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Wagner T. Corrêea a,*, James T. Klosowski b, Cl�aaudio T. Silva c

a Princeton University, Princeton, NJ 08540, USA
b IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

c Oregon Health and Science University, Beaverton, OR 97006, USA

Received 22 April 2002; accepted 31 October 2002

Abstract

We present a sort-first parallel system for out-of-core rendering of large models on cluster-

based tiled displays. The system renders high-resolution images of large models at interactive

frame rates using off-the-shelf PCs with small memory. Given a model, we use an out-of-core

preprocessing algorithm to build an on-disk hierarchical representation for the model. At run

time, each PC renders the image for a display tile, using an out-of-core rendering approach

that employs multiple threads to overlap rendering, visibility computation, and disk opera-

tions. The system can operate in approximate mode for real-time rendering, or in conservative

mode for rendering with guaranteed accuracy. Running our system in approximate mode on a

cluster of 16 PCs each with 512 MB of main memory, we are able to render 12-megapixel im-

ages of a 13-million-triangle model with 99.3% of accuracy at 10.8 frames per second. Render-

ing such a large model at high resolutions and interactive frame rates would typically require

expensive high-end graphics hardware. Our results show that a cluster of inexpensive PCs is an

attractive alternative to those high-end systems.
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1. Introduction

No matter how fast graphics hardware technology advances, the demand for power

to render larger and more complex models always seems to outpace it. Visualization
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of large models has applications in many areas including medicine, engineering,

weather forecasting, and entertainment. Traditionally, visualizing large models

would require multi-million-dollar, high-end, special-purpose parallel machines.

Recently, due to the explosive growth in rendering capabilities of PC graphics

cards and the availability of high-speed networks, using a cluster of PCs has become
an attractive alternative to high-end systems. PC clusters have a better price/perfor-

mance ratio than high-end systems; they may be upgraded more frequently; they can

employ different kinds of machines; they may be used for tasks other than rendering;

and their aggregate power scales with the number of machines [19,28].

In this paper, we present a parallel rendering system that exploits the power of a

cluster of inexpensive PCs to render high-resolution images of large models at interac-

tive frame rates on a tiled display. We focus on truly large models that cannot fit into

the small main memory of a typical PC. The system we present here is a parallel exten-
sion of the iWalk system [7]. Although iWalk is able to handle models larger than main

memory, it only produces low-resolution (1024� 768) images at interactive frame

rates. The parallel system we describe here uses iWalk as a building block, and delivers

high-resolution (4096� 3072) images at interactive frame rates. Given a large model,

we use iWalk�s out-of-core preprocessing algorithm to build an on-disk hierarchi-

cal representation for the model. At run time, each machine in the cluster renders

the image for a display tile, using iWalk�s out-of-core rendering approach that em-

ploys multiple threads to overlap rendering, visibility computation, and disk opera-
tions.

In Section 2, we review related work. In Section 3, we provide an overview of the

iWalk system, describing its preprocessing and rendering algorithms. In Section 4,

we show how to use these algorithms in a parallel system to render high-resolution

images of a large model at interactive frame rates on a cluster-based tiled display. We

present our experimental results in Section 5. We conclude and discuss directions for

future work in Section 6.

2. Related work

Samanta et al. [29,30] developed a sort-first rendering system using a network of

commodity PCs. The focus of their work was on load balancing the work done on

each of the PCs, rather than on handling very large models. To achieve a well balan-

ced system, they developed dynamic screen partitioning schemes that predict the

rendering costs of groups of triangles and attempt to minimize the amount of over-
lap between triangles and screen partitions. A limitation of their system was that in

some cases the screen partitioning scheme could become the bottleneck. Another

limitation was the lack of scalability with respect to model size, as the model had

to be replicated in main memory on each of the nodes of their cluster.

In subsequent work, Samanta et al. [28] developed a hybrid sort-first/sort-last par-

allel rendering algorithm, which scaled better with processor count and screen reso-

lution. Their new approach performs dynamic, view-dependent partitioning of both

the 3D model and the 2D screen. The objectives that they are addressing are balanc-
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ing the rendering load on the nodes as well as minimizing the screen space overlaps

which require the subsequent pixel transfer and compositing step. Once again, the

geometry is replicated on each of the nodes, and the dynamic partitioning phase

could become a bottleneck and limit the frame rate.

