

at Sandia National Labs. Chaco-based decompositions have several interesting

and important properties for parallelization of computational methods. In

general, Chaco decomposes the graphs into equal sized partitions using some

simple metrics. For instance, one can potentially use Chaco to break a graph

into equal-volume pieces. However, Ma did not make use of advanced Chaco

features. Also, it is unclear the extra overhead of using Chaco has actually

any inuence on the rendering speed of the parallelization.

For the overall rendering organization, Ma uses a similar (but simpler and

less general | he has no notion of clusters, etc.) rendering pipeline to the

one presented in Chapter 3. He divides the nodes into two classes: rendering

and compositing nodes. The rendering nodes, essentially use Garrity's method

[36] to compute each ray of an image, but due to the fact that rays might be

partitioned among nodes, the rendering nodes output a set of stencils instead

of a �nal color. After each ray is computed, they are sent to the compositing

nodes for further sorting and the �nal accumulation. Each compositing node is

assigned a set of rays to be composited. Ma reports that because the rendering

is so slow as compared to compositing, there was no need for any further

optimizations of the parallel algorithm.

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 88

5.3 Algorithm Overview

Our algorithm is similar to Ma [66]. We keep the same framework introduced

in Chapter 3 and used in our PVR system. This allows a considerable amount

of code re-use, specially in the cluster and pipeline implementation. Also, this

provides a framework for integrating regular and irregular grid rendering into

the same pipeline.

Dataset Decomposition

In order to subdivide the dataset among the nodes, we use a hierarchical

decomposition method, with a similar avor to our load balancing scheme for

regular grids. Starting with the bounding box of the complete cell complex,

we make cuts in this box, taking two things into account: the aspect ratio of

the cuts, and the number of vertices. At every step, we cut along the largest

axis in such a way as to break the number of vertices in half in each stage

of the cutting. Because cells might belong to more than one of these convex

space decomposition (or box, for short), we assign the cell to the box that has

the biggest percentage of it (e.g., in the number of vertices, with ties broken

in some arbitrary, but consistent way).

The basic rendering operation is to sample and shade the stencils. With

the dataset decomposed into these boxes, the natural thing to do is assign

each box to a di�erent processor. Because we expect each box will have the

same number of primitives, this should minimize the total rendering time for

the complete irregular grid, and optimize the overall load balancing.

This decomposition method is not optimized for incremental rendering

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 89

computations (where only parts of the dataset need to be sampled and only

rough pictures are generated). We plan to explore this kind of rendering in

the future.

In our decomposition each processor should have roughly the same number

of primitives, each of which, approximately con�ned to a rectangular grid of

almost bounded aspect ratio (because of the largest-axis cutting).

Rendering

The rendering performed at each node is a variation of our sweep-based ray

casting technique presented in Chapter 4. There is a single signi�cant dif-

ference: Instead of generating an image, every node generates a stencil data-

structure during rendering. All nodes work concurrently on generating com-

plete stencil scan-lines before sending them for �nal compositing.

The stencil representation of a scan-line is a linked-list of color and depth

of cells, which have been lazily composited as follows: If two stencils share an

end point | (~a;~b) and (~b;~c) | they are composited into a single stencil (~a;~c)

representing the whole region. Each stencil contains information about its po-

sition, color and opacity. In the end of a scan-line rendering computation, each

node potentially has a collection of stencils. Because of the way we created our

cell decomposing among the nodes, it is expected that the stencil fragmenta-

tion is minimal. This is necessary in order to minimize communication. The

more connected the stencils are (in number of pieces), less communication is

needed to transmit to the compositing nodes.

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 90

Compositing

In Ma [66], compositing nodes are responsible to complete scan-lines. This

minimizes the amount of communication during compositing (there is actually

no communication with exception of the �nal image assembly).

Our approach is di�erent. We try to achieve better performance by creating

a tree of compositing nodes (such as the one we use for the parallel rendering

of regular grids in Chapter 3). Every compositing node is responsible for a

certain region of space (i.e., one of the original box decompositions proposed

above) that belongs to a global BSP-tree.

It is the responsibility of the rendering nodes to respect the BSP-tree

boundaries and send the data to the correct compositing nodes, possibly break-

ing stencils that span across boundaries.

Once the data of each scan-line is received in the compositing nodes, the

�nal depth sorting can be e�ciently performed by merging the stencils into a

complete image. An e�cient pipeline scheme can be implemented on a scan-

line by scan-line basis, with similar properties to the one implemented (with

an image at a time approach) for the regular grid case.

5.4 Summary

In this chapter, we have presented a parallel method for rendering irregular

grids algorithm based on our previous work (presented in Chapters 3 and 4).

We apply several of the ideas used in those chapters in order to achieve a

simple, practical and e�cient parallel rendering method for irregular grids.

CHAPTER 5. PARALLEL RENDERING OF IRREGULAR GRIDS 91

An interesting extension would be to change the current regular grid imple-

mentation to generate stencil data in order to integrate regular and irregular

grids into a single pipeline. A harder problem is to allow for overlapping

volumes (both regular and irregular), in this case it would be necessary to

synchronize all the rendering nodes for every scan-line as to guarantee that

the compositing has taken all the data into account.

Chapter 6

Simpli�cation

In this chapter we discuss our work on the simpli�cation of irregular grids.

A major portion of the chapter deals with a new method for the automatic

generation of triangular irregular networks (TINs) from dense terrain models

using the same greedy principle used to compute minimum-link paths in poly-

gons. The algorithm works by taking greedy cuts (\bites") out of a simple

closed polygon that bounds the yet-to-be triangulated region. The algorithm

starts with a large polygon, bounding the whole extent of the terrain to be

triangulated, and works its way inward, performing at each step one of three

basic operations: ear cutting, greedy biting, and edge splitting. We give exper-

imental evidence that our method is competitive with current algorithms and

has the potential to be faster and to generate many fewer triangles. Also, it is

able to keep the structural terrain �delity at almost no extra cost in running

time and it requires very little memory beyond that for the input height array.

In the end of the chapter, we present algorithmic extensions of the our

92

CHAPTER 6. SIMPLIFICATION 93

method that can be used to simplify surfaces of general topological type. Ex-

tensions to three-dimensional irregular grids are left for future work.

6.1 Introduction

A terrain is the graph of a function of two variables. The function gives the

elevation of each point in the domain. Terrain models are widely used in

visualization and computer graphics applications, such as ight simulators,

�nancial visualization tools, strategic military analyzers, geographic informa-

tion systems, and video games. Thus, it is of the utmost importance that

primitive operations can be performed in real-time. Several factors may a�ect

the e�ciency of algorithms that operate on terrain: The most important are

probably the size of the input and its underlying data structure.

The most common source of digital terrain elevation data is the DEM

(Digital Elevation Model), supplied by the U.S. Geological Survey. A DEM is

a two-dimensional oating point height array. It contains an extremely high

level of redundancy, which usually forbids real-time applications from using it.

Several alternative data structures have been proposed, including contour lines,

quad-trees, and TINs. TINs stand out as being one of the most convenient to

use for rendering and for geometric manipulation operations. A TIN is a set of

contiguous non-overlapping triangles whose vertices are placed adaptively over

the DEM domain [32]. The automatic generation of TIN models from DEM

models is an important area of research and is the main topic of this article.

Several factors are important in judging the quality of the TIN representation

of a given DEM (list partially adapted from [100, 102]):

CHAPTER 6. SIMPLIFICATION 94

� Numerical accuracy { measured as maximum, mean, or standard devia-

tion error;

� Visual accuracy { usually assessed by inspection and by number of \sliv-

ery" triangles;

� Size of the model { measured as the number of output triangles;

� Algorithm complexity { measured in terms of the time to generate the

TIN and the memory requirement.

Fowler and Little [32] have introduced one of the �rst (and still very popu-

lar) methods to address the problem of automatic generation of TINs directly

from DEMs. Their method is very simple. First, they classify the points

by automatically choosing some \important" features of the terrain, such as

ridges and peaks. They describe this phase of the algorithm as constructing

the \structural �delity" of the model (i.e., the TIN representation should have

the same geographical features as the DEM). Then, they incrementally com-

pute a triangulation of the points; in their case, they chose to use the Delaunay

triangulation. At each step a new point is added to the triangulation until no

points are farther from the original surface than a certain prede�ned threshold.

This phase is designed to preserve the \statistical �delity" (i.e, to make it �t

the speci�ed error bound).

Franklin [33] has proposed a similar approach in 1973. It appears that

his method had no notion of structural �delity, and he did not use the De-

launay triangulation as the basis for his method. A new version of his code

is publically available, and we compared it against our method. A detailed

CHAPTER 6. SIMPLIFICATION 95

description of his algorithm and code is given in Section 6.4. Recently, sub-

stantial research has been conducted on creating hierarchical structures on

top of TINs [27, 103], and on techniques to improve the quality of TIN meshes

[101]. Scarlatos' dissertation [100] gives a good survey of terrain modeling

and representation. A very recent approach to building hierarchical models

of terrains is given by de Berg and Dobrindt [26], who apply a hierarchical

re�nement of the Delaunay triangulation to represent terrain TINs at many

levels of detail. [56, 57] describe the \drop heuristic" and provides compar-

isons with other methods. Common to all these methods is the need to have a

complete starting triangulation that is either re�ned by adding new points, or

decimated [106] by removing redundant points. These approaches require that

the algorithm maintain in memory a complete triangulation representation of

the input, extended with various pieces of global information (e.g., most de-

viant point per triangle). The need for global information impacts the running

time and memory requirements of these algorithms.

Our work is based on an entirely di�erent approach for the triangulation

and simpli�cation of the data. It is based on an idea in the method developed

by Mitchell and Suri [79], where a greedy set cover approach has been devel-

oped for approximating convex surfaces, and used recently by Varshney [124]

in heuristics for simplifying CAD models. We can consider the input DEM to

be an instance of a TIN with very high resolution. In particular, each pixel of

the DEM corresponds to four elevation data points, and we consider these to

de�ne two adjacent triangles of a surface. (A square pixel can be triangulated

in one of two ways. We triangulate all pixels uniformly, with diagonals at 45-

degrees.) Our goal is to simplify this input TIN surface to create a new TIN

CHAPTER 6. SIMPLIFICATION 96

that has far fewer triangles, but is still within a speci�ed error bound of the

original surface. From an algorithmic point of view, terrain simpli�cation is

hard (NP-hard) [22, 21], but some polynomial-time algorithms are known for

computing a nearly-optimal (i.e., nearly minimum-facet) approximating sur-

face, guaranteed to be within a factor O(logn) of optimal (see [5, 16, 76, 79]),

or within a constant factor of optimal, if the surface is convex (see [10]). Unfor-

tunately, the polynomial-time bounds for these theoretically good approaches

is rather high (at least cubic). In contrast, from the practical point of view,

most of the previous computer graphics and geography research in the area is

based on heuristics for generating triangulations that \�t" the original data,

but have no guarantees, either in terms of the closeness to optimal or in terms

of the worst-case running time.

The principle that drives our method (and is related to that of [16, 79, 124])

is the same greedy principle that is used to compute minimum-link paths in

simple polygons. This problem is well studied in computational geometry

[44, 78, 120] and can be used to �nd an optimal piecewise-linear approximation

to a function of a single variable (see [41]). Our problem is of one higher

dimension. We use a greedy-facet approach, selecting large triangles (bites)

by which to extend an approximating surface, based on their feasibility (i.e.,

they must lie within an �-fattening of the original surface) and on their size

(e.g., area of projection in the x-y plane). The use of greedy algorithms is

known to give provably good approximation results in many combinatorial

optimization problems, for example, the set cover problem is approximated

within a log factor of optimal by a natural greedy algorithm, and this fact

leads [79] to a provably good approximation algorithm for the convex case

CHAPTER 6. SIMPLIFICATION 97

of our problem. We have not yet been able to prove that our algorithm has

a guaranteed e�ectiveness with respect to optimal, but we are hopeful that

interesting properties can be proved about its performance. Currently, our

code only handles inputs in the form of elevation arrays, but in principle, there

is no reason why it cannot be extended to arbitrary polyhedral terrains, or, for

that matter, polyhedral surfaces in general. Extensions to higher dimensions

also seem possible, that is, for simplifying piecewise-linear functions of three

variables de�ned over tetrahedralizations of 3-space.

