
The Provenance of Workflow Upgrades

David Koop1, Carlos E. Scheidegger2, Juliana Freire1, and Cláudio T. Silva1

1 University of Utah
2 AT&T Research

Abstract

Provenance has become an increasingly important part of documenting, verifying, and

reproducing scientific research, but as users seek to extend or share results, it may be

impractical to start from the exact original steps due to system configuration differ-

ences, library updates, or new algorithms. Although there have been several approaches

for capturing workflow provenance, the problem of managing upgrades of the underly-

ing tools and libraries orchestrated by workflows has been largely overlooked. In this

paper we consider the problem of maintaining and re-using the provenance of work-

flow upgrades. We propose different kinds of upgrades that can be applied, including

automatic mechanisms, developer-specified, and user-defined. We show how to cap-

ture provenance from such upgrades and suggest how this provenance might be used

to influence future upgrades. We also describe our implementation of these upgrade

techniques.

1 Introduction

As tools that capture and utilize provenance are accepted by the scientific com-
munity, they must provide capabilities for supporting reproducibility as systems
evolve. Like any information stored or archived, it is important that provenance
is usable both for reproducing prior work and migrating that work to new envi-
ronments. Just as word processing applications allow users to load old versions of
documents and convert them to newer versions and data processing libraries pro-
vide migration paths for older formats, provenance-enabled tools should provide
paths to upgrade information to match newer software or systems. Furthermore,
it is important to capture and understand the changes that were made in order
to run a previous computation in a new environment. One goal in documenting
provenance is that users can more easily verify and extend existing work. If a
given computation cannot be translated to newer systems or software versions,
extensions become more difficult.

Workflow systems have made significant strides in allowing users to quickly
compose a variety of tools while automatically capturing provenance information
during workflow creation and execution [11, 8]. Such systems enforce a structure
on computations so that each workflow step is easily identifiable. Unfortunately,
while these systems provide interfaces to a variety of routines and libraries, they
are limited in their ability to upgrade workflows when the underlying routines
or their interfaces are updated. It is well-known that software tends to age [19].



CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

a

b

c

Fig. 1. A workflow comparing road maintenance and number of miles of road by state
before and after upgrading two packages. In (a), the AggregateData module has been
replaced, and the developer has specified an upgrade to combine multiple aggregation
steps into a single ComposeData module. In (b), the interface of ExtractColumn has
been updated to offer a new parameter. Finally, in (c), the interface of the plotting
mechanism has not changed, but the implementation of that module has, as evidenced
by the difference in the background of the resulting plots.

As requirements change, so do implementations and interfaces. This is more
starkly obvious in the case of workflows, where different software tools from a
variety of different sources need to be orchestrated. Figure 1 shows an example
of different modifications that can be applied to workflow modules, including the
addition of new parameters, the merger of two modules, and the replacement of
the underlying computation. Still, many workflow systems do store information
about the versions of routines as provenance. We seek to use this information to
design schemes that allow users to migrate their work as newer algorithms and
systems are developed.

There are two major approaches when dealing with upgraded software com-
ponents and the documents or applications that utilize them. It is often impor-
tant to maintain old versions of libraries and routines for existing applications
that rely on them. In this case, an upgrade to a library should not replace the ex-
isting version but rather augment existing versions. Such an approach is common
in system libraries and Web services where deleting previous versions can render
existing code unexecutable. However, when we can safely upgrade the document
or application to match the new interfaces, we might modify the object to utilize
the new version. This second approach is more often used for documents than



CSVReader CSVReader

JoinData

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

AggregateData

AggregateData

StringToNumeric

StringToNumeric

A

B

Upgrade Provenance (A → B)
delete connection StringToNumeric → AggregateData
delete connection AggregateData → AggregateData
delete module AggregateData version 1.0.4
delete connection AggregateData → JoinData
delete module AggregateData version 1.0.4
add module ComposeData version 1.1.0
add connection StringToNumeric → ComposeData
add connection ComposeData → JoinData

Execution Provenance (A)
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
→ execute module AggregateData version 1.0.4
→ execute module AggregateData version 1.0.4
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
execute module JoinData version 1.0.0
...