In more recent work, Samanta et al. [27] address the replication problem, storing
(in main memory) copies of the model only in k of the available n nodes, where k < n.
Still, neither their preprocessing phase nor their rendering phase would be able to

handle a model larger than the total amount of main memory in their cluster. The

system we present in this paper can handle arbitrarily large models (limited only

by the size of the available secondary memory).

WireGL [5,14–16] is a system that allows the output resolution of an unmodified

graphics application to be scaled to the resolution of a tiled display, with little or no

loss in performance. WireGL replaces the OpenGL driver on the client machine, in-
tercepts the OpenGL calls, and sends the calls over a high-speed network to servers

which render the geometry. WireGL includes an efficient network protocol, a geom-

etry bucketing scheme, and an OpenGL state tracking algorithm, which makes the

interactive performance possible. WireGL is able to sustain rendering performance

of over 70,000,000 triangles per second on a 32-node cluster. It assumes, however,

that the entire model fits in the main memory of the client machine. Another limita-

tion is that the geometry bucketing algorithm assumes that the geometry primitives

that are close to each other in the GL stream are also close together spatially, which
may not be the case.

Mueller [25,26] has performed extensive experiments using a sort-first rendering

system. He emphasizes that sort-first has an advantage over sort-middle, because

it can exploit the frame-to-frame coherence inherent in interactive applications. He

also points out that sort-first has an advantage over sort-last, because it does not re-

quire high communication bandwidth for pixel traffic. Mueller designed a dynamic

scheme for partitioning the screen so that each processor has a balanced rendering

load. His algorithm is the basis for the work of Samanta et al. [29] Mueller focused
his work on retained-mode databases that fit in the memory of the graphics hard-

ware. In contrast, we focus our work on immediate-mode databases that are larger

than the main memory of the host hardware.

Wald et al. [34] have developed a ray tracing system for out-of-core rendering of

large models on a cluster of PCs. A key difference between our work and theirs is

that they use ray tracing, and we use the Z-buffer. Although ray tracing allows them

to use more sophisticated rendering algorithms, the Z-buffer allows us to exploit bet-

ter hardware support. Another difference is that our preprocessing algorithm is an
order of magnitude faster than theirs [7]. Finally, they create 640� 480-pixel images,

while our images have 4096� 3072 pixels.

Aliaga et al. [3] have developed the massive model rendering (MMR) system.

MMR replaces geometry that is far from the user�s point of view with textured depth

meshes (TDMs), which are image impostors that contain depth information, and are

displayed using projective texture mapping. MMR also employs occlusion culling

and detail elision. We believe MMR was the first system to handle models with tens

of millions of polygons at interactive frame rates. One disadvantage of MMR is the
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preprocessing step, which requires user intervention and takes weeks to run. In con-

trast, the preprocessing step of iWalk is fully automatic and takes only a few minutes

to run. Another difference between MMR and iWalk is that MMR is designed for

large SGI multi-processor machines with several gigabytes of main memory, while

iWalk is designed for off-the-shelf PCs with small memory.
Funkhouser et al. [12] developed a system that supported models larger than main

memory and performed speculative prefetching. Their system used the from-region

visibility algorithm of Teller et al. [32], which requires long preprocessing times

and assumes that the models are made of axis-aligned cells. Funkhouser et al.

[10,11] made improvements to their original system, but the preprocessing stage

remained limited to models made of axis-aligned cells. iWalk uses the from-point

visibility algorithm of Klosowski and Silva [17,18], which requires very little prepro-

cessing and makes no assumptions about the geometry of the model.
Other research projects involving parallel rendering using commodity components

that are of interest include the work of Lombeyda et al. [20] and Zhang et al. [36].

3. Overview of iWalk

The iWalk system [7] lets a user walk through a large model at interactive rates

using a PC with small memory. The main parts of iWalk are the out-of-core prepro-
cessing algorithm and the out-of-core multi-threaded rendering approach.

The out-of-core preprocessing algorithm creates an on-disk hierarchical represen-

tation of the input model. More specifically, it creates an octree [31] whose leaves

contain the geometry of the input model. The algorithm first breaks the model in sec-

tions that fit in main memory, and then incrementally builds the octree on disk, one

pass for each section, keeping in memory only the section being processed. To store

the octree on disk, the preprocessing algorithm saves the geometric contents of each

octree node in a separate file. The preprocessing algorithm also creates a hierarchy
structure (HS) file. The HS file has information about the spatial relationship of

the nodes in the hierarchy, and for each node it contains the node�s bounding box

and auxiliary data needed for visibility culling. The HS file is the main data structure

that our system uses to control the flow of data. We assume that the HS file fits in

memory, which is usually a trivial assumption. For example, the size of the HS file

for a 13-million-triangle model is only 1 MB.