Instead of a top-down approach that starts with a feasible Delaunay trian-

gulation and tries to generate �ner and �ner Delaunay triangulations by adding

points to the already created triangulations, our algorithm works bottom-up.

At each step a greedy cut is taken from an untriangulated polygon. The greedy

cuts are an attempt to sample the data at the lowest possible resolution, thus

minimizing the number of triangles in the output. A full description of our

algorithm is given in the next section.

6.2 TheGreedy-CutsAlgorithm (Terrain Case)

This section gives a high-level description of our algorithm. The problem

de�nition is as follows:

Given an input array, H, of heights H(x; y), 0 � x < m and 0 � y < n,

whose data points are sampled from a regular grid on a rectangle R, and some

� > 0 specifying an error tolerance. Find a triangulated surface that represents

a terrain on R, such that it has a small number of triangles (Ti), and each data

point given by the array H(x; y) lies within vertical distance � of the TIN.

CHAPTER 6. SIMPLIFICATION 98

The algorithm maintains a list of untriangulated simple polygons, P, which
represents the portion of R over which no triangulated surface has yet been

constructed. At each step, our goal is to select a maximum area triangle T

within one of the polygons P 2 P, such that (1) the vertices v1 = (x1; y1),

v2 = (x2; y2), and v3 = (x3; y3) of T are grid points (points (x; y) for which we

have the altitude H(x; y)); (2) at least two of these vertices are vertices of P

(i.e., T shares at least one edge with P); and (3) the triangle T corresponds to

a triangle T 0 in space (with coordinates (x1; y1; H(x1; y1)), (x2; y2; H(x2; y2)),

(x3; y3; H(x3; y3))) such that T 0 is \feasible" with respect to � (see below for a

precise de�nition). Because input data is sampled using a regular grid, the area

of T is a good estimation of its combinatorial coverage (how many data points

it covers). The ideal version of our algorithm searches all candidate triangles

T and picks the best at each stage. However, for the sake of e�ciency, the

implemented version of our algorithm does not search all possible triangles T ;

instead, we do an approximate (limited) search for the best T , based on three

basic operations, which will be described below.

Since each polygon P 2 P corresponds to an independent subproblem, we

can work on each separately. (There is no particular ordering in how we store

the polygons P 2 P.) Thus, at each step of the algorithm, a bite (triangle) T

is taken out of the polygon P at the head of the list P, until P is reduced to

a single feasible triangle, or it is divided into two new simple polygons, each

of which is inserted into the list. The �nal result of our algorithm is the list

of all triangles (bites), T . There is no need to store in memory the list T
of triangles as it is generated. Each triangle can be written out directly to a

�le. No triangle connectivity information is saved at this point. Each polygon

CHAPTER 6. SIMPLIFICATION 99

P 2 P is saved as a simple list of vertices, in counter-clockwise order. Thus,

only very small and simple data structures are required.

We ought to de�ne precisely what we mean by a triangle (in space) being

\feasible" for input terrainH, with respect to a given �. As already mentioned,

we can consider the input DEM H to be an instance of a TIN (a polyhedral

surface, S), even though no triangulation is explicitly given. Speci�cally, to

�x that one of the many triangulations we consider to be the input surface, we

consider point (x; y;H(x; y)) to have six neighbors, namely, those data points

corresponding to (x � 1; y � 1) (the standard four grid neighbors) and the

diagonal points (x + 1; y + 1) and (x� 1; y � 1).

We say that a triangle T 0 (in space) satis�es weak feasibility with respect to

� if, for every grid point (x; y) that lies within the projection T of T 0 onto the

(x; y)-plane, T 0 intersects the vertical segment joining (x; y;H(x; y)� �) and

(x; y;H(x; y)+ �). In other words, T 0 �ts the function at the relevant internal

grid points. Note that if T 0 has a very \skinny" or \small" projection (e.g.,

so that T contains no grid points at all), then it will certainly satisfy weak

feasibility.

We say that triangle T 0 (in space) satis�es strong feasibility with respect to

� if T 0 lies completely above the surface S�� and completely below the surface

S+�, where S�� (resp., S+�) is the polyhedral surface (TIN) obtained by shifting

S downwards (resp., upwards) by �. Note that if T 0 satis�es strong feasibility,

then it certainly satis�es weak feasibility (but the converse is clearly false).

The notion of strong feasibility applies directly to approximating arbitrary

input terrains (e.g., given by a TIN rather than a DEM).

CHAPTER 6. SIMPLIFICATION 100

In order to test weak feasibility of T 0, we only have to examine the eleva-

tions at grid points internal to the projected triangle T . Such internal grid

points are identi�ed using a standard scan conversion of T . In Figure 25, we

indicate these grid points with small squares. Strong feasibility, however, re-

quires that we also check the altitudes corresponding to those points (indicated

with circles in Figure 25) that lie at the intersections of an edge of T with a

grid edge.

Weak-feasibility

Strong-feasibility

Figure 25: Weak and strong feasibility.

The algorithm works by performing three basic operations, one at a time:

ear cutting, greedy biting, and edge splitting. Each operation is applied to a

current active polygon. The next sections describe each of these operations in

more detail.

CHAPTER 6. SIMPLIFICATION 101

Ear Cutting

This operation traverses a polygon P 2 P looking for possible \ears" to cut.

An ear of a simple polygon P is a triangle contained within P that shares two

of its edges with P . We simply traverse the boundary of the polygon, \cutting

o�" any ear which we discover that corresponds to a feasible triangle (i.e., one

that meets the feasibility criterion for �). Given a vertex vi, we check if the

edge (vi; vi+2) is an internal diagonal to the polygon, that is, it is to the inside

of the polygon and it does not intersect any other edge. This operation can

easily be done in linear time by a simple traversal of the boundary of P . Using

a dynamic triangulation of P , and performing \ray shooting queries", one can

actually check in time O(log k) if (vi; vi+2) is an ear of a simple k-gon [42],

but the simple linear-time method is likely to be more practical (since k is

typically small) and is what we currently have implemented.

Each cut we perform lowers the complexity (number of edges) of polygon

P by one, thus taking the algorithm closer to completion. Ear cutting is

essential for the algorithm to terminate. In general, it will be the �nal step

in any run of the algorithm. Also, it has a tendency to turn obtuse angles

into acute ones, which eventually leads to larger edges (hence triangles) in the

triangulation. Ear cutting is the mechanism the algorithm uses to adapt itself

to lower sampling rates (larger triangles).

Ear cutting fails when no more feasible ears exist. This happens when the

size of the edges of P are too large, and the ears cover too much area in the

polygon. In this case, there must be some way to make edges smaller, which

leads to higher sampling rates. In order to adapt to more complicated terrains,

we introduce two additional basic operations: greedy biting and edge splitting.

CHAPTER 6. SIMPLIFICATION 102

Greedy Biting

In this basic operation, we �nd a point v inside the polygon P and an edge,

(vi; vi+1) of P , such that (vi; v; vi+1) forms a triangle, T , inside P that meets

the feasibility criterion. We accomplish two things with this operation: (1)

subdividing an edge of P in two (replacing (vi; vi+1) with (vi; v) and (v; vi+1)),

thereby achieving a higher \sampling rate"; and, (2) taking a bite out of the

polygon P , thus progressing further in \eating away" all of P . The actual

operation is a bit more complicated, as it needs to handle choices of v that

may be a vertex of P and lead to P being split into two disjoint new simple

polygons.

The greedy biting operation works as follows:

� Bite. For the polygon P , for each edge (vi; vi+1) search for a point v 2 P

such that (vi; v; vi+1) corresponds to a feasible triangle. For e�ciency, we

search for such a point v in a neighborhood of (vi; vi+1). Currently, we

limit the search to grid points along (close to) the vector perpendicular to

(vi; vi+1) at the midpoint of (vi; vi+1). We use a binary search, starting at

a point whose distance from (vi; vi+1) is roughly jvivi+1j, then halving the
distance at each step until a point is found (or we fail). (By trying other

search strategies for v, we can likely improve the algorithm performance.

This is being investigated.)

� Split. If the \Bite" step succeeds in �nding a point v for which (vi; v; vi+1)

corresponds to a feasible triangle, we will potentially split polygon P .

We search for the closest edge (vj; vj+1) to v. If the triangle (vj; v; vj+1)

CHAPTER 6. SIMPLIFICATION 103

also corresponds to a feasible triangle, we subdivide (split) the poly-

gon P into two simple polygons, outputting both triangles ((vi; v; vi+1)

and (vj; v; vj+1)); otherwise, we simply output (vi; v; vi+1) without split-

ting P .

Edge Splitting

It may happen that both ear clipping and greedy biting fail to �nd a feasible

triangle. In this case, our algorithm attempts to split some edge of the polygon

P . Checking each edge of P in succession, starting with the longest, we look

for an edge to split (roughly) in half (or possibly in smaller pieces, if splitting

in half fails). When we split edge (vi; vi+1) at a (grid) point v, we are actually

creating a skinny (feasible) triangle, (vi; v; vi+1). Since the triangles created in

this way are small or \slivery", we prefer not to perform this operation very

often. Indeed, in practice this phase of the algorithm is seldomly needed.

Figure 26: The solid line is calculated by a greedy method. In linking data
points, go as far as possible without exiting the strip de�ned by the dashed
lines.

CHAPTER 6. SIMPLIFICATION 104

Initialization

Each phase of our algorithm works to triangulate the interior of a simple

polygon P , with feasible triangles. In order to generate the �rst such polygon,

bounding the whole domain R, we apply a one-dimensional version of our

algorithm in each of the four cross sections (de�ned by the vertical planes

x = 0; m, y = 0; n) that correspond to the boundary of the region R. The

algorithm can be considered to be a simpli�ed version of the standard min-

link path method of Suri [120], applied to the discrete data points between

the o�set curves obtained by shifting the terrain surface up/down by �. See

Figure 26.

Greedy Cuts Algorithm

The algorithm simply applies the above three operations, one at a time, giving

priority (in order) to ear cutting, greedy biting, and then edge splitting. A

complete description of our algorithm is outlined as follows:

(0) Initialize P to be a list of one element { the single polygon obtained by

the initialization procedure above.

(1) While P is not empty, do

(a) Let P 2 P.

(b) If P is a single feasible triangle, output this triangle, and remove P

from P.

(c) Else, while P is not fully triangulated,

CHAPTER 6. SIMPLIFICATION 105

(i) Perform ear cutting on P , until no feasible ears exist.

(ii) Perform greedy biting on P . If this results in a greedy bite that

splits P , then remove P from P, add the two new polygons to

P, and go to (1). Otherwise, if at least one greedy bite is found
(for some edge of P), go to (1) (without splitting P).

(iii) Perform an edge split for P .

6.3 Miscellaneous Topics

6.3.1 Terrain Sampling

One of the most interesting properties of the Greedy Cuts algorithm is the way

it samples the dataset. It generates large triangles in places of relatively little

change and small triangles in areas of more radical change. It is interesting

to try to analyze how this happens, and here is where we can see the nice

coupling of properties between the ear cutting phase and the others. If the

terrain is largely uniform, ear cutting generally leads to longer and longer

edges of P , until we encounter a region of high complexity, at which point

edges are subdivided by greedy biting or edge splitting (a method of increasing

the sampling resolution). Once we triangulate the high complexity region, ear

cutting again makes the edges on the boundary larger and larger (i.e., making

the triangles larger). Our algorithm therefore has a natural mechanism for

minimizing the number of triangles required. Of course, as we have already

said, our algorithm is not guaranteed to �nd a true minimum (an NP-hard

problem). The strategy of where/when to apply each of our three operations

CHAPTER 6. SIMPLIFICATION 106

a�ects which regions get sampled at higher resolutions. Thus, we continue to

experiment with further variants of our search strategy in hopes of obtaining

better and smaller triangulations.