Execution Provenance (B)
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
→ execute module ComposeData version 1.1.0
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
execute module JoinData version 1.0.0
...

Fig. 2. On the right, we show the provenance of upgrading workflow (A) to the updated
workflow (B). Besides the provenance of the upgrade, here we show the provenance of
the executions of both (A) and (B). Note that version information is maintained in
both forms of provenance.

for existing applications or code, because there exists an application that can
upgrade old versions. While the first approach is important to to ensure that the
original work can be replicated, because workflows are only loosely coupled to
their implementations and live in the context of a workflow system, this second
approach is sensible for them. Furthermore, as Figure 2 illustrates, by capturing
the provenance of the upgrades, we know exactly what has been changed from
the original version and how it might be reverted.

In order to accomplish the goal of upgrading an existing workflow, we must
solve the challenges of detecting when upgrades are necessary and applicable, as
well as dealing with routines (modules) from disparate sources. Because work-
flow systems often store information about the modules included in workflows,
it is possible to detect when the current implementation of a module differs from
one that was previously used. However, since they come from different sources,
each source may define or release upgrades differently. Thus, we cannot hope to
upgrade workflows atomically, without considering specific concerns from each
source. Finally, while some upgrades may be automated or specified by a devel-
oper, others may require user intervention. When the user needs to be in the
loop, it is important to make the process less tedious and error-prone.

Contributions. We propose a routine for detecting when a workflow is incom-
patible with current installed software and approaches for both automated and
user-defined upgrades. Our automated algorithm combines default routines for



cases when only implementations changes with developer-defined routines, and
uses a piecewise algorithm to process all components from each package at once.
This allows complex upgrades, like replacing a subworkflow containing three
modules with a single module. For user-defined upgrades, we suggest how a user
might define a single upgrade once and apply it automatically to a collection of
workflows. Finally, we discuss how upgrades should be considered as an integral
part of the information currently managed by provenance-enabled systems. It is
critical that we can determine what steps may have led to an upgraded workflow
producing different results from the original. We describe our implementation of
this upgrade framework in the VisTrails system [26].

2 Workflow Upgrades

2.1 Background

A workflow describes a set of computations as well as an order for these com-
putations. To simplify the presentation, we focus on dataflows; but note that
our approach is applicable to more general workflow models. In a dataflow, com-
putational flow is dictated by the data requirements of each computation. A
dataflow is represented as a directed acyclic graph where nodes are the compu-
tational modules and edges denote the data dependencies as connections between
the modules—an edge connects the output port of a module to an input port of
another. Often, a module has a set of associated parameters that can control the
specifics of one computation. Some workflows also utilize subworkflows where a
single module is itself implemented by an underlying workflow.

Because workflows abstract computation, there must be an association be-
tween the module instances in a workflow and the underlying execution en-
vironment. This link is managed by the module registry which maps module
identifiers to their implementations. For convenience and maintenance, related
modules are often grouped together in packages. Thus, the module identifier may
consist of package identifier, a module name, an optional namespace, and infor-
mation about the version of the implementation. Version information can serve
to inform us when implementations or interfaces in the environment change.

Consider, for example, the VisTrails system [26]. In VisTrails, each module
corresponds to a Python class that derives from a pre-defined base class. Users
define custom behaviors by implementing a small set of methods. These, in turn,
might run some code in a third-party library or invoke a remote procedure call
via a Web service. The Python class also explicitly describes the interface of the
module: the set of allowed input and output connections, given by the module’s
ports. A VisTrails package consists of a set of Python classes.

Incompatible Workflows. After a workflow is created, changes to the underlying
implementation of one or more of its modules may make the workflow incompat-
ible. Figure 3 shows an incompatible and a valid version of a workflow. Because
module registry information is usually not serialized with each workflow, it can
be difficult for users to define upgrades for obsolete workflows. As shown in the



CSVReader
!

CSVReader
!

JoinData
!

ExtractColumn
!

ExtractColumn
!

AggregateData
!

AggregateData
!

StringToNumeric
!

StringToNumeric
!