At run time, iWalk uses an out-of-core multi-threaded rendering approach. A ren-

dering thread uses the PLP [17] algorithm to determine the set of octree nodes that
are visible from the user�s point of view. For each visible node, the rendering thread

sends a fetch request to the fetch threads, which will process the request, and bring

the contents of the node from disk into a memory cache. If the cache is full, the least

recently used node in the cache is evicted from memory. To minimize the chance of

I/O bursts, there is a look-ahead thread that runs concurrently with the rendering

thread. The look-ahead thread tries to predict where the user is going to be in the

next few frames, uses PLP to determine the nodes that the user would see then,

and sends prefetch requests to the prefetch threads. If there are no fetch requests
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pending, the prefetch threads will bring the requested nodes into memory (up to cer-

tain limit per frame based on the disk�s bandwidth). This speculative prefetching

scheme amortizes the bursts of I/O over frames that require little or no I/O, and pro-

duces faster and smoother frame rates.

The rendering thread and the look-ahead thread both use PLP [17] to determine
the nodes that are visible from a given point. PLP is an approximate, from-point visi-

bility algorithm that may be understood as a set of modifications to the traditional

hierarchical view frustum culling algorithm [6]. First, instead of traversing the model

hierarchy in a predefined order, PLP keeps the hierarchy leaf nodes in a priority queue

called the front, and traverses the nodes from highest to lowest priority. When PLP

visits a node, it adds the node to the visible set, removes the node from the front,

and adds the unvisited neighbors of the node to the front. Second, instead of travers-

ing the entire hierarchy, PLP works on a budget, stopping the traversal after a certain
number of primitives have been added to the visible set. Finally, PLP requires each

node to know not only its children, but also all of its neighbors. An implementation

of PLP may be simple or sophisticated, depending on the heuristic to assign priorities

to each node. Several heuristics precompute for each node a value between 0.0 and 1.0

called solidity, which estimates how likely it is for the node to occlude an object be-

hind it. At run time, the priority of a node is found by initializing it to 1.0, and attenua-

ting it based on the solidity of the nodes found along the traversal path to the node.

The key feature of PLP that iWalk exploits is that PLP can generate an approxi-
mate visible set based only on the information stored in the HS file created at pre-

processing time. In other words, PLP can estimate the visible set without access to

the actual scene geometry.

Although PLP is in practice quite accurate for most frames, it does not guarantee

image quality, and some frames may show objectionable artifacts. To avoid this po-

tential problem, the rendering thread may optionally use cPLP [18], a conservative

extension of PLP that guarantees 100% accurate images. On the other hand, cPLP

cannot determine the visible set from the HS file only, and needs to read the geo-
metry of all potentially visible nodes. The additional I/O operations make cPLP

much slower than PLP.

4. Parallelizing iWalk

When interacting with large models, it is natural to want to visualize these models

at high resolution. The iWalk system can only produce low-resolution images
(1024� 768 pixels) at interactive frame rates. We now show how to use iWalk as

a building block for a parallel system that produces high-resolution images

(4096� 3072 pixels) at the same or faster rates.

4.1. Choosing the hardware

A traditional approach to parallel rendering has been to use a high-end parallel

machine. More recently, with the explosive growth in power of inexpensive graphics
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cards for PCs, and the availability of high-speed networks, using a cluster of PCs for

parallel rendering has become an attractive alternative to high-end systems. A PC

cluster has many advantages over high-end systems [19,28]:

Lower cost: A cluster of commodity PCs, each costing a few thousand dollars,

typically has a better price/performance ratio than a high-end, highly-specialized su-
percomputer that may cost up to millions of dollars.

Technology tracking: High-volume off-the-shelf parts tend to improve at faster

rates than special-purpose hardware. We can upgrade a cluster of PCs much more

frequently than a high-end system, as new inexpensive PC graphics cards become

available every 6–12 months.

Modularity and flexibility: We can easily add or remove machines from the clus-

ter, and even mix machines of different kinds. We can also use the cluster for tasks

other than rendering.
Scalable capacity: The aggregate computing, storage, and bandwidth capacity of a

PC cluster grows linearly with the number of machines in the cluster.

Thus we have chosen to use a cluster of PCs to drive a multi-projector tiled dis-

play to create high-resolution images.