6.3.2 Maintaining Structural Fidelity

A primary objective in any algorithm that simpli�es (compresses) data is to

maintain as much of the important structure of the input as possible. Our

algorithm generates a TIN that is close to the input DEM, according to the

given tolerance �. However, beyond the constraint of being �-close, one may

wish to place further restrictions on the structural �delity; for example, one

may wish to preserve a selected set of point features or of edge features, re-

quiring that the surface approximation include these points and segments in

the output TIN. In top-down algorithms, such requirements can be incorpo-

rated using constraints; for example, line segments can be preserved using

constrained Delaunay triangulation (e.g., [26]). In our bottom-up algorithm,

we can incorporate such constraints directly, at low cost, within the test for

triangle feasibility: A triangle T 0 is not feasible if its projection, T , contains a

point feature on its interior or boundary, except at a vertex, or intersects an

edge feature, except if the edge is an edge of T . Further, our algorithm can

maintain the structure of an edge or a ridge, at a lower resolution (within, say,

�) than the full resolution, by executing the (lower dimensional) initialization

step in a vertical wall (plane) through each constraint edge.

CHAPTER 6. SIMPLIFICATION 107

6.3.3 Termination

It is important to consider whether or not our algorithm terminates. Could

it ever get \stuck" and fail to generate any further triangles, even though the

list of untriangulated regions, P, is not empty? The answer is \no" for the

case of the weak feasibility condition, assuming that greedy biting is done by

searching over all possible bites. As a proof, consider a polygon P 2 P. If P
has no grid points, then any ear of P is feasible. (Any simple polygon with at

least 4 vertices has at least two ears, by the \Two Ear Theorem" [87].) If P has

grid points in its interior, then there must exist a triangulation of these points

within P (since any polygonal domain can be triangulated). All triangles in

this triangulation must obey weak feasibility. In particular, there must exist

a triangle T that shares at least one of its edges with P . Such a triangle is

either a (feasible) ear of P (found in ear cutting) or a potential bite (found in

greedy biting, assuming that we do a full search). This proves termination.

In the strong feasibility case, we get a di�erent situation. Because of the

discrete nature of the allowed output (i.e., triangles must use original data

points, since we do not allow Steiner points), and the continuous nature of

the strong feasibility condition (which joins data points to form a polyhedral

surface constraint), there are (rare) instances in which the algorithm, as imple-

mented, can go into an in�nite loop when using strong feasibility. In response

to this, we have implemented a simple feature that will guarantee termination

in all cases. If the algorithm cannot �nd a feasible triangle, then it relaxes

the feasibility condition in ear cutting, and �nds, instead, an ear that has the

smallest deviation from the original DEM.

CHAPTER 6. SIMPLIFICATION 108

6.3.4 Complexity

We �rst remark that our algorithm uses very little internal memory. Other

than the input data array, we keep track only of the list P of polygons, each

of which is (typically) very small. Triangles that we generate do not need to

be stored, but can be written out directly to disk. In contrast, methods that

rely on triangulation re�nement must maintain some sort of topological data

structure for the full set of triangles. Typically, one would expect that if the

output size (number of triangles) is k, then the boundary of the polygons P
at any given instant will have roughly size

p
k.

It is di�cult to prove a bound on the expected run time of the algorithm.

Clearly, the worst-case running time is polynomial in the input size, since each

primitive test or computation can easily be performed, usually in worst-case

linear time (linear, generally, in the size of P 2 P). However, our experimental
evidence suggests that the algorithm runs in time roughly linear in the input

size.

The output complexity for our algorithm is again hard to estimate from a

theoretical point of view. The problem we are trying to solve approximately

is known to be NP-hard, in general. Thus, the best we can hope for is that

we may be able to prove a worst-case bound on the ratio of our output size

(number of triangles) to the number of triangles in an optimal TIN. There

is good theoretical basis (e.g., from greedy set cover heuristics) to suggest

that our algorithm (or a close variant thereof) will never produce more than

a small (e.g., logarithmic) factor more triangles than is possible for a given �.

Proving such a fact remains an open (theoretical) problem. Perhaps the best

indication we have of the e�ectiveness of the algorithm is the experimental

CHAPTER 6. SIMPLIFICATION 109

data we have, which suggests that our algorithm is obtaining substantially

fewer (roughly 20-30 percent) triangles than the competing algorithm for the

same error tolerance �.

6.4 Experimental Results

The Greedy Cuts algorithm is relatively simple to implement. Our C imple-

mentation has about 4,000 lines of code. The code uses several computational

geometry primitives, many of which come from O'Rourke [87], including seg-

ment intersection testing, diagonal classi�cation, point classi�cation (point

location with respect to a simple polygon). With these primitives in hand,

and routines to handle simple polygon operations (e.g., splitting an edge of a

polygon, inserting a vertex), it is fairly easy to implement the algorithm de-

scribed in Section 6.2. As with all geometric algorithms, care has to be taken

with special (degenerate) cases that arise from collinearities.

In order to study its performance, we have conducted tests of our algorithm

and compared it with Franklin's algorithm, which is a top-down approach.

We compared the speed, average error bound (over all the triangles), and

the complexity of the output (measured in the number of triangles). We

ran both algorithms on the following types of input: real terrain datasets,

arti�cially generated terrains arising from performing cuts to generate faults,

and arti�cially generated terrains arising from lifting triangulations.

CHAPTER 6. SIMPLIFICATION 110

Franklin's algorithm

Franklin's algorithm is described in [33], and is a nice and e�cient example of

a top-down triangulation method. Initially, the algorithm approximates the

DEM by 2 triangles. Then, a general step of the algorithm involves �nding

the most deviant point in each generated triangle and inserting this new point

into the triangulation, splitting one triangle into three. Each time a point is

inserted, the algorithm checks each quadrilateral that is formed by a pair of

adjacent triangles, at least one of which is a new triangle (one of the three

incident on the new point). A local condition on the quadrilateral determines

whether or not to perform a diagonal swap. The original code works by per-

forming a pre-determined number of splits. We have changed the code to

make as many splits as necessary in order to meet a prespeci�ed error bound

�. Franklin's implementation gives emphasis on e�ciency and for the sake of

speed, it makes wide use of internal memory.

Experimental Data

Our experiments were conducted on a Silicon Graphics ONYX, equipped with

two 100Mhz R4400 processors and 64MB of RAM. Only one of the processors

was used. The time to read the terrain datasets from the disk was not included

in our runtimes. In Table 1, we show the results of running three algorithms on

seven real terrain datasets. We ran Franklin's algorithm (f), and two versions

of Greedy Cuts algorithm | one using weak feasibility (w), and one using

strong feasibility (s). The table shows the choice of �, the running times,

and the total number of triangles in the output TIN, for each of the seven

CHAPTER 6. SIMPLIFICATION 111

terrains. The input terrains were all scaled to be 120-by-120 elevation arrays,

for uniformity of testing.

In summary, greedy cuts with weak-feasibility beats Franklin's code in

the number of output triangles in all instances. Greedy cuts with strong-

feasibility loses in most cases, but it applies a stricter accuracy requirement

than Franklin's algorithm (which uses weak feasibility). Franklin's optimized

code is usually faster than our (relatively naive) implementation. We expect

that with �ne tuning and optimization, our algorithm will be able to run

much faster. But perhaps more signi�cant is the comparison of memory re-

quirements. On average, Franklin's algorithm used more than an order of

magnitude the memory Greedy Cuts require.

Figures 27 and 28 show rendering examples of real terrain rendered with

both Franklin's and our algorithm. Notice that our algorithm generates con-

siderably larger polygons.

Figures 29 to 33 contain images with the Denver digital terrain at di�erent

resolutions. It shows the scaling of the TINs generated by our algorithm as

the error bound gets smaller.

6.5 Algorithm Extensions and Optimizations

The work presented so far can be extented in several di�erent ways. In this

section we describe some possible extension. In order to make the algorithm

run on more general inputs, such as polyhedral terrains, and general polyhedral

surfaces, there are at least a couple of di�erent directions. The conceptual

treatment of polyhedral terrains is trivial. In the case the polyhedral terrain is

CHAPTER 6. SIMPLIFICATION 112

Figure 27: Bu�alo terrain triangulated with (a) Franklin's algorithm, (b) our
algorithm (strong-feasibility).

Figure 28: Jackson terrain triangulated with (a) Franklin's algorithm, (b) our
algorithm (strong-feasibility).

CHAPTER 6. SIMPLIFICATION 113

Figure 29: Denver height-�eld data before simpli�cation.

Figure 30: Denver terrain triangulation, � = 20 units.

CHAPTER 6. SIMPLIFICATION 114

Figure 31: Denver terrain triangulation, � = 10 units.

Figure 32: Denver terrain triangulation, � = 5 units.

CHAPTER 6. SIMPLIFICATION 115

Terrain � Time Trgs. Memory

2.5 (f) 3.2 1994 6229
Bu�alo 2.5 (w) 8.12 1641 428

2.5 (s) 21.86 2279 592
2.5 (f) 5.03 2688 8731

Denver 2.5 (w) 17.38 2137 572
2.5 (s) 27.57 2849 700
1.5 (f) 2.23 1564 4781

Eagle Pass 1.5 (w) 4.24 1214 315
1.5 (s) 8.1 1578 454
15 (f) 4.5 2822 8621

Grand Canyon 15 (w) 12.87 2073 488
15 (s) 37.96 3115 844
0.5 (f) 2.44 1297 4084

Jackson 0.5 (w) 2.6 859 231
0.5 (s) 3.62 1127 296
15 (f) 4.03 2561 8082

Moab 15 (w) 10.27 1836 495
15 (s) 21.09 2430 628
5 (f) 5.28 2671 8365

Seattle 5 (w) 9.70 2011 486
5 (s) 26.75 2763 672

Table 1: Running times (in sec) of three algorithms on seven real terrain data
sets. (f) indicates Franklin's code; (w) and (s) indicate our algorithm with weak
and strong feasibility, respectively. All terrains are 120�120 elevation arrays.
The error bounds (�) were chosen to keep the number of triangles (Trgs.) in the
output approximately in the 1000 to 3000 range. Memory usage is the number
of 8Kbyte pages allocated.

CHAPTER 6. SIMPLIFICATION 116

Figure 33: Denver terrain triangulation, � = 2:5 units.

homeomorphic to a sphere (i.e., its boundary is composed of a single piece), one

can just change the feasibility checking, and the method of �nding vertices for

greedy biting. Extensions to general surfaces are harder, but following in the

same footsteps, it is possible to break any polyhedral surface into polyhedral

terrains, run the simpli�cation algorithm in each one of these and glue the

pieces back together. The gluing process is non-trivial, as it is necessary to

respect boundaries across patches. Another possible solution is to extent the

feasibility checking to deal with surfaces directly, without the need for the

decomposition step.

Polyhedral Surface Simpli�cation with Greedy Cuts

The Greedy Cuts algorithm works by taking greedy cuts (\bites") out of a

simple closed polygon that bounds the yet-to-be triangulated region. The

CHAPTER 6. SIMPLIFICATION 117

algorithm starts with a large polygon, bounding the whole extent of the terrain

to be triangulated, and works its way inward, performing at each step one of

three basic operations: ear cutting, greedy biting, and edge splitting. Each

atomic operation can only be performed if the triangles are feasible.

There are basically two main challenges in trying to extend the algorithm to

polyhedral surfaces of general topological types. First, the algorithm assumes

it starts with a polyhedral patch that is homeomorphic to S2, that is, the

boundary of the patch is connected and has no holes inside. Second, the

feasibility criteria is highly dependent on the fact that the domain is a terrain,

and the actual implementation there uses the fact that a height �eld is given.

In order to make the surface S suitable for the GC algorithm, we break it

up into multiple disjoint surfaces S1;S2; : : :Sn, where each is homeomorphic to
S2. Furthermore, we force each Si to be a terrain, in the sense that each can

be re-parametrized on parameters u and v, in such a way that Si is the graph
of some function gi(u; v). This transformation in S allows each of its patches

to be simpli�ed in accordance to the GC algorithm. A problem remains on

how to connect the patches as to have no \cracks" or \holes". As shown below

we perform the operations as to avoid cracks and holes when we join S 0
i into

the �nal S 0.