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Fig. 3. Incompatible (left) and valid (right) versions of a workflow. In an incompat-
ible workflow, the implementation of modules is missing, and thus, no information is
available about the input and output ports of these modules.

figure, although we may lack the appropriate code to execute a module or dis-
play the complete set of input and output interfaces for a module, we can display
each module with the subset of ports identified by connections in the workflow.
This is useful to allow users to edit incompatible workflows in order to make
them compatible with their current environment.

Provenance of Module Implementation. Workflow systems offer mechanisms for
capturing provenance information both about the evolution of the workflow it-
self and each execution of a workflow [11, 12, 21]. Information about the imple-
mentations used for each workflow module may be stored together with either
evolution or execution provenance (i.e., the execution log). However, note that if
the interface for a module changes, it will often require a change in the workflow
specification. Thus, while the execution provenance may contain information
about the versions used to achieve a result, any change in the interface of a
module may make reproducibility via execution provenance alone difficult. By
storing information about the implementations (like versions of each module)
as evolution provenance, we can connect the original workflow to all upgraded
versions.

Workflow evolution can be captured via change-based provenance [12], where
every modification applied to a workflow is recorded. The set of changes is rep-
resented as a tree where nodes correspond to workflow versions and an edge
between two nodes corresponds to the difference between the two corresponding
workflow specifications.

Any workflow instance can be reconstructed by applying the entire sequence
of change operations from the root node to the current version. For upgrades,
we can leverage this approach to record the set of changes necessary to update
an old workflow to a new version. Note that these changes define the difference



between the two versions, so our provenance will maintain an explicit definition
of the upgrade for reference and comparison.

2.2 Detecting the Need for Upgrades

To support upgrades, workflow systems must provide developers with facilities
to develop and maintain different versions of modules (and packages) as well as
detect and process inconsistencies when workflows created with older versions
of modules are materialized. First, it is important to have a mechanism for
identifying a group of modules (e.g., using a group key), as well as a version
indicator or some other method like content-hashing that can be used to identify
when module implementations may have changed. Ideally, any version identifier
of a module should reflect the version of the code or underlying libraries. In fact,
we may be able to aid developers by signaling when their code has changed,
alerting them to the need to change the version. Alternately, developers might
link version identifiers to revisions of their code as defined in a version control
system.

Second, we need to tackle the problem of identifying when and where up-
grades might be necessary. Upon opening a workflow, the system needs to check
that the modules specified are consistent with the implementation defined by
the module registry. As discussed earlier, this usually involves checking version
identifiers but could also be based on actual code. If there are inconsistencies, we
need to identify the type of discrepancy; the workflow may specify an obsolete
version of a module, a newer version, or perhaps the module may not exist in
the current registry. In all of these cases, we need to reconcile the workflow to
the current environment.

2.3 Processing Upgrades

We wish to allow developers to specify upgrade paths but also provide automated
routines when upgrades are trivial and allow users to override the specified paths.
The package developer can specify how a specific module is to be upgraded in
all contexts. If that is not possible or the information is not available for a given
module, we can attempt to automatically upgrade a module by replacing the old
version with a new version of the same module. A third method for upgrading a
workflow is to display the obsolete modules and let the user replace them directly.
Our upgrade framework leverages all three approaches. It starts with developer-
specified changes, provides default, automated upgrades if the developer has not
provided them, and allows the user to choose to accept the upgrade, modify it,
or design their own.

Developer-Defined Upgrades. Because the modules of any workflow may originate
from a number of different packages, we cannot assume that a global procedure
can upgrade the entire workflow. Instead, we allow developers to specify upgrade
routines for each package. Specifically, we allow them to write a method which
accepts the workflow and the list of incompatible modules. A module may be



JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

1.2 1.2 1.3 1.3

Fig. 4. Upgrading a single module automatically involves deleting all connections, re-
placing the module with the new version, and finally adding the connections back.

incompatible because it no longer exists in the package or its version is different
from the implementation currently in the registry. A developer needs to imple-
ment solutions to handle both of these situations, but the system can provide
utility routines to minimize the effort necessary for some types of changes. In
addition, there may be cases where the developer wants to replace entire sub-
workflows with different ones. Changes in the specification of parameter values
may also require upgrade logic. For example, an old version of module may have
taken the color specification as four integers in the [0,255] range, but the new
version requires floats in the [0.0, 1.0] range. Such conversions can be developer-
specified so that the a user need not modify their workflows in order for them
to work with new package versions. Note that developer-specified upgrades may
need to be aware of the initial version of a module. For example, if version 0.1 of
a module has a certain parameter, version 0.2 removes it, and version 1.0 adds it
back, the upgrade from 0.1 to 1.0 will be necessarily different than the upgrade
from 0.2 to 1.0.