4.2. Choosing the parallelization strategy

Many approaches to parallel rendering have been proposed over the years. Mol-
nar et al. [22] classify parallelization strategies in three categories based on where in

the rendering pipeline sorting for visible-surface determination takes place. Sorting

may happen during geometry preprocessing, between geometry preprocessing and

rasterization, or during rasterization. The three categories of parallelization strate-

gies are sort-first, sort-middle, and sort-last.

Sort-first algorithms [15,25,29,30] distribute raw primitives (with unknown screen-

space coordinates) during geometry preprocessing. These approaches divide the 2D

screen into disjoint regions (or tiles), and assign each region to a different processor,
which is responsible for all of the rendering in its region. For each frame, a pretrans-

formation step determines the regions in which each primitive falls. Then a redistri-

bution step transfers the primitives to the appropriate renderers. Sort-first

approaches take advantage of frame-to-frame coherence well, since few primitives

tend to move between tiles from one frame to the next. Sort-first algorithms can also

use any rendering algorithm, since each processor has all the information it needs to

do a complete rendering. Furthermore, as rendering algorithms advance, sort-first

approaches can take full advantage of them. One disadvantage of sort-first is that
primitives may cluster into regions, causing load balancing problems between ren-

derers. Another disadvantage is that more than one renderer may process the same

primitive if it overlaps screen region boundaries.

Sort-middle algorithms [2,9,24] distribute screen-space primitives between the geo-

metry preprocessing and rasterization stages. Sort-middle approaches assign a sub-

set of primitives to each geometry processor, and a portion of the screen to each

rasterizer. A geometry processor transforms and lights its primitives, and then sends

them to the appropriate rasterizers. Until recently, this approach has been the most
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popular due to the availability of high-end graphics machines. Sort-middle ap-

proaches may suffer from load imbalance between rasterizers when primitives are

distributed unevenly over the screen. Sort-middle also requires high bandwidth for

the transfer of data between the geometry processing and rasterization stages.

Sort-last approaches [13,23,35] distribute pixels during rasterization. They assign
a subset of the primitives to each renderer. A renderer computes pixel values for its

subset, no matter where they fall in the screen, and then transfer these pixels (color

and depth values) to compositing processors. Sort-last approaches scale well with re-

spect to the number of primitives, since they render each primitive exactly once, but

they need a high bandwidth network to handle all the pixel transfers. Another dis-

advantage of sort-last approaches is that they only determine the final depth of a

pixel during the composition phase, and therefore make it difficult (if not impossible)

to use certain rendering algorithms, e.g., transparency and anti-aliasing.
Given our goal and constraints, we have chosen a sort-first approach for two

main reasons. First, sort-first processors implement the entire pipeline for a portion

of the screen [22], which is exactly the case for which PC graphics cards are opti-

mized. And second, walkthrough applications tend to exhibit high frame-to-frame

coherence, which sort-first approaches exploit well. We rejected sort-middle ap-

proaches because they require a tight integration between the geometry processing

and rasterization stages, which is only available on high-end graphics machines

[2,9,24]. On PC graphics cards, there is no fast access to the results of the geometry
processing [28]. We rejected sort-last approaches because they require extremely high

pixel bandwidth [22], which is not yet available on PC graphics cards.

4.3. Our parallel rendering system

To implement a sort-first approach, the main challenge is to handle the redistri-

bution step [27]. During the geometry processing, after a pretransformation step de-

termines into which screen tiles each primitive falls, the primitives must become
available in main memory at the renderers responsible for those tiles. To get around

the redistribution step, some systems simply replicate in main memory the entire

model on each renderer. This approach, of course, does not scale with respect to

model size. More sophisticated systems replicate the model only on a subset of the

renderers [27]. Our system keeps a hierarchical representation of the model on disk,

and each renderer loads the visible parts of the model into its memory cache on de-

mand. Since the disk where we keep the model may be a shared network disk or a

local disk, this approach imposes virtually no limit on the model size.
Fig. 1 shows a diagram of our system. A client machine is responsible for process-

ing user interface events. For each display tile there is a dedicated rendering server.

At each frame, the client sends the current viewing parameters to the rendering ser-

vers. Note that the client does essentially no work. The rendering servers run the se-

quential rendering algorithms (from iWalk) that we presented in Section 3, with a

few modifications that we will discuss below. Each renderer reads the parts of the

model it needs from a shared network disk in the file server, and sends the result-

ing image to one of the display projectors. Optionally, each renderer may read its
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primitives from a local copy of the model. Note that this copy is on disk, not in main

memory. Since disk space is cheap, having a local copy of the model on disk might

not hurt the scalability of the system.