Our modi�ed GC for surfaces, consists of several steps. First, we need an

algorithm that breaks S into multiple patches, each of which is a terrain and

homeomorphic to S2. Second, we need to apply a modi�ed GC to each patch

and �nally we need to re-group all the patches back together avoiding cracks

and holes.

CHAPTER 6. SIMPLIFICATION 118

Breaking Surfaces Into Terrains

Breaking (or partioning) a surface into terrains is not a trivial task. Actu-

ally the problem of breaking a general polyhedral surface into the minimal

number of terrains has been conjectured to be NP-hard. Because of this, we

concentrate on techniques that break a given surface into a small number of

terrains.

Our general technique works by trying to grow a terrain patch by starting

from a single face and introducing feasible faces to its boundary one at a

time. In order to do this e�ciently, we need a way of deciding if the terrain

patch continues to be a terrain after the introduction of the given face to its

boundary.

A simple way to accomplish this is to use a set of predetermined directions

as a witness set. That is, we keep the arrangements of the projections of the

chosen faces in each one of these planes, and while there is no overlap we are

guaranteed that the tested face can be safely added to our patch. If there is

an overlap in one plane, we can discard it and continue the procedure on the

other planes. A version of this procedure was used to generate the pictures in

Figures 34, 35, 36, and 37.

This approach is certainly not the best one possible. In a certain way, the

normals to each triangle should be enough to decide whether a face can be

safely added to a patch. There is, we should be able to use Gauss map [28].

(The Gauss map is a map from a surface to the sphere where the unit normal

at every point on the surface is mapped to the sphere. Given the gauss map,

one would hope to be able to determine if a patch of the surface is a terrain by

checking if the convex hulls of the image of the Gauss map does not contain the

CHAPTER 6. SIMPLIFICATION 119

origin of the sphere, or by a similar procedure) Unfortunately, this only works

for two-dimensions; we are still working on extending it to three-dimensions.

Anyway, if we regard the method of deciding if a face can be added to a

terrain patch as a black box, we can simply start from any face, and from

there we add faces to a patch (in our case in a sort of breadth-�rst search on

the adjacency graph of the surface), until we try to add a face that violates

our test. Then we mark that face as non-feasible and continue the search from

a feasible face until the queue of possible faces is empty and we are left with

a collection of connected faces that constitute a terrain patch.

One shortcoming of this technique is that the terrains might ended up with

multiply connected components, making them unsuitable for our purposes.

Fortunately, it is fairly simple to add a constant time check on the search

to guarantee terrains that have a singly-connected boundary. We just mark

already seen faces, and faces that have been added to the patch, and we can

guarantee we do not close any boundaries.

Modi�ed Greedy Cuts

Once we have multiple connected components S1;S2; : : :Sn, each of which is a

terrain homeomorphic to a disk, we can to apply our Greedy Cuts algorithm.

One possible problem remains: if each are simpli�ed separately, it is necessary

to guarantee we can glue them back together. Our method for doing this

consists of breaking the boundary of Si into paths �j
i , and augmenting these

paths into maximal disjoint paths, where each of these is a connected path of

longest length that is contained in the intersection of two of the terrain patches.

It is fairly simple to compute these paths, let assume ji . With ji in hand,

CHAPTER 6. SIMPLIFICATION 120

we apply a one dimension simpli�cation on these (assume an �-tube around

them), and use these simpli�ed paths to construct a simpli�ed boundary �j
i ,

that is suitable for running the Greedy Cuts algorithm (see Figures 34 and

35).

Gluing Patches

The last (and simpler) phase of the algorithm consists of gluing back the pieces.

This is trivial as the previous phase has created simpli�ed paths that exactly

�t across the boundaries nicely.

Important Considerations

There are several tradeo� being made in our algorithm. The most important

shortcoming being that we can not simplify a surface by more than the number

of terrains it can be broken up into. A bumpy surface might produce terrible

results. Also, the current breaking scheme can be largely improved, running

our algorithm on the Stanford Bunny we notice just a few patches (around 10)

have more than 99% of the triangles, but as holes were created when generating

the patches, we generate another 100 or so patches, each with fewer than 10

triangles. We also need to avoid (or detects for gracefully topological breaking)

self-intersections during the Greedy Cuts phase.

Instead of breaking the original surface into terrains, another solution is

to avoid the decomposition process. All that is necessary is to extend the

feasibility checking for non-terrain surfaces. Then, conceptually, one can just

run the GC algorithm on the surface.

CHAPTER 6. SIMPLIFICATION 121

6.6 Conclusions and Future Work

We have presented a new method to generate TINs from dense terrain grids.

Our algorithm di�ers from previous methods in its use of a bottom-up ap-

proach to terrain sampling. Its key features include:

� Low Complexity Output TIN. Our method generates very few triangles

for a given �. Indeed, a primary objective in using the greedy optimiza-

tion step is the minimization of the number of triangles in the output.

� Memory E�ciency. It can be run on very large terrains, potentially even

those whose grids cannot simultaneously �t in memory.

� Maintenance of Structural Fidelity. Our method is able to maintain

with very little additional overhead any pre-speci�ed set of features of

the terrain, without the need for adding additional (Steiner) points.

� Speed. Our running times are comparable to the fastest available meth-

ods, and we can probably improve the performance dramatically with a

careful re�nement of our code.

Our experimental results so far have focussed on the quality of the output

TIN. The running time can certainly be improved through more careful coding.

Also, further experimentation with the heuristics, especially the greedy biting

operation, should yield even better results with respect to the output size. On

the theoretical side, we are also attempting to prove worst-case bounds on the

performance of the approximation (e.g., that we obtain a number of triangles

that is guaranteed to be within a small factor of optimal).

CHAPTER 6. SIMPLIFICATION 122

A straightforward modi�cation of our code will permit the algorithm to

work on arbitrary TIN terrain inputs, rather than just on DEM arrays. Con-

ceptually, there are no changes needed to the algorithm. A somewhat less triv-

ial modi�cation will be to generalize the algorithm to approximate arbitrary

(non-terrain) polyhedral surfaces and to �nd approximations to a minimum-

facet separating surface (as done in [10, 16, 79], in the convex case).

Another straightforward extension of our method allows one to use it to

build hierarchical representations of terrain. For example, we can simply start

with an extremely crude terrain approximation (e.g., just two triangles), and

then adjust � to be smaller and smaller, making each corresponding TIN a

re�nement of the previous one, until we have the full resolution grid. An ideal

such hierarchy would have logarithmic height, as the intermediate TINs have

sizes 2, 4, 8, 16, etc.

Another extension that we are pursuing is to approximate functions (ter-

rains) of three variables. Approximating such functions is very important in

scienti�c visualization. One can apply our same paradigm to this problem,

biting o� tetrahedra that satisfy the �-�tness criterion. The tricky issue in im-

plementing this algorithm is in maintaining the regions P of untetrahedralized

domain, since this will be a polyhedral space, possibly of high genus.

CHAPTER 6. SIMPLIFICATION 123

Figure 34: Terrain decompositiong

with simpli�ed paths of the Man-

nequin model.

Figure 35: Terrain decomposition

with simpli�ed paths of the Goblet

model.

Figure 36: Terrain decomposition

of the minimal surface model.

Figure 37: Terrain decomposition

of the minimal surface model into

patches homeomorphic to a disk.

Chapter 7

The PVR System

The PVR (Parallel Volume Rendering) system is an object-oriented, client/ser-

ver system, developed for high performance volume rendering of very large

datasets. Among its important features are its unique performance and scal-

ability. PVR is well suited for use in a supercomputing environment, where

datasets are too large to be easily archived and visualized, and where com-

putational steering capabilities are necessary. For the scientist, PVR o�ers

transparency from machine architecture details in achieving high performance

visualization, while for the tool builder it provides an easily extensible system

architecture.

7.1 Introduction

In order to allow researchers and engineers to make e�ective use of volume

rendering in the study of complex physical and abstract structures, a coherent,

powerful, easy-to-use visualization tool is needed. Furthermore, such a tool

124

CHAPTER 7. THE PVR SYSTEM 125

should allow for interactive visualization, ideally with support for user-de�ned

\computational steering."

There are several issues and challenges in developing such a visualization

tool. First, even with the latest volume-rendering acceleration techniques run-

ning on top-of-the-line workstations, it still takes a few seconds to a few min-

utes to volume render an image. This is clearly far from interactive. With the

advent of larger parallel machines and better scanners and instrumentation,

larger and larger datasets are being generated (typically on the order of 32MB

to 512MB, ranging to 16GB), some of which would not �t in memory of a

workstation class machine. Second, even if rendering time is not a major con-

cern, large datasets may be too expensive to hold in storage, and extremely

slow to transfer to typical workstations over network links.

These issues lead to the question of whether the visualization should be

performed directly on the parallel machine which is used to generate the sim-

ulation data or sent over to a high performance graphics workstation for post-

processing. First, if the visualization software was integrated directly with

the simulation software, there would be no need for extra storage, and vi-

sualization could be an active part of the simulation. Second, large parallel

machines can render these large datasets faster than workstations can, possi-

bly in real-time, or at least achieving interactive frame-rates (see Chapter 3).

Finally, the integration of simulation and visualization in one tool, whenever

possible, is highly desirable because it allows users to interactively \steer" the

simulation. With steering, users are able to terminate or modify parameters

in their simulations as the simulations progress, rather than have to wait for

CHAPTER 7. THE PVR SYSTEM 126

painfully long simulations on extremely expensive machines, with high stor-

age and transmission costs, only to discover during post-processing that the

simulations are wrong or uninteresting.

Here we introduce the PVR (Parallel Volume Rendering) system, devel-

oped under collaboration between the State University of New York at Stony

Brook and Sandia National Laboratories. PVR is a component approach to

building a distributed volume visualization system. At its topmost level, it

provides a exible and high performance client/server volume rendering archi-

tecture with a unique load balancing scheme which provides a continuum of

cost/performance parameters that can be used to optimize rendering speed.

The original goals of PVR were to achieve a level of portability and perfor-

mance for rendering beyond that of other available systems and to provide a

platform that can be used for further development.

In a certain way, PVR is more than a rendering system; its components

have been specially designed to be user-extensible in order to allow for user-

de�ned computational steering. That is, the user can easily add custom com-

putational code to PVR and just link in the rendering library. Using PVR,

it is much easier to build portable, high performance, complex, distributed

visualization systems. Figure 38 displays the relationship between PVR and

a distributed visualization environment.

The rest of this chapter introduces the PVR client/server architecture and

its components, with an emphasis on its support for volume rendering.

CHAPTER 7. THE PVR SYSTEM 127

Operating System

DVE

PVR

User

Figure 38: The Relationship of a Distributed Visualization Environment
(DVE) System and PVR.

7.2 The PVR System

It is well known that system complexity limits the reliability of large software

systems. Distributed systems exacerbate this problem with the introduction of

asynchronous and non-local communication. With all of this in mind, we have

used a component approach in developing our system. PVR attempts to pro-

vide just enough functionality in the basic system to allow for the development

of large and complex visualization and computational steering applications. It

is based on a client/server architecture, where there are, on one side, ren-

dering/computing servers which are coupled, and, on the other side, the user

acting as a client from his workstation.

The PVR client/server architecture is implemented in two main compo-

nents: the pvrsh, which runs in the user's workstation, and the PVR renderer,

which runs in the parallel machines. The renderer is implemented as a library

and it allows for easy integration of user-de�ned code that can share the same

processors as the rendering code. Communication across applications written

with PVR are performed using the PVR protocol, and in our implementation

CHAPTER 7. THE PVR SYSTEM 128

Renderer

Renderer

Renderer

Tcl/Tk
interpreter

TCP/IP
Connection

TCP/IP
Connection

TCP/IP
ConnectionSession handler

Session handler

Session handler

Display Window

Display Window

Display Window

Display Window

Display Window

File I/O

File I/O

pvrsh

parxp2.ams.sunysb.edu

acoma.cs.sandia.gov

Figure 39: PVR Architecture. The overall structure of the system is shown
with an emphasis on the pvrsh. The Tcl/Tk core acts as glue for all the client
components. Everything, with the exception of the renderers, runs on the user's
workstation. The renderers run remotely on the parallel machines.

communication is handled by separate UNIX processes (see Figure 39).