Automatic Upgrades. We can attempt to automate upgrades by replacing the
original module with a new version of the same module. For any module that
needs an upgrade, we check the registry for a module that shares the same
identifying information (excluding version) and use that module instead. Note
that it is necessary to recreate all incoming and outgoing connections because
the old module is deleted and a new module is added. If an upgraded module
renames or removes a port, it is not possible to complete the upgrade. We can
either continue with other upgrades and notify the user, or rollback all changes
and alert the user. Also note that if two connected modules both require upgrades
we will end up deleting and adding at least one of the connections twice, once for
the first module replacement and again for the second module upgrade. Finally,
we need to transfer parameters to the new version in a similar procedure as that
used with connections. See Figure 4 for an example of an automatic upgrade.

User-Assisted Upgrades. While we hope that automatic and developer-specified
upgrades will account for most of the cases, they may fail for complicated situa-
tions. In addition, a developer may not specify all upgrade paths or a user may



desire greater control over the changes. In such a scenario, we need to display the
old, incompatible pipeline, highlight modules that are out-of-date, and allow the
user to perform standard pipeline manipulations. One problem is that, because
we may not have access to the version of the package that was used to create
the workflow, we may not be able to display the module correctly for the user
to interact with. With VisTrails, we can display the basic graph connectivity as
shown in Figure 3, but we may not have entire module specification. Our display
is therefore a “recovery mode” where the workflow is shown but cannot be exe-
cuted or interacted with in the same way as a valid version. Once users replace
all old modules with current versions, they will able to execute the workflow
and interact with it. We can aid users by providing high-level actions that allow
them to, for example, replace an incompatible module with a new, valid one.

In addition, while users may be willing to perform one or two upgrades man-
ually, it would be helpful if we are able to aid users by automating future up-
grades based on those they have already defined. Workflow analogies provide this
functionality by allowing users to select existing actions including upgrades and
apply them to other workflows [20]. Because analogies compute a soft matching
between starting workflows, they can be applied to a variety of different work-
flows. Thus, for a large collection of workflows, a user may define a few upgrades
and compute the rest automatically using these analogies.

2.4 Provenance Concerns

Given a data product, we cannot hope to reproduce or extend the data prod-
uct without knowing its provenance—how it was generated. If our provenance
information includes information about the versions of the modules used, we
can use that to drive upgrades. Note that without version information, we may
incorrectly determine which upgrades are necessary. Thus, the provenance of the
original workflow is important to define the upgrade.

At the same time, we wish to capture the provenance of the upgrades. When
users either run old versions of workflows or upgrade and modify these versions,
it is important to track the changes both in the execution provenance and in
the workflow evolution provenance. By noting the specific module versions used
in the execution provenance, we can better support reproducibility. We need to
ensure that the versions recorded are exactly the versions executed, not allowing
silent upgrades to happen without being noted in the provenance. Similarly,
whenever a user upgrades a workflow, the changes that took place should be
noted as evolution provenance so that subsequent changes are captured correctly.
See Figure 2 for an example of captured provenance information that is relevant
for upgrades.

As a workflow evolves over a number of years and is modified by a number
of users, it is important to track the provenance of this evolution. Upgrades may
be critical changes in workflow development and often occur when a new user
starts to revise an existing result. By keeping track of these actions, we may
be able to identify how, for example, inconsistencies in results may have arisen
because of an upgrade. In addition, we do not lose links as workflows are refined.



Without upgrades, a user may create a (duplicate) workflow rather than re-use
an existing one. If that occurs, we lose important provenance of the original
workflow and related workflows.