Each rendering server is an MPI task and runs basically the same code that iWalk

runs, with a few differences. First, since each renderer is responsible for a tile of the
display wall, it performs occlusion culling using only the part of view frustum that

belongs to it. Second, each renderer receives input events from the client through

socket communication, instead of directly from the user. Finally, to synchronize

the renderers, we add an MPI barrier at the end of the rendering loop, right before

swapping front and back buffers.

We only use MPI to start and synchronize the servers. The client does not need to

have an MPI implementation available. The client machine only transmits the cur-

rent viewing parameters to the rendering servers, and may therefore be as lightweight
as a handheld computer. Some systems perform load balancing computations on the

client machine, in which case the client may become a bottleneck [30].

5. Experimental results

We ran many experiments to evaluate the performance and the scalability of our

system. Each experiment consisted of rendering the 13-million-triangle UNC power
plant model [33], shown in Fig. 2, for a prerecorded camera path of 500 frames.

For each test, we collected statistics for both approximate visibility mode (using

PLP) and conservative visibility mode (using cPLP). We ran tests on clusters of 1,

2, 4, 8, and 16 rendering servers. Each rendering server is a 900 MHz AMD Athlon

with 512 MB of main memory, an nVidia geForce2 graphics card, and an IDE hard

disk. For each cluster size, we first ran the tests storing the model at a shared

rendering
server

rendering
server

projector projector projector

rendering
server

client
file

server

user
input

image image

...

...

image

geometry

Fig. 1. The out-of-core sort-first architecture.
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network disk on a file server, and then storing copies of the model at local disks. The

file server has a 400 GB disk array composed of eight SCSI disks configured as two

200 GB striped disks. As we have discussed, the client machine does very little pro-

cessing, and therefore its hardware details are not important. In our tests, the client

machine was a 700 MHz Pentium III. The network connecting the machines is a
switched gigabit ethernet. All machines run Red Hat Linux 7.2. The servers use

MPI/Pro 1.6.3, running on top of TCP/IP, for synchronization.

5.1. PLP results

Here we report the results of the experiments we ran in approximate visibility

mode, i.e., using PLP to estimate the visible geometry. In typical use, we configure

the system according to the triangle throughput of the graphics cards, the bandwidth

of the disks, the desired frame rate, and the desired image accuracy. When using a
cluster of 16 rendering servers, we usually give each renderer a budget of 70,000 tri-

angles per frame and a geometry cache of 256 MB. This configuration allows us to

generate 12-megapixel images of the power plant with a median accuracy of 99.3% at

a median frame rate of 10.8 fps. For the scalability analysis that follows, we used in-

stead a total budget of 400K triangles per frame, so that the system would be usable

even when configured with only one rendering server.

When we run our system in approximate mode on a single machine, the frame

rates depend mostly on the number of triangles rendered and the number of disk ac-
cesses; the image resolution has a smaller influence. As we add more machines to the

cluster, the total resolution increases, but the resolution of each renderer remains

Fig. 2. The 13-million-triangle power plant model. Courtesy of UNC Chapel Hill [33].
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fixed. The total triangle budget per frame for PLP also remains fixed, thus the tri-

angle budget of each renderer decreases.

Ideally, if we doubled the number of machines in the cluster, we would get twice

the frame rate and the same image quality. In practice, several factors prevent us

from achieving that. First, there is duplication of effort. In sort-first, if a primitive
overlaps multiple tiles, it is fetched and rendered multiple times. Since the chances

of overlap increase as we add processors, the demands for I/O bandwidth and trian-

gle throughput also increase. There are additional communications costs as well. At

the end of each frame, there is an MPI barrier to synchronize all the servers. Finally,

the likelihood of load imbalance increases as the number of processors increases,

which may have a negative effect on both the frame rate and the image accuracy.

Fig. 3a shows the frame rates achieved by our system when using PLP, as we vary

the cluster size (1, 2, 4, 8, and 16 PCs) and the type of disk (network or local). 1 For
these small clusters, the median frame rates (the horizontal lines in the interior of the

boxes) improved substantially with the number of PCs. On the other hand, the

spread of the frame rates (the height of the boxes) increased. For all configurations,

there were very few stalls (the horizontal lines outside the whiskers). A surprising fact

is that the disk type has almost no influence on the frame rates. The bandwidth of

our network disk, measured using the Bonnie benchmark [4] from a rendering server,

is 7.8 MB/s. The similarity between the frame rates indicates that the total bandwidth

required by the rendering servers is usually less than the bandwidth of the network
disk. We believe the bandwidth requirement is so low because our caching and pre-

fetching schemes are exploiting well the frame-to-frame coherence in our test paths.