7.2.1 The pvrsh

The pvrsh provides a single new object to the user, the PVR session. The

pvrsh is an augmented Tcl/Tk shell. We chose to use Tcl/Tk [88] as the system

glue. Tcl, Tool command language, is a script language designed to be used as

a generic language in application programs. It is easily extendable with new

user commands, in C or Tcl, and coupled with the graphical environment Tk,

it is a powerful graphical user-interface system. The use of the Tcl/Tk, which

is a well-designed, debugged application language and graphical environment

has contributed to reducing the overall system complexity.

The PVR session is an object (such as the Tk objects). It contains at-

tributes, and corresponding methods are used to change the attributes. One

CHAPTER 7. THE PVR SYSTEM 129

of the most important attributes is the one that binds a session to a particu-

lar parallel machine. Figure 39 contains an example of three sessions, two on

acoma.cs.sandia.gov (a large Intel Paragon XP/S with over 1840 nodes run-

ning SUNMOS [67], installed at Sandia) and one on parxp2.ams.sunysb.edu (a

small Intel Paragon with 110 nodes running Intel's version of OSF/1, installed

at Stony Brook). The system is designed to handle multiple sessions using the

same protocol with machines running di�erent operating systems.

As part of its attributes, a session speci�es the number of nodes it needs

and the parameters that are passed to those nodes. Several pieces of infor-

mations are interactively exchanged between the pvrsh and the PVR renderer,

such as rendering con�guration information, rendering commands, sequences

of images, performance and debugging information.

There is a high amount of exibility in the speci�cation of the rendering.

Not only can simple rendering elements, such as changing transformation ma-

trices, transfer functions, image sizes and datasets be speci�ed, but there are

commands (see Table 2) to specify in a high level format the complete par-

allel rendering pipeline (see Chapter 3 for details). With these parameters

in hand, the pvrsh can be used to specify almost arbitrary scalable rendering

con�gurations (see Section 7.2.4).

The pvrsh is implemented as a single process (making ports easier) in about

5,000 lines of C code. We have augmented the Tcl/Tk interpreter with TCP/IP

connection capabilities (some versions of Tcl/Tk have this built in). In order

to support several concurrent sessions, all the communication is performed

asynchronously. We use the Tk CreateFileHandler() routine to arbitrate

between input from the di�erent sessions. A UNIX select call and polling

CHAPTER 7. THE PVR SYSTEM 130

could be used instead but would make the code harder to understand and,

overall, more complex. Sessions work as interrupt-driven commands, respond-

ing to requests one at a time. Every session can receive events from two sources

at the same time: the user keyboard and the remote machine. Locking and

disabling interrupts are needed to ensure consistency inside critical sessions.

The overall structure of the code allows for user augmentation of a session

functionality either by external or internal means. External augmentation can

be performed without re-compilation, such as that used by the user interface

to show images as they are received asynchronously from the remote parallel

server. Internal augmentation requires changes to the source code. The source

code is structured to allow for simple addition of new functionality. Only a

single �le needs to be changed to add a new session method. If it bbbchanges

the Resource Database, two �les need to be changed. New commands are

added using Tcl conventions. (For details, see Part 3 of Ousterhout's Tcl/Tk

book [88].)

Every PVR message is sent either as a single �xed-length message, or as

two messages (the �rst is used to specify the size of the second). This is used

to make redirection easier and to achieve optimal performance under di�erent

con�gurations. Look-up tables are set up with actions to be taken up on the

arrival of each message type. This setup makes additions to the PVR protocol

very simple.

7.2.2 The PVR Renderer

The PVR renderer is the piece of PVR that runs remotely on a parallel machine

(see Figure 39). It is composed of several components, the most complex being

CHAPTER 7. THE PVR SYSTEM 131

the rendering code itself. In order to start up multiple parallel processes at

the remote machine, we use pvrd, the PVR daemon. This daemon runs on the

parallel machine. It waits on a well-known port for connection requests. Once

a request for opening a new session is made, it forks a handling process that

is responsible for allocating processors and communicating with the session

on the client. On the remote machine, the handling process allocates the

computing nodes and runs the renderer code on them. The connection process

is illustrated in Figure 40. One pvrd can allocate several processes; once it is

killed, it kills all its children before exiting.

The renderer is the code that actually runs on the parallel nodes. The

overall structure of the code resembles a SIMD machine [47], where there are

high-level commands and low-level commands. There is one master node,

similar to the microcontroller on the CM-2 machines, and several slave nodes.

The functions of the slaves are completely dependent on the master. The

master receives commands from the pvrsh, translates them, and takes the

necessary actions, including changing the state of the slaves and sending them

a detailed set of instructions.

For exibility and performance, the method of sending instructions to the

nodes is through action tables (similar to SIMD microcode). In order to ask

the nodes to perform some action, the master broadcasts the address of the

function to be executed. Upon receiving that instruction, the slaves execute

that particular function. With this method, it is very simple to add new

functionality because any new added functionality can be performed locally,

without the need to change global �les. Also, every function can be optimized

independently, with its own communication protocol. One shortcoming of this

CHAPTER 7. THE PVR SYSTEM 132

communication method (as in SIMD machines) is that one has to be careful

with non-uniform execution, in particular because the Intel NX communication

library (both OSF and SUNMOS have support for NX) has limited function-

ality for handling nodes as groups. For example, in setting up barriers with

NX, it is impossible to select a group from the totality of the allocated nodes.

Newer communication libraries, such as MPI [115], solve this shortcoming by

introducing the idea of groups of nodes.

Handling
Process

Connection
Request

Fork

Processor
Allocation

Renderer

TCP/IP
Connection

:session

pvrd

Figure 40: In order to allocate nodes, the pvrsh sends a command to the pvrd,
which in turn creates a special communication handling process and allocates
a partition on the parallel machine.

The master intrinsically divides the nodes into clusters. Each cluster has a

specialized computational task, and multiple clusters can cooperate in groups

to achieve a larger task. All that is necessary for cluster con�guration is that

the basic functions be speci�ed in user-de�ned libraries that are linked in a

single binary. During runtime, the user can use the master to recon�gure

clusters according to immediate goals. The pvrsh can be used to interactively

send such commands. As an example of the use of such a clustering scheme,

see Figure 41, where the rendering con�guration for PVR's high performance

CHAPTER 7. THE PVR SYSTEM 133

volume renderer is depicted.

In order to achieve user-de�ned computational steering, one can use this

clustering paradigm. It is usually necessary to add one's functionality to

the action tables (e.g., linking the computational code with PVR dispatch-

ing code), and also add extra options to the pvrsh (usually through the set

command) for modifying the relevant parameters interactively.

PVR volume rendering code was the inspiration for this overall code orga-

nization and is a very good application to demonstrate its features. Because in

this chapter our focus is on describing the PVR system, and not on the actual

volume rendering code, we only sketch the implementation to give an insight

as to how to add your own code to PVR and to give you enough information

for e�ective use of the PVR rendering facilities.

7.2.3 Volume-Rendering Pipeline

The PVR rendering pipeline is composed of three types of nodes (besides

the master). These are the rendering nodes, compositing nodes, and collector

nodes (usually just one), (see Figure 41). This specialization is necessary for

optimal rendering performance and exibility. All the clusters work in a simple

dataow mode, where data moves from top to bottom in a pipeline fashion.

Every cluster has its own fan-in and fan-out number and type of messages

(see Figures 10 and 11). The master con�gures (and re-con�gures) the overall

dataow using a set of user-de�ned and automatic load-balancing parameters.

At the top level are the rendering clusters. The nodes in a rendering

cluster are responsible for resampling and shading of a given volume dataset.

In general, the input is a view matrix, and the output is a set of sub-images,

CHAPTER 7. THE PVR SYSTEM 134

each of which is a related to a node in the compositing binary tree. The master

can use multiple rendering clusters working on the same image, but on disjoint

scanlines in order to speed up rendering. Once the sub-images are computed,

they are passed down the pipeline to the compositing clusters.

The compositing clusters are organized in a binary tree structure, matching

that of the compositing tree which corresponds to the decomposition of the

volume data set on the rendering nodes. The number of processors used to

do compositing can actually be di�erent than the number of nodes in the

compositing tree, as we can use virtualization to fake more processors than

allocated. Images are pipelined down the tree, with every iteration combining

the results of compositing until �nally all the pixels are a complete depth-

ordered sequence. Those pixels are converted to RGB format and sent to the

collector node(s) (at this time, we just use a single collector node).

The collector node receives RGB images from the compositing nodes and

compresses them using a simple run-length encoding scheme (very fast com-

pression is necessary). Finally, the images are either sent over to the pvrsh for

user viewing (or saving), or locally cached on the disk. An additional option

allows images to be trashed for performance analysis purposes.

The previous discussion is somewhat simplistic. There are several perfor-

mance issues related to CPU speed, synchronization, and memory usage that

have not been discussed. For more complete details, see Chapter 3.

7.2.4 Rendering with PVR

Figure 42 shows a simple PVR program. Several important features of PVR

are demonstrated: in particular, the seamless integration with Tcl/Tk, the

CHAPTER 7. THE PVR SYSTEM 135

Rendering
Cluster

Rendering
Cluster

Rendering
Cluster

Cluster
Compositing

Cluster
Compositing

Collector
Image

Sequence

Single
Node

Nodes
Multiple

Low Bandwidth

High Bandwidth

High Level
Commands

Low Level Commands

Rendering
Cluster

Rendering Pipeline

Master

Figure 41: The master receives high level commands that are translated into
virtual microcode by the action tables. For rendering, the high level commands
are for the generation of animations by rotations and translations, which are
interpreted into simple transformation matrices commands. The rendering
clusters perform rendering in parallel. The collector receives and groups images
together and sends an ordered image sequence to the client application.

exible load-balancing scheme, and the interactive speci�cation of parameters.

The set command can have several options (in Figure 42, options are usually

speci�ed in multiple lines, but could be speci�ed in a single line). For instance,

-imagesz speci�es the size of the images that are output by the system.

The -cluster and -group options are unique to PVR and its exible

load-balancing scheme. With both of these options, the relative sizes of the

rendering and compositing clusters can be speci�ed together with the image

calculation allocation. Several scalability strategies can be used. For instance,

a rendering cluster needs to be large enough to hold the entire dataset and at

least a copy of the image to be calculated. By increasing the size of the cluster

(i.e., the number of nodes in the cluster), the amount of memory needed per

node decreases. By grouping clusters (i.e., splitting the image computation

CHAPTER 7. THE PVR SYSTEM 136

across multiple clusters), the number of scanlines a given cluster is respon-

sible for decreases, lowering both the image memory requirements and the

computational cost, thus speeding up image calculation.

The same commands can be used to con�gure compositing clusters. The

scalability parameters for compositing clusters are very di�erent than for ren-

dering clusters, because of the di�erent nature of the task. Compositing nodes

need memory to hold two copies of the images, which can be quite large (our

current parallel machine nodes have only between 16MB to 32MB RAM), and,

also, compositing has a very high synchronization cost which increases as the

number of nodes increase. Currently, the only need for multiple compositing

clusters is due to the need of more memory for large images (such as 1024-by-

1024).

7.3 Miscellaneous Topics

7.3.1 Related Work

The Shastra project at Purdue has developed tools for distributed and collab-

orative visualization [6]. The system implements parallel volume visualization

with a mix of image-space and object-space load balancing. Few details of the

scheme are given, and they report using up to four processors for computation,

which makes it hard to evaluate the systems usability in a massively parallel

environment.