3 Implementation

We have implemented the framework described in Section 2 in the VisTrails
system. Below, we describe this implementation.

In VisTrails, when a workflow is loaded (or materialized), it is validated
against the current environment: the classes defining the modules and the port
types for each module. To detect whether modules have changed, we begin by
checking each module and ensuring the requested version matches the registry
version. Next, we check each connection to ensure that the ports they connect
are also valid. Finally, we check the parameter types to ensure they match those
specified by the implementation. If any mismatches are detected, we raise an
exception that indicates what the problem is and which part of the workflow
it affects. Note that if one problem occurs, we can immediately quit validation
and inform the user, but if we wish to fix the problems, it is useful to identify
all issues. Thus, we collect all exceptions during validation, and pass them to a
handler.

We attempt to process all upgrades at once, with the exception of subwork-
flows which are processed recursively. To this end, we sort all requests by the
packages that they affect, and attempt to solve all issues one package at a time.
This way, a package developer can write a handler to process a group of upgrade
requests instead of processing each request individually.

Replace, Remap, and Copy. Note that an upgrade that deletes an old module
and adds a new version discards information about existing connections, pa-
rameters, and annotations. In order to maintain this information as well as its
provenance, we extended VisTrails change-based provenance with a new change
type (or action) that replaces the original module, remaps the old information,
and copies it to a new version of the module. This ensure that we transfer all
relevant information to the new version and maintain its provenance. The new
action extracts information about connections, parameters and annotations from
the old module before replacing it, and then adds that information to the new
module. Note that, because interfaces may change, we allow the user to remap
parameter, port, or annotation names to match the new module’s interface.

Algorithm. Formally, our algorithm for workflow upgrades takes a list of de-
tected inconsistencies between a workflow and the module registry and produces
a set of actions to revise the workflow. We categorize inconsistencies as “miss-
ing”, “obsolete”, or “future” modules, and this information is encoded in the
exception allowing developers to tailor upgrade paths accordingly. We begin by
sorting these errors by package identifier. Then for each package, we check if the
package has a handler for all types of upgrades. If it does, we call that handler.



If not, we cannot hope to reconcile “missing” modules. For obsolete modules,
we can attempt to automatically reconcile them by replacing them with newer
versions. For future modules, we can attempt to downgrade them automatically,
but usually we raise this error to the user.

Automatic upgrades work module by module, and for each module, we first
check to see if an upgrade is possible before proceeding. An upgrade is possible if
the module interface has not changed from the version specified by the workflow
and the version that exists on the system. We check that by seeing if each
connection and parameter setting can be trivially remapped. If they can, we
extract all of the connections and parameters before deleting all connections to
the module and the module itself. Then, we add the new version of the module
and replace the connections and parameters. All of these operations are encoded
as a single action.

For developer-defined upgrades, we pass all of the information about incon-
sistencies as well as the current state of the workflow to the package’s upgrade
handler. The handler can make use of several capabilities of the workflow system
to minimize the amount of code. Specifically, we have a remap function that al-
lows a developer to specify how to replace a module when interface changes are
due to renaming. In addition, developers can replace entire pieces of a workflow,
but doing so might require locating subworkflows that match a given template.
Many workflow systems already have query capabilities, and these can be ap-
plied to facilitate these more complex upgrades. As with automatic upgrades,
these operations are encoded as a single action.

If automated and developer-defined upgrades cannot achieve a compatible
workflow, a user can define an upgrade path. Most of this process is manual
and mirrors how a user might normally update a workflow. Until the workflow
is compatible with the current environment, the workflow cannot be executed,
giving users a well-defined goal. Upon achieving a valid workflow, we can save the
user’s actions and use workflow analogies [20] to help automate future upgrades.

Subworkflows. To handle subworkflows, both validation and upgrade handling
are performed recursively. Thus, we process any workflow by first recursing on
any subworkflow modules, processing the underlying workflows, and then con-
tinuing with the rest of the workflow. However, our upgrades must be handled
using an extra step; if we update a subworkflow, we must also update the mod-
ule tied to that subworkflow to reflect any changes. For example, a subworkflow
may modify its external interface by deleting inputs or outputs. Thus, we must
upgrade a module after updating its underlying subworkflow.