We measured the accuracy achieved by our system for the tests above by compar-

ing the pixels in the images produced by PLP and the pixels in the correct images.

For this particular camera path, which was inside the power plant, in an area with

high depth-complexity, PLP estimates the visible set very well. For a single machine,

PLP achieves a median accuracy of 99.6%. If the triangles were uniformly distributed

across the screen, for a constant total triangle budget B, a cluster with P > 1 render-
ing servers, each of which with a triangle budget of B=P to render its screen tile,

would achieve the same accuracy as a single machine. But typically the distribution

of the triangles is not uniform, and B=P triangles may be too few for some servers

and too many for others. For paths inside the model, this load imbalance is usually

small, and the accuracy drops slowly with the cluster size. For the test path, the me-

dian accuracy achieved by the cluster with 16 servers was 93%, which is high and typi-

cal for paths inside the model. For paths outside the model, the accuracy may be

1 How to read the box plots. The horizontal line in the interior of the box is located at the median of the

data, and estimates the center of the data. The height of the box is equal to the interquartile distance, or

IQD, which is the difference between the third quartile of the data and the first quartile, and indicates the

spread of the data. The whiskers (the dotted lines extending from the top and bottom of the box) extend to

the extreme values of the data or a distance of 1:5� IQD from the center, whichever is less. For data

having a Gaussian distribution, approximately 99.3% of the data falls inside the whiskers. Data points that

fall outside the whiskers may be outliers, and are indicated by horizontal lines [21].
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much lower, because we have not yet added level-of-detail management to our

system.

5.2. cPLP results

Here we report the results of the experiments we ran in conservative visibi-

lity mode, i.e., using cPLP to estimate the visible geometry. Conservative visibility

introduces another obstacle for ideal scalability. Remember that there is a one-to-one
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Fig. 3. Frame rates for PLP and cPLP as we vary the cluster size and the disk type. We ran tests on clus-

ters of 1–16 PCs, for network and local disks. For PLP (a), the median frame rates improve substantially

with the number of PCs. For cPLP (b), the median frame rates stay roughly the same. In both cases, the

disk type makes almost no difference.
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correspondence between servers and projectors. Thus, when you increase the number

of servers, although each server becomes responsible for a smaller part of the view

frustum, that part will be rendered at higher resolution. As a result, the amount

of geometry visible through that part of the view frustum that we need to fetch

and render may not decrease. In theory, it could even increase. Since the size of
the problem may grow with the cluster size, we cannot expect linear scalability. Add-

ing level-of-detail management to our system would address this problem.

Fig. 3b shows the frame rates achieved by our system when using cPLP, as we

vary the cluster size and the type of disk. Recall that PLP can estimate a visible

set based only on the hierarchy structure file created at preprocessing time, but cPLP

needs to read the actual scene geometry. Thus cPLP needs to perform many more

disk accesses than PLP, and the frame rates for cPLP are much lower than those

for PLP. In terms of scalability, even though the maximum frame rates increase sub-
stantially with cluster size, the median frame rates remain roughly the same. In terms

of disk type, the network disk was able to match once again the performance of the

local disks, which indicates that making local copies of the model on each server may

be unnecessary.

6. Conclusion

We have presented a scalable system that renders high-resolution images of large

models using a cluster of PCs to drive a tiled display. By employing out-of-core

algorithms for preprocessing and rendering, the system is able to handle models

much larger than the main memory of a typical commodity PC. These algorithms

are easy to implement, run fast, and make no assumption about the input models.

The system exploits frame-to-frame coherence well, and is able to render these

large models at interactive frame rates. We are therefore able to use inexpensive

off-the-shelf components to visualize models that would traditionally require expen-
sive high-end graphics hardware.

There are several avenues for future work. First, we intend to add level-of-detail

management [1,6,8,11] to the system. Second, we also intend to add load balancing

schemes [25,28–30]. Third, we want to investigate better PLP heuristics to estimate

and propagate solidity. Finally, all the algorithms we use are based on the assump-

tion that the model is static. Extending these algorithms to handle dynamic scenes is

still an unexplored area of research.
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