Rowlan et al. [95] describe a distributed volume-rendering system imple-

mented on the IBM SP-1. Their system seems to have several of the same

CHAPTER 7. THE PVR SYSTEM 137

toplevel .rgb ; Tcl/Tk stu� { creates the windows
photo .rgb.p
pack .rgb.p
toplevel .c
canvas .c.c
pack .c.c
source stat.tcl ; stat.tcl de�nes actions used to

; bookkeep performance information
; and graphing them in a window

pvr session :brain ; creates a session called \brain"
:brain image window .rgb.p ; speci�es the image window
:brain image callback imgCallback ; imgCallback is called arriving image
:brain image dir ./ ; where to place images
:brain open acoma.cs.sandia.gov ; opens a connection with acoma

; using the default number of nodes
; the defaults are in .pvrsh

:brain set -dataset brain.slc ; speci�es the dataset
:brain set -cluster r,16 -group 0,0,1,1; 4 rendering clusters of 16 nodes

; divided into 2 groups where
; nodes in a group share
; the same image calculation

:brain set -cluster c -group 0,0 ; 2 compositing clusters of 15 nodes
; this allows for the calculation of
; large images (each cluster handles
; half of pixels)

:brain set -imagesz 512,512 ; speci�es the image size
:brain render rotation 0,1,0 15,59:60 ; speci�es the rendering of

; 45 images, starting from
; one quarter rotation along
; the y axis

Figure 42: A simple PVR program with a set of PVR rendering commands.
The commands can be put in a �le and executed in batch, or can be typed
interactively on the keyboard (or mixed). Tcl/Tk code (for example, \stat.tcl")
can be written to take care of portions of the actions.

CHAPTER 7. THE PVR SYSTEM 138

characteristics as ours. In particular, it runs on a massively parallel machine,

provides object-space partitioning, uses separate rendering and compositing

nodes and provides a front-end GUI. Unfortunately, their paper provides few

details on the actual architectural design and implementation, and even the

rendering is described very briey. As far as we can detect, their system does

not provide the exibility, portability and performance that our system does.

For instance, it does not provide support for multiple rendering or compositing

clusters.

Another cousin of our system is DISCOVER [62], developed at National

Cheng-Kung University (Taiwan). This system has been developed for custom

medical imaging applications and provides mechanisms for the use of remote

processor pools. It provides a client/server architecture for a variety of clients,

including support for Microsoft Windows.

7.3.2 Distributed Visualization Environments (DVEs)

DVEs can be easily developed by making use of the client/server metaphor.

A DVE developed using Tcl/Tk is very portable, as Tcl/Tk has ports for

almost all of the operating systems available, and TCP/IP (our communication

protocol) is virtually universal. We give more details on the primitives from

which DVEs can be built in Table 2.

Figure 47 shows a simple prototype GUI developed at Sandia. The com-

plete interface is written in Tcl/Tk. The user is able to specify all the neces-

sary rendering parameters in the right window (including image size, transfer

function, etc.) and the load-balancing parameters in the left window. This

simple interface uses only a single session at this time, but more functionality

CHAPTER 7. THE PVR SYSTEM 139

is currently being added to the system.

Using the prototype GUI, users are able to add their own functionality

to the system as needed. This exibility not only makes the system more

usable, because redundant bells and whistles can be discarded, but also new

functionality can be added straightforwardly. The use of a portable and well-

documented windows interface (e.g., Tk) is imperative. Not only do users

avoid having to learn yet another programming language and graphical toolkit,

but the use of Tk saved us a lot of implementation and documentation cost

(Tcl/Tk is widely used and well-documented). Another important feature of

Tcl/Tk for the development of prototypes is that it is freely available, enabling

us to do the same for PVR.

7.3.3 Visualization Services

Our system architecture can be used to visualize time-varying data. When ren-

dering time-varying data, we add a permanent caching cluster to the pipeline

in Figure 41 which is responsible for distributing the volume data to the ren-

dering nodes e�ciently. The caching cluster is used to hide I/O latency from

disk (or other sources). This way, the user can visualize a dataset for as long

as it takes a new version of the dataset to come along. Handling data that

changes too rapidly (i.e., faster than we can move it and render it) is not

possible, as it would require large amounts of bu�ering.

Another possible use of our parallel renderer is as a visualization server for

large computational parallel jobs [90]. The basic idea is to pre-allocate a set of

nodes that can be shared to a limited extent by multiple users for visualizing

their data. E�ective use as such a server would also make use of a caching

CHAPTER 7. THE PVR SYSTEM 140

cluster, as described above for time-varying data. The cluster, in this case,

would be used to cache in alternate user data sets.

7.3.4 Results

The current version of PVR consists of about 25,000 lines of C and Tcl/Tk

code. It has been used at Brookhaven National Labs, Sandia National Labs,

and Stony Brook to visualize large datasets for over a year, and its reliability

has been improving steadily. Below we discuss a few of the current uses and

performance of PVR. The biggest challenge we have faced so far is the limited

amount of memory on our Paragon nodes. It is very hard from the software

engineering point of view to have consistent and reliable treatment of memory

allocation issues, specially when attempting to visualize very large datasets.

We have demonstrated the capability of rendering a 500MB dataset (the

512-by-512-by-1874 CT visible human dataset { see Figure 48 { from the Na-

tional Institute of Health) using approximately 128 rendering nodes and 127

compositing nodes at Supercomputing '95 in San Diego. The rendering times

for a 512-by-512 image are on the order of 5 seconds/frame. It is worth point-

ing out that the main bottleneck for this dataset is reading the 500MB of data

from the Paragon disks. Currently, it takes around 15 minutes.

Our next step is to extend the system to render the full RGB visible hu-

man (14GB) with high temporal resolution (a 72-frame rotation uses 5 degree

increments. Smaller increments are desirable, but they greatly increase the

size of the animation �les). This will require the use of parallel I/O, a capa-

bility that currently we do not have, and dedicated use of a very large parallel

machine, such as the entire 1840-node Intel Paragon at Sandia.

CHAPTER 7. THE PVR SYSTEM 141

Figure 43 is a volume rendering of a 1024-by-1024-by-64 thymic gland tissue

showing the thymic epithelial cells. Figure 44 is a volume rendering of a 100-

by-110-by-92 single cell. The datasets were generated by immuno-uorescence

microscopy at the National Jewish Center for Immunology and Respiratory by

C. Monks and prepared for visualization by deconvolution on Sandia's Intel

Paragon by G. Davidson. The volume rendering animations were generated

at multiple frames per second using PVR by B. Wylie. For further details see

[80].

7.4 Conclusions

We have introduced the PVR system. The idea of developing PVR started out

of frustration from trying to use a network of workstations and the Paragon

as rendering engines for VolVis [7]. It was always clear that a pure distributed

approach to building rendering environments would be much more powerful

than special rendering tools with parallel capabilities. Here are some of the

key features in our system:

� Transparency - PVR hides most of the hardware dependencies from the

DVEs and the user.

� Performance - PVR provides high speed pipelined ray casting with a

unique load-balancing scheme and mechanisms to �ne tune performance

for any given machine con�guration.

� Scalability - All the algorithms used in the system were carefully chosen

to be gracefully scalable. Scalability is not only with respect to the

CHAPTER 7. THE PVR SYSTEM 142

machine size, but special care has been taken to allow for growth in

dataset size and image size.

� Extensibility - The PVR architecture can be easily extended, making it

easy for the DVE to add new functionality. Also, it is fairly easy for the

user to add new functionality to the PVR shell and its corresponding

kernel, allowing for user-de�ned \computational steering" coupled with

visualization.

PVR introduces a new level of interactivity to high performance visualiza-

tion. Larger DVEs can be built on top of PVR and yet be portable across

several architectures. These DVEs that use PVR are given the opportunity

to make e�ective use of available processing power (up to a few hundred pro-

cessors), giving a range of cost/performance to end users. This is particularly

important in the scienti�c research community, since most often the question

is not how fast but how much. PVR provides a strong foundation for building

cost e�ective DVEs.

As far as user interfaces are concerned, PVR introduces a much simpler way

to create them. No longer does one have to spend time coding in X/MOTIF

(or Windows) to create the desired user interface. The Tcl/Tk combination

is much simpler, gives more exibility, and is nearly as powerful as the other

alternatives. Tcl/Tk is becoming as popular as UNIX shell programming.

Di�erent sites should be able to easily create and/or customize their own

versions of the systems.

Even though we have completed a usable and e�cient system, there is still

a long wish list, on both the research and development front. We are currently

CHAPTER 7. THE PVR SYSTEM 143

working on making the system stable enough for large scale availability. With

that in mind, we are currently working on creating a more complete DVE

(using VolVis as a reference) on top of PVR.

Some functionality is missing from PVR and needs to be incorporated.

The most important element is probably the support for multiple data sets

in a session. This would make the load-balancing scheme much more compli-

cated, and simple heuristics might not generate well-balanced decomposition

schemes. If the volumes were allowed to overlap (as in VolVis), the problem

would be even harder, and the solution would require heavier processing on

the compositing end. It might be necessary to have a recon�guration phase

each time a new volume is introduced into the picture. It is not yet clear how

this could be done e�ciently.

CHAPTER 7. THE PVR SYSTEM 144

Command Description

:s open M:N M is an internet address; N is a port
number.

:s close Close the connection.

:s image window W W is a Tk photo widget.

:s image callback F F is a procedure to be called every
time a new image is received.

:s image �le F F is the name of the local �le name
where the video stream is saved.

:s list status Show the state of the connection and
the value of internal variables.

:s set Option Val Change system status.

:s set -dataset D Sets the data set to be rendered.

:s set -cluster C Sets the size of clusters.

:s set -group G Used to group multiple clusters, for
use in exploiting image-based paral-
lelism.

:s set -imagesz X,Y Sets the desired image resolution.

:s render rotate X,Y,Z S,E:N Sends a rendering request. The axis
of rotation and initial, end, and incre-
mental angles are speci�ed.

:s performance memory cluster Returns the amount of dataset mem-
ory in each cluster.

:s performance comp cluster latency Estimates the latency time to compos-
ite images in the current cluster con-
�guration.

Table 2: A list of a few external PVR commands. These commands can be
typed interactively, placed in execution �les, or embedded in applications.

CHAPTER 7. THE PVR SYSTEM 145

Figure 43: Volume rendering of the
Thymus tissue. An (512 � 512, 72

frame) animation was produced in

just about 3 minutes using PVR on

the Paragon.

Figure 44: A volume render-

ing showing T-cell receptors on

an immuno-uorescent microscopy

dataset.

Figure 45: Volume rendering of

MR data from a human head using

an unconventional transfer function

in order to illustrate the exibility of

volume rendering.

Figure 46: A subdivision of the MR

data for 8 processors is shown, illus-

trating our content-based load bal-

ancing.

CHAPTER 7. THE PVR SYSTEM 146

Figure 47: A snapshot of the simple PVR GUI, with three windows. The main

interface window on the right, where the user can specify general rotations. The

cluster con�guration window, on the left. The third window is the image of a cell

calculated with PVR.

Figure 48: Volume rendering of the 512 � 512 � 1877 visible human.

Chapter 8

Conclusions

In this thesis we described our work on e�cient techniques for rendering large

regular and irregular grids. Our contributions include the development of new

algorithms and the parallelization of existing methods. Besides conceptual de-

velopment, a big emphasis was given to the implementation of the techniques.

In fact, over 50,000 lines of code were written speci�cally for the results pre-

sented here. A short review of the work presented follows.

First, we describe parallel methods for rendering regular grids. These al-

gorithms have been implemented and are part of the PVR system [113], a

complete high-performance parallel and distributed volume rendering system.

PVR is being used at several institutions across the country, and it has suc-

cessfully rendered very large datasets (e.g., on the order of half a gigabyte) at

interactive rates.

We also describe a novel ray casting based method for rendering irregular

grids that is two orders of magnitude faster than previous ray casting tech-

niques. We discuss the practical and theoretical issues involved in rendering

147

CHAPTER 8. CONCLUSIONS 148

irregular grids. We also propose a the parallelization of this rendering tech-

nique, and discuss the issues on how to implement and integrate it in the PVR

system.

Finally, we present an algorithm for triangulating height-�eld terrain data.

Besides the two-dimensional version of the algorithm, we show how to extend

it to handle general polyhedral surfaces and sketch how to use it for simplifying

irregular grids.