Preferences. While upgrades are important, we wish to add them without in-
terfering with a user’s normal work. Besides the choice between upgrading or
trying to load the exact workflow with older package versions, a user may also
wish to be notified of upgrades and persist their provenance in different ways.
Specifically, if old versions exist, a user may wish to always try use them, au-
tomatically upgrade, or be prompted for a decision. If not, a user has a similar
selection of options: never upgrade, always upgrade, or be presented with the



choice to upgrade. When a user wants to upgrade, he may choose to persist the
provenance of these upgrades immediately or delay saving these changes until
other changes occur. If a user is browsing workflows, it may may reasonable to
only persist upgrade provenance when the workflow is modified or run. This
way, a user can examine a workflow as it would appear after an upgrade, but the
persistence of these upgrades is delayed until something is changed or the work-
flow is executed. Users might also want to have immediate upgrades where the
upgrade provenance is persisted exactly when any workflow is upgraded, even if
the user is only viewing the workflow.

4 Discussion

While perfect reproducibility cannot be guaranteed without maintaining the ex-
act system configuration and libraries, we believe that workflow upgrades offer a
sensible approach to manage the migration from older workflows to new environ-
ments. Note that provenance allows us to always revisit the original workflow,
and we can run this version if we can reconstruct the same environment. By
storing the original implementations along with workflows, we may be able to
reproduce the original run, although changes in the system configuration may
limit such runs. Thus, coupling provenance with version control systems could
ensure that we users can access previous package implementations. However,
when extending prior work in new environments, upgrades also serve to convert
older work to more efficient and extensive environments. In addition, manag-
ing multiple software versions is a non-trivial task, and even with a modern
OS package management system, installing a given package in the presence of
conflicts is actually known to be NP-Complete [9]. Thus, we cannot expect in
general to easily run arbitrarily old library versions. Because workflows abstract
the implementation from the computational structure, the results of upgrades
are more likely be valid.

Some workflow systems use Web services or other computational modules
that are managed externally. In these cases, we may not know if the interface
or implementation may have changed so it is harder to know when upgrades are
necessary. However, the services may make version information available or the
workflow system may be able to detect a change in the interface [5]. In this case,
we are not able to leverage developer-specified upgrade routines, but we should
be able to accomplish automatic or user-specified upgrades.

When using change-based provenance to track upgrades, a user can see both
the original evolution as well as the upgrades and progress after the upgrades.
See Figure 5 for an example. It may be useful to upgrade an entire collection
of related workflows while retaining the original provenance of exploration, but
adding the upgraded versions may lead to a complex interface. We believe that
restructuring the tree to display the original history but with links to the up-
grades might be useful. Finally, we emphasize that the change-based model for
the workflows provenance in VisTrails is an attractive medium in which to incor-
porate the upgrading data. Since the upgrades as represented as actions, they are



aliases

volume renderingbone

bone_camera

Upgrade

bone_camera

volume renderingbone

aliases Upgrade

Upgrade Upgrade

bone_camera

bone

aliases

[old bone_camea]

[old bone] volume rendering

Original Upgraded Retagged

Fig. 5. Workflow Evolution before and after upgrades as well as after retagging the
nodes.

treated as first-class data in the system, and so the extensive process provenance
capabilities of VisTrails can be directly used. For example, upgrade actions can
then be used in queries or incorporated into statistical analyses [14, 20, 21].

5 Related Work

Workflow systems have recently emerged as an attractive alternative for repre-
senting and managing complex computational tasks. The goal behind these sys-
tems is to provide the utility of the shell script in a more user-friendly, structured
manner. Workflow systems incorporate comprehensive metadata which, among
other advantages, facilitates programming and distribution of results [15], repro-
ducibility [12], allows better execution monitoring [18], and provides potential
efficiency gains [3].