Several problems remained open in our work. One of our future goals is to

integrate regular and irregular grids under the same framework within PVR.

For this, it is necessary to implement better load balancing for the regular

grids that generate no stalls in the pipeline, and also integrates the irregular

grids rendering time (some accurate analytical model of the rendering time

is needed in this case, in order to allow for uniform rendering time across all

the clusters). This accurate prediction of rendering time, for di�erent datasets

and image sizes is a very challenging problem.

We have found that the most time-consuming operation in rendering ir-

regular grids is the �nal depth sorting. In fact, by pro�ling our code, we

are able to point out that re-calculating the 1D sorting of the cells inside the

sweep-planes takes a big percentage of the time. We plan to explore a dif-

ferent formulation of the sweep algorithm, which is able to avoid the explicit

re-calculation.

Greedy-Cuts is a very powerful concept that we plan to explore in detail

in the future. Our terrain simpli�cation implementation can be improved,

and the polyhedral surface generalization needs to be �nished. Several inter-

esting questions remain, such as how to extend the Gauss map approach for

CHAPTER 8. CONCLUSIONS 149

constant-time checking for violation of the terrain condition on the patches.

Also, practical issues remain such as how to integrate texture interpolation

on the simpli�cation model. Higher dimensional variations need to be ex-

plored further, and tested thoroughly. We also plan to study its theoretical

performance.

In the future, we plan to expand our research to other problems in which

our techniques can be further explored. For example, we plan to use decompo-

sition schemes (such as the ones used for parallelization) coupled with spectral

wavelet methods to break up a given volume into multiple volumes, each of

which is sampled at the most economical resolution (see [15] for more details).

This way we should be able to decrease the rendering time, as well as storage

for volumes. We hope to attack the polyhedral collision detection problem

using our simpli�cation techniques. Finally, we plan to extend our ow visu-

alization work [109] to use a particle system in order to make it more robust

to singularities in the ow �eld.

Bibliography

[1] P. K. Agarwal, M. J. Katz, and M. Sharir. Computing depth orders

and related problems. In Proc. 4th Scand. Workshop Algorithm Theory,

pages 1{12, 1994.

[2] P. K. Agarwal and J. Matou�sek. Ray shooting and parametric search.

SIAM J. Comput., 22(4):794{806, 1993.

[3] P. K. Agarwal and J. Matou�sek. On range searching with semialgebraic

sets. Discrete Comput. Geom., 11:393{418, 1994.

[4] P. K. Agarwal and M. Sharir. Applications of a new partition scheme.

Discrete Comput. Geom., 9:11{38, 1993.

[5] P K. Agarwal and Subhash Suri. Surface approximation and geometric

partitions. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages

24{33, 1994.

[6] V. Anupam, C. Bajaj, D. Schikore, and M. Schikore. Distributed and

collaborative visualization. IEEE Computer, 27(7):37{43, 1994.

150

BIBLIOGRAPHY 151

[7] R. Avila, T. He, L. Hong, A. Kaufman, H. P�ster, C. Silva, L. Sobier-

ajski, and S. Wang. Volvis: A diversi�ed volume visualization system.

In Visualization '94 Proceedings, pages 85{92. IEEE CS Press, October

1994.

[8] R. Avila, L. Sobierajski, and A. Kaufman. Towards a comprehensive

volume visualization system. In IEEE Visualization '92, pages 13{20.

IEEE CS Press, 1992.

[9] J. F. Blinn. Light reection functions for simulation of clouds and dusty

surfaces. volume 16, pages 21{29, July 1982.

[10] H. Br�onnimann and M. T. Goodrich. Almost optimal set covers in �nite

vc-dimension. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages

293{302, 1994.

[11] E. Camahort and I. Chakravarty. Integrating volume data analysis and

rendering on distributed memory architectures. In 1993 Parallel Ren-

dering Symposium Proceedings, pages 89{96. ACM Press, October 1993.

[12] I. Carlbom. Optimal �lter design for volume reconstruction and visual-

ization. In IEEE Visualization '93, pages 54{61, 1993.

[13] J. Challinger. Scalable parallel volume raycasting for nonrectilinear com-

putational grids. In 1993 Parallel Rendering Symposium Proceedings,

pages 81{88, 1993.

BIBLIOGRAPHY 152

[14] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel,

M. Sharir, and J. Snoeyink. Counting and cutting cycles of lines and

rods in space. Comput. Geom. Theory Appl., 1:305{323, 1992.

[15] R. Chiou, M. Ferreira, A. Kaufman, and C. Silva. Using wavelets to

extract information from volumetric data. In International Conference

on Information Systems Analysis and Synthesis, pages 576{582, 1996.

[16] K. L. Clarkson. Algorithms for polytope covering and approximation.

In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture

Notes in Computer Science, pages 246{252, 1993.

[17] E. Coddington. An Introduction to Ordinary Di�erential Equations.

Prentice-Hall, 1961.

[18] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.

The MIT Press, 1990.

[19] R. Craw�s and N. Max. Direct volume visualization of three-dimensional

vector �elds. 1992 Workshop on Volume Visualization, pages 55{60,

1992.

[20] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing.

1992 Workshop on Volume Visualization, pages 91{98, 1992.

[21] G. Das and D. Joseph. Minimum vertex hulls for polyhedral domains.

Theoret. Comput. Sci., 103:107{135, 1992.

BIBLIOGRAPHY 153

[22] G. Das and M. T. Goodrich. On the complexity of approximating and

illuminating three-dimensional convex polyhedra. In Proc. 4th Work-

shop Algorithms Data Struct., volume 955 of Lecture Notes in Computer

Science, pages 74{85. Springer-Verlag, 1995.

[23] M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal,

volume 703 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1993.

[24] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld.

E�cient ray shooting and hidden surface removal. Algorithmica, 12:30{

53, 1994.

[25] M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying

depth orders. SIAM J. Comput., 23:437{446, 1994.

[26] M. de Berg and K. Dobrindt. On levels of detail in terrains. In Proc.

11th Annu. ACM Sympos. Comput. Geom., pages C26{C27, 1995.

[27] L. De Floriani. A pyramidal data structure for triangle-based surface

representation. IEEE Comput. Graph. Appl., 9:67{78, March 1989.

[28] M. do Carmo. Di�erential Geometry of Curves and Surfaces. Prentice-

Hall, Englewood Cli�s, New Jersey, 1976.

[29] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In

John Dill, editor, Computer Graphics (SIGGRAPH '88 Proceedings),

volume 22, pages 65{74, August 1988.

BIBLIOGRAPHY 154

[30] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimen-

sions. Combinatorica, 10:251{260, 1990.

[31] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer

Graphics, Principles and Practice, Second Edition. Addison-Wesley,

Reading, Massachusetts, 1990.

[32] R. J. Fowler and J. J. Little. Automatic extraction of irregular network

digital terrain models. Computer Graphics, 13(2):199{207, August 1979.

[33] W. R. Franklin. Triangulated irregular network to approximate dig-

ital terrain, Section 2.3, Research Interests. Technical report, Elec-

trical, Computer, and Systems Engineering Dept., Rensselaer Poly-

technic Institute, Troy, NY, 1994. Manuscript and code available on

ftp://ftp.cs.rpi.edu/pub/franklin/, 1994.

[34] T. Fruhauf. Raycasting of nonregularly strutuctured volume data. Com-

puter Graphics Forum (Eurographics '94), 13(3), 1994.

[35] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation

by a priori tree structures. Comput. Graph., 14(3):124{133, 1980. Proc.

SIGGRAPH '80.

[36] M. P. Garrity. Raytracing irregular volume data. volume 24, pages

35{40, November 1990.

[37] C. Giertsen and J. Petersen. Parallel volume rendering on a network of

workstations. IEEE Computer Graphics and Applications, 13(6):16{23,

1993.

BIBLIOGRAPHY 155

[38] C. Giertsen. Volume visualization of sparse irregular meshes. IEEE

Computer Graphics and Applications, 12(2):40{48, March 1992.

[39] A. Glassner, editor. An Introduction to Ray Tracing. Academic Press,

1989.

[40] A. Glassner. Principles of Digital Image Synthesis (2 Vols). Morgan

Kaufmann Publishers, Inc. ISBN 1-55860-276-3, San Francisco, CA,

1995.

[41] M. T. Goodrich. E�cient piecewise-linear function approximation using

the uniform metric. In Proc. 10th Annu. ACM Sympos. Comput. Geom.,

pages 322{331, 1994.

[42] M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest

paths via balanced geodesic triangulations. In Proc. 9th Annu. ACM

Sympos. Comput. Geom., pages 318{327, 1993.

[43] R. Gregory. Eye and Brian. Princeton University Press, 1990.

[44] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink.

Approximating polygons and subdivisions with minimum link paths. In-

ternat. J. Comput. Geom. Appl., 3(4):383{415, December 1993.

[45] B. Hendrickson and R. Leland. The chaco user's guide (version 1.0).

Tech. Rep. SAND93-2339, Sandia National Laboratories, Albuquerque,

N.M., 1993.

[46] J. Hennesy and D. Paterson. Computer Architecture: A Quantitative

Approach. Morgan-Kaufmann, 1990.

BIBLIOGRAPHY 156

[47] D. Hillis. The Connection Machine. MIT Press, 1985.

[48] W. Hsu. Segmented ray casting for data parallel volume rendering.

In 1993 Parallel Rendering Symposium Proceedings, pages 7{14. ACM

Press, October 1993.

[49] V. Jacobson. Congestion avoidance and control. Computer Communi-

cation Review, 18(4):314{29, 1988.

[50] J. T. Kajiya. The rendering equation. In David C. Evans and Russell J.

Athay, editors, Computer Graphics (SIGGRAPH '86 Proceedings), vol-

ume 20, pages 143{150, August 1986.

[51] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. In

Hank Christiansen, editor, Computer Graphics (SIGGRAPH '84 Pro-

ceedings), volume 18, pages 165{174, July 1984.

[52] R. Kalawsky. The Science of Virtual Reality and Virtual Environments.

Addison-Wesley, 1993.

[53] R. Karia. Load balancing of parallel volume rendering with scattered

decomposition. In Proceedings of the 1994 Scalable High Performance

Computing Conference, May 1994.

[54] A. E. Kaufman. Volume Visualization. IEEE Computer Society Press,

ISBN 908186-9020-8, Los Alamitos, CA, 1990.

[55] P. Lacroute and M. Levoy. Fast volume rendering using a shear{warp

factorization of the viewing transformation. In Andrew Glassner, editor,

BIBLIOGRAPHY 157

Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24{29, 1994),

Computer Graphics Proceedings, Annual Conference Series, pages 451{

458. ACM SIGGRAPH, ACM Press, July 1994.

[56] J. Lee. A drop heuristic conversion method for extracting irregular net-

work for digital elevation models. In GIS/LIS '89, volume 1, pages

30{39. American Congress on Surveying and Mapping, 1989.

[57] J. Lee. Comparison of existing methods for building triangular irregular

network models of terrain from grid digital elevation models. Intl. J. of

Geographical Information Systems, 5(3):267{285, 1991.

[58] M. Levoy. E�cient ray tracing of volume data. ACM Transations on

Graphics, 9(3):245{261, 1990.

[59] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph-

ics and Applications, 8(3):29{37, May 1988.

[60] M. Levoy. E�cient ray tracing of volume data. ACM Transactions on

Graphics, 9(3):245{261, July 1990.

[61] M. Levoy. Volume rendering by adaptive re�nement. The Visual Com-

puter, 6(1):2{7, February 1990.

[62] P.-W. Liu, L.-S. Chen, S.-C. Chen, J.-P. Chen, F.-Y. Lin, and S.-S.

Hwang. Distributed computing: New power for scienti�c visualization.

IEEE Computer Graphics and Applications, 16(3):42{51, 1996.

[63] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D

surface construction algorithm. In Maureen C. Stone, editor, Computer

BIBLIOGRAPHY 158

Graphics (SIGGRAPH '87 Proceedings), volume 21, pages 163{169, July

1987.