As the auditability and cost of generating results has increased, managing the
provenance of data products [22] and computational processes [12] has become
very important. Together, these ideas allow users to obtain a fairly comprehen-
sive picture of the programs and data that were used to generate final results.
However, these descriptions are, in a sense, static. In general, the processes are
assumed to stay the same for the lifetime of the workflow, and, as we have
argued before, longevity necessarily introduces changing requirements and inter-
faces. Our approach serves to detect and manage these changes to underlying
implementations while still keeping the attractive features of workflow systems
described above.

It is well known that longevity introduces novel challenges for maintainabil-
ity of software systems, in particular in the presence of complicated dependen-
cies [19]. There have been a number of approaches to problem of managing
software upgrades, in particular, in understanding and ensuring safety proper-
ties of dynamic updates in, for example, running code or persistent stores [4,
10]. In small-scale environments, the solutions tend to involve the description
(or prediction) of desired properties to be maintained [16]. For deployments at



the scale of entire institutions or large computer clusters, they tend to involve
careful scheduling, and staged deployment of upgrades [1, 6].

Component-based software has evolved to separate different concerns in or-
der to provide wide-ranging functionality. While usually at a lower level than
workflow systems, component objects use well-defined interfaces and are substi-
tutable [24]. For this reason, it is also important to track the component evo-
lution and versioning [23]. The term “dependency hell” was coined to describe
problems with compatibility when replacing components with new versions. Mc-
Camant and Ernst describe methods to identify such incompatibilities [17] while
Stuckenholz proposes “intelligent component swapping” to update multiple com-
ponents at once [23].

Web services are another kind of component-based architecture. Since the
standards do not address the evolution of Web services, developers must rely on
design patterns and best practices [5]. Specifically, adding to an interface is pos-
sible, but changing or removing from that interface is not. Andrikopoulos et al.
formalize the concepts of service evolution [2]. There are a variety of approaches
that seek to develop mechanisms to version Web services including using a chain
of adapters [13] and hierarchical abstraction [25]. In order to publish such ver-
sions, services are distinguished via namespaces or URLs. In contrast to much
of the work for component upgrades, our approach seeks to add capability by
updating older workflows rather than only maintaining backward compatibility.

In this paper, we focus on the problem of providing a means of describing
upgrade paths so that a workflow can be automatically updated, its upgrade
history appropriately recorded, and its execution sufficiently similar to the one
before the upgrade. Such problems exist even when lower-level upgrades are
successfully deployed. In that sense, our mechanisms for coping with upgrades
are closer in spirit to mechanisms for automatically updating database queries
after relational schemas have changed [7].

6 Conclusion & Future Work

We have proposed a framework for workflow upgrades and described its im-
plementation in the VisTrails system. Our framework handles three types of
upgrades—automated, developer-specified, and user-defined, and we have dis-
cussed how these can be supported in a systematic fashion. We have also shown
how the framework leverages provenance information to accomplish upgrades
and produces updated provenance detailing the changes introduced by the up-
grades. Our implementation is currently available in nightly releases of VisTrails,
and we are planning to incorporate it into the next major release of VisTrails.

One area that we would like to explore further is the interface for involving
the user in upgrades. The “replace module” action allows users to specify how an
upgrade is accomplished, and we believe a user might drag a new module onto
the incompatible module to replace it. At the same time, if the routine specifi-
cations do not exactly match, the user should be able to specify the remapping,



similar to the method available to developers in their code. We might extend
this functionality to allow the user to specify the connections visually.

In addition to capturing the provenance of upgrades and using this informa-
tion to guide future user-driven, manual upgrades, we believe we might also use
this provenance for further analysis. For example, we might be able to exam-
ine the actions used in upgrades to mine rules for packages whose developers
have not defined upgrade paths. It may also be interesting to try to analyze
performance or accuracy changes in workflow execution after upgrades.

7 Acknowledgments

Our research has been funded by the National Science Foundation (grants IIS-
0905385, IIS-0844546, IIS-0746500, ATM-0835821, CNS-0751152, IIS-0713637,
OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692, CNS-0524096), the De-
partment of Energy SciDAC (VACET and SDM centers, and SBIR DE-FG02-
85157), and IBM Faculty Awards (2005, 2006, 2007, and 2008).