[64] K. Ma, J. Painter, C. Hansen, and M. Krogh. A data distributed parallel

algorithm for ray-traced volume rendering. In 1993 Parallel Rendering

Symposium Proceedings, pages 15{22. ACM Press, October 1993.

[65] K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering

using binary-swap compositing. IEEE Computer Graphics and Applica-

tions, 14(4):59{68, 1994.

[66] K. Ma. Parallel volume rendering for unstructured-grid data on dis-

tributed memory machines. In IEEE/ACM Parallel Rendering Sympo-

sium '95, pages 23{30, 1995.

[67] A. Maccabe, K. McCurley, R. Riesen, and S. Wheat. Sunmos for the

Intel Paragon - A Brief User's Guide. In Proceedings of the Intel Super-

computer Users' Group 1993 Annual North America Users' Conference,

October 1993.

[68] X. Mao, L. Hong, and A. Kaufman. Splatting of curvilinear grids. In

IEEE Visualization '95, pages 61{68, 1995.

[69] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction �lters

for volume rendering. In IEEE Visualization '94, pages 100{107, 1994.

[70] N. Max. Optical models for direct volume rendering. IEEE Transations

on Visualization and Computer Graphics, 1(2):99{108, June 1995.

BIBLIOGRAPHY 159

[71] N. Max, R. Craw�s, and B. Becker. New techniques in 3D scalar and vec-

tor �eld visualization. In First Paci�c Conference on Computer Graphics

and Applications. Korean Information Science Society, Korean Computer

Graphics Society, August 1993.

[72] N. Max, P. Hanrahan, and R. Craw�s. Area and volume coherence

for e�cient visualization of 3D scalar functions. In Computer Graphics

(San Diego Workshop on Volume Visualization), volume 24, pages 27{

33, November 1990.

[73] N. L. Max. E�cient light propagation for multiple anisotropic volume

scattering. In Fifth Eurographics Workshop on Rendering, pages 87{104,

Darmstadt, Germany, June 1994.

[74] M. McCormick, T. DeFanti, and M. Brown. Visualization in scienti�c

computing. Report of the NSF Advisory Panel on Graphics, Image

Processing and Workstations, 1987.

[75] J. V. Miller, D. E. Breen, W. E. Lorensen, R. M. O'Bara, and M. J.

Wozny. Geometrically deformed models: A method for extracting closed

geometric models from volume data. In Thomas W. Sederberg, editor,

Computer Graphics (SIGGRAPH '91 Proceedings), volume 25, pages

217{226, July 1991.

[76] J. S. B. Mitchell. Approximation algorithms for geometric separation

problems. Technical report, Dept, of Applied Math, University at Stony

Brook, Stony Brook, NY, July, 1993.

BIBLIOGRAPHY 160

[77] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shoot-

ing. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 359{368,

1994.

[78] J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths

among obstacles in the plane. Algorithmica, 8:431{459, 1992.

[79] J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral

surfaces. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages

296{306, 1992.

[80] C. Monks, P. Crossno, G. Davidson, C. Pavlakos, A. Kupfer, C. Silva,

and B. Wylie. Three dimensional visualization of proteins in cellular

interactions. In IEEE Visualization '96, pages 363{366, 1996.

[81] C. Montani, R. Perego, and R. Scopigno. Parallel volume visualization

on a hypercube architecture. In 1992 Workshop on Volume Visualization

Proceedings, pages 9{16. ACM Press, October 1992.

[82] H. Muller and M. Stark. Adaptive generation of surfaces in volume data.

The Visual Computer, 9(4):182{199, January 1993.

[83] H. Neeman. A decomposition algorithm for visualizing irregular grids.

volume 24, pages 49{56, November 1990.

[84] U. Neumann. Parallel volume-rendering algorithm performance on mesh-

connected multicomputers. In 1993 Parallel Rendering Symposium Pro-

ceedings, pages 97{104. ACM Press, October 1993.

BIBLIOGRAPHY 161

[85] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory

mimd architectures. In 1992 Workshop on Volume Visualization Pro-

ceedings, pages 17{24. ACM Press, October 1992.

[86] G. M. Nielson and B. Hamann. The asymptotic decider: Removing the

ambiguity in marching cubes. In Visualization '91, pages 83{91, 1991.

[87] J. O'Rourke. Computational Geometry in C. Cambridge University

Press, 1994.

[88] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1993.

[89] M. S. Paterson and F. F. Yao. E�cient binary space partitions for

hidden-surface removal and solid modeling. Discrete Comput. Geom.,

5:485{503, 1990.

[90] C. Pavlakos, L. Schoof, and J. Mareda. A visualization model for su-

percomputing environments. IEEE Parallel & Distributed Technology,

1(4):16{22, 1996.

[91] M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471{

494, 1993.

[92] H. P�ster and A. Kaufman. Cube-4 { a scalable architecture for real-

time volume rendering. In ACM/IEEE Volume Visualization '96, pages

47{54, 1996.

[93] T. Porter and T. Du�. Compositing digital images. In Hank Chris-

tiansen, editor, Computer Graphics (SIGGRAPH '84 Proceedings), vol-

ume 18, pages 253{259, July 1984.

BIBLIOGRAPHY 162

[94] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-

duction. Springer-Verlag, New York, NY, 1985.

[95] J. Rowlan, E. Lent, N. Gokhale, and S. Bradshaw. A distributed, paral-

lel, interactive volume rendering package. In Visualization '94 Proceed-

ings, pages 21{30. IEEE CS Press, October 1994.

[96] S. Ramamoorthy and J. Wilhelms. An analysis of approaches to ray-

tracing curvilinear grids. Tech Report UCSC-CRL-92-07, U. of Califor-

nia, Santa Cruz, 1992.

[97] P. Sabella. A rendering algorithm for visualizing 3D scalar �elds. In

John Dill, editor, Computer Graphics (SIGGRAPH '88 Proceedings),

volume 22, pages 51{58, August 1988.

[98] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-

Wesley, Reading, MA, 1990.

[99] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley,

Reading, Massachusetts, 1990.

[100] L. Scarlatos. Spatial data representations for rapid visualization and

analysis. Ph.D. thesis, Department of Computer Science, State Univer-

sity of New York at Stony Brook, Stony Brook, NY 11794-4400, 1993.

[101] L. Scarlatos and T. Pavlidis. Optimizing triangulation by curvature

equalization. In Proceedings of the 3rd 1992 IEEE Conference on Visu-

alization, Visualization '92, pages 333{339. IEEE, 1992.

BIBLIOGRAPHY 163

[102] L. Scarlatos and T. Pavlidis. Hierarchical triangulation using terrain fea-

tures. In Proceedings of the 1st 1990 IEEE Conference on Visualization,

Visualization '90, pages 168{175, IEEE Service Center, Piscataway, NJ,

USA (IEEE cat n 90CH2914-0), 1990. IEEE.

[103] L. Scarlatos and T. Pavlidis. Hierarchical triangulation using cartograph-

ics coherence. CVGIP: Graph. Models Image Process., 54(2):147{161,

March 1992.

[104] P. Schroeder and J. Salem. Fast rotation of volume data on data parallel

architectures. In Visualization '91 Proceedings, pages 50{57. IEEE CS

Press, 1991.

[105] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit.

Prentice-Hall, 1996.

[106] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle

meshes. In SIGGRAPH '92, volume 26, pages 65{70, July 1992.

[107] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their

Geometric Applications. Cambridge University Press, New York, 1995.

[108] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar

volume rendering. In Computer Graphics (San Diego Workshop on Vol-

ume Visualization), volume 24, pages 63{70, November 1990.

BIBLIOGRAPHY 164

[109] C. Silva, L. Hong, and A. Kaufman. Flow surface probes for vector �eld

visualization. In G. Nielson, H. Mueller, and H. Hagen, editors, Scien-

ti�c Visualization: Overviews, Methodologies and Techniques, IEEE CS

Press, 1997.

[110] C. Silva and A. Kaufman. Parallel performance measures for volume ray

casting. In IEEE Visualization '94, pages 196{203, 1994.

[111] C. Silva, J. Mitchell, and A. Kaufman. Automatic generation of trian-

gular irregular networks using greedy cuts. In IEEE Visualization '95,

pages 201{208, 1995.

[112] C. Silva, J. Mitchell, and A. Kaufman. Fast rendering of irregular grids.

In ACM/IEEE Volume Visualization '96, pages 15{22, 1996.

[113] C. Silva, A. Kaufman, and C. Pavlakos. PVR: High-performance Volume

Rendering. IEEE Computational Science and Engineering, To Appear,

1996.

[114] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms:

Performance and architectural implications. IEEE Computer, 27(7):45{

55, 1994.

[115] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra.

MPI: The Complete Reference. MIT Press, 1995.

[116] L. Sobierajski and R. Avila. A hardware acceleration method for volume

ray tracing. In IEEE Visualization '95. IEEE CS Press, 1995.

BIBLIOGRAPHY 165

[117] L. Sobierajski and A. Kaufman. Volumetric ray tracing. In Volume

Visualization Symposium '94, 1994.

[118] D. Speray and S. Kennon. Volume probes: Interactive data exploration

on arbitrary grids. In Computer Graphics (San Diego Workshop on

Volume Visualization), volume 24, pages 5{12, November 1990.

[119] C. Stein, B. Becker, and N. Max. Sorting and hardware assisted render-

ing for volume visualization. In ACM Volume Visualization Symposium

'94, pages 83{89, 1994.

[120] S. Suri. On some link distance problems in a simple polygon. IEEE

Trans. Robot. Autom., 6:108{113, 1990.

[121] C. Upson and M. Keeler. VBUFFER: Visible volume rendering. In

John Dill, editor, Computer Graphics (SIGGRAPH '88 Proceedings),

volume 22, pages 59{64, August 1988.

[122] S. Uselton. Volume rendering for computational uid dynamics: Initial

results. Tech Report RNR-91-026, Nasa Ames Research Center, 1991.

[123] A. Van Gelder and J. Wilhelms. Rapid exploration of curvilinear grids

using direct volume rendering. In IEEE Visualization '93, pages 70{77,

1993.

[124] A. Varshney. Hierarchical Geometric Approximations. Ph.D. thesis,

Department of Computer Science, University of North Carolina, Chapel

Hill, NC 27599-3175, 1994. TR-050-1994.

BIBLIOGRAPHY 166

[125] L. Westover. SPLATTING: A Parallel, Feed-Forward Volume Rendering

Algorithm. Ph.D. thesis, University of North Carolina at Chappel Hill,

1991.

[126] L. Westover. Footprint evaluation for volume rendering. In Forest

Baskett, editor, Computer Graphics (SIGGRAPH '90 Proceedings), vol-

ume 24, pages 367{376, August 1990.

[127] J. Wilhelms, J. Challinger, N. Alper, S. Ramamoorthy, and A. Vaziri.

Direct volume rendering of curvilinear volumes. In Computer Graphics

(San Diego Workshop on Volume Visualization), volume 24, pages 41{

47, November 1990.

[128] J. Wilhelms and A. Van Gelder. A coherent projection approach for

direct volume rendering. In Thomas W. Sederberg, editor, Computer

Graphics (SIGGRAPH '91 Proceedings), volume 25, pages 275{284, July

1991.

[129] P. Williams. Visibility ordering meshed polyhedra. ACM Transations

on Graphics, 11(2), 1992.

[130] P. L. Williams and N. Max. A volume density optical model. 1992

Workshop on Volume Visualization, pages 61{68, 1992.

[131] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE

Computer Graphics and Applications, pages 19{28, 1992.

BIBLIOGRAPHY 167

[132] R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef. Hardware

assisted volume rendering of unstructured grids by incremental slicing.

In Volume Visualization Symposium '96, pages 55{62, 1996.

[133] K. Zuiderveld. Visualization of Multimodality Medical Volume Data us-

ing Object-Oriented Methods. Ph.D. thesis, University of Utrecht, The

Netherlands, 1995.

[134] K. Zuiderveld, A. Koning, and M. Viergever. Acceleration of ray-casting

using 3D distance transforms. In Visualization in Biomedical Computing

'92, pages 324{335. SPIE, 1992.