References

1. S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simulation: how to upgrade
distributed systems. In HOTOS, pages 8–8, 2003.

2. V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Managing the evolu-
tion of service specifications. In CAiSE ’08: Proceedings of the 20th international
conference on Advanced Information Systems Engineering, pages 359–374, Berlin,
Heidelberg, 2008. Springer-Verlag.

3. L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo.
VisTrails: Enabling interactive, multiple-view visualizations. In Proceedings of
IEEE Visualization, pages 135–142, 2005.

4. C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy modular
upgrades in persistent object stores. SIGPLAN Not., 38(11):403–417, 2003.

5. K. Brown and M. Ellis. Best practices for Web services versioning. IBM developer-
Works, 2004. http://www.ibm.com/developerworks/webservices/library/ws-
version/.

6. O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W. Zwaenepoel. Staged
deployment in mirage, an integrated software upgrade testing and distribution
system. SIGOPS Oper. Syst. Rev., 41(6):221–236, 2007.

7. C. Curino, H. J. Moon, and C. Zaniolo. Automating database schema evolution in
information system upgrades. In HotSWUp, pages 1–5, 2009.

8. S. B. Davidson and J. Freire. Provenance and scientific workflows: challenges and
opportunities. In Proceedings of SIGMOD, pages 1345–1350, 2008.

9. R. di Cosmo. Report on formal management of software dependencies. Technical
report, INRIA, Sep 2005. EDOS Project Deliverable WP2-D2.1.

10. T. Dumitraş and P. Narasimhan. Why do upgrades fail and what can we do about
it?: toward dependable, online upgrades in enterprise system. In Middleware, pages
1–20, 2009.

11. J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computational tasks:
A survey. Computing in Science and Engineering, 10(3):11–21, 2008.



12. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T.
Vo. Managing rapidly-evolving scientific workflows. In IPAW, pages 10–18, 2006.
Invited paper.

13. P. Kaminski, M. Litoiu, and H. Müller. A design technique for evolving web
services. In CASCON ’06: Proceedings of the 2006 conference of the Center for
Advanced Studies on Collaborative research, page 23, New York, NY, USA, 2006.
ACM.

14. L. Lins, D. Koop, E. Anderson, S. Callahan, E. Santos, C. Scheidegger, J. Freire,
and C. Silva. Examining statistics of workflow evolution provenance: a first study.
In Proceedings of SSDBM, 2008.

15. B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the kepler system:
Research articles. Concurr. Comput. : Pract. Exper., 18(10):1039–1065, 2006.

16. S. McCamant and M. D. Ernst. Predicting problems caused by component up-
grades. In ESEC, pages 287–296, 2003.

17. S. McCamant and M. D. Ernst. Early identification of incompatibilities in multi-
component upgrades. In ECOOP 2004 — Object-Oriented Programming, 18th
European Conference, pages 440–464, Oslo, Norway, June 16–18, 2004.

18. Microsoft Workflow Foundation. http://msdn2.microsoft.com/en-
us/netframework/aa663328.aspx.

19. D. L. Parnas. Software aging. In ICSE, pages 279–287, 1994.
20. C. Scheidegger, H. Vo, D. Koop, J. Freire, and C. Silva. Querying and creating

visualizations by analogy. IEEE TVCG, 13(6):1560–1567, 2007.
21. C. E. Scheidegger, D. Koop, E. Santos, H. T. Vo, S. P. Callahan, J. Freire, and

C. T. Silva. Tackling the provenance challenge one layer at a time. Concurrency
and Computation: Practice and Experience, 20(5):473–483, 2008.

22. Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Rec., 34(3):31–36, 2005.

23. A. Stuckenholz. Component evolution and versioning state of the art. SIGSOFT
Softw. Eng. Notes, 30(1):7, 2005.

24. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

25. M. Treiber, L. Juszczyk, D. Schall, and S. Dustdar. Programming evolvable web
services. In PESOS ’10: Proceedings of the 2nd International Workshop on Princi-
ples of Engineering Service-Oriented Systems, pages 43–49, New York, NY, USA,
2010. ACM.

26. VisTrails. http://www.vistrails.org.


