
Using Provenance to Support Real-Time
Collaborative Design of Workflows

Tommy Ellkvist1, David Koop2, Erik W. Anderson2,
Juliana Freire12, and Cláudio Silva2

1 Linköpings universitet, Linköping, Sweden
2 University of Utah, Salt Lake City, UT, USA

Abstract. Because designing workflows is a notoriously difficult task,
it often requires multiple users to collaborate. In such scenarios, sharing
workflow evolution provenance in a timely manner is critical. We present
an environment where collaborating users can see each other’s changes
in real-time. The synchronization of workflow evolution provenance is
automatic, immediate, and unobtrusive, allowing users to see collabora-
tors’ changes as they are made. This enables a richer and fuller method
of collaboration. We present the interface and algorithm for the synchro-
nization and discuss common scenarios where this mechanism has been
utilized.

1 Introduction

Scientific workflows are often used as a means to create computational processes
that solve complex scientific problems in diverse areas. The design of workflows in
multi-disciplinary research areas such as bioinformatics and environmental mod-
eling often requires cooperation between multiple experts in different geographic
locations. Currently, there are few tools available to support the collaborative
design of workflows. Users are often limited to exchanging workflow specifica-
tions over e-mail. This process can be slow and tedious. In some cases, it may
be possible to divide the work in such a way that collaborators can work inde-
pendently and then combine their work for a final result. However, this assumes
that a modular design is possible; in reality, workflows are often created by trial
and error with many inter-dependencies.

To support the collaborative design of workflows, we propose a mechanism
that allows collaborators to simultaneously work on a task and see each others’s
changes in real-time. With a group of users who are working on the same task,
the changes made by each user are automatically propogated to the rest of the
group. Note that we do not automatically merge changes like version control
systems. Rather, we display each change as a new branch of exploration and al-
low the user to switch between branches regardless of who created them. Using
workflow evolution provenance, for example the change-based representation for
a collection of workflows [3], we can visually display a tree containing all con-
tributions. This lets collaborators share and receive updates in real-time, while



Bind Multiple Attributes Plume with Camera and Opacity

Show Salinity

Salt Flux with Plumeinteractive seed point

saltflux vector reading

Fast Salt Flux

Generalize Bind Calculation

Warp By Bathymetry

User 2

User 3

User 1

User 1

User 2

User 3

Fig. 1. A version tree containing a series of workflows that derive visualizations of the
Columbia River Estuary. The visualizations have been created by collaborating users.
Versions created by different users are represented using different colors.

at the same time giving them the option to selectively ignore updates they do
not care about. In this paper, we describe an architecture that supports this
functionality. We present a new algorithm for synchronization and discuss how
it can be used in practice.

2 Architecture

In order to support real-time collaborative design workflows, we need a prove-
nance architecture that supports a collection of versioned workflows and a cen-
tralized provenance repository that all collaborators can access. We require a
versioning system because each user needs to know how their collaborators’ work
relates to their own. More importantly, we need to protect the users’ work; we
should not blindly erase or update their own changes. A centralized repository
is needed to manage all the workflows and to provide the means for notifying
collaborators when changes occur. The combination of these two methods not
only allows users to efficiently share collections of workflows, but also enables
them to see the entire history of the workflow specifications as they develop in
real-time, regardless of how many users collaborate on the project.

Workflow Evolution Provenance. Because we expect to encounter a large
number of changes to a workflow specification, especially in a collaborative envi-
ronment, it can be inefficient to store specifications for all different versions of the
workflows. The change-based provenance model [3] provides a concise represen-
tation for workflow evolution history. This model captures the changes applied
to a series of workflows, akin to a database transaction log. As a user modifies



a workflow (e.g., by adding a module, changing a parameter or deleting a con-
nection), the provenance mechanism transparently records each change action.
We can then reconstruct any workflow specification by replaying the sequence
of captured changes from an empty specification to the desired version.

The change-based model not only captures changes as a workflow evolves,
but it also presents external changes to collaborators in a meaningful way. An
important feature of this representation is that it can be visualized as a version
tree, where each node corresponds to a workflow specification and each edge cor-
responds to the sequence of changes that transforms the parent specification into
the child. Because the version tree captures all changes, users have great flexibil-
ity for exploring different alternatives without worrying about losing the ability
to go back to a specific version. They can perform arbitrary undos and redos—
any workflow version is easily recalled by selecting the corresponding node in
the version tree. Additionally, users can easily see how their collaborators have
taken different approaches to solving related problems and how their techniques
relate to their own ideas. As discussed below, we leverage this layout to inform
users of changes without forcing them to immediately consider or integrate those
changes.

Centralized Repository. In order to efficiently capture and broadcast work-
flow changes, we use a relational database management system (RDBMS) for
our centralized repository. We chose to use a RDBMS because these systems
provide secure access protocols, support concurrent transactions from multiple
users, and include trigger mechanisms for alerting users when the database is
updated. These features are essential to ensure data consistency and to support
real-times updates in our collaborative infrastructure. Other kinds of database
systems that support these features could also be used in our infrastructure.

To use an RDBMS for our repository, we need to map the necessary prove-
nance information to a relational schema. Because we use the change-based rep-
resentation, a collection of related workflows is stored as a tree. This tree contains
metadata and an ordered set of actions that correspond to user modifications to
workflows. Each action, in turn, consists of a sequence of atomic operations. For
example, a paste action that adds a set of modules and connections to an exist-
ing workflow contains a sequence of operations: add module, add connection,
etc.. An operation, besides its data payload (e.g., module specification, connec-
tion specification, parameter value), includes metadata (e.g., the user who per-
formed the action and annotations). Each of these entities (actions, operations,
payloads) is stored in its own table, permitting a normalized (redundancy-free)
representation. In addition to storing the changed-based representation of work-
flow evolution, the schema also supports explicit workflow specifications and
workflow execution information. Execution information can be important when
users are unfamiliar with the collection of workflows and wish to know which
workflows are routinely used and which workflows were successfully executed.



3 Synchronized Design

One of the contributions of this paper is a new method for automatically cap-
turing workflow changes performed by multiple users and alerting them about
these changes immediately and unobtrusively. This allows users, in different geo-
graphically distributed locations, to collaboratively design and refine workflows,
like in the scenario illustrated in Figure 1. We accomplish this by committing
the local changes (performed by each individual user) to a centralized repository,
sending the changes out from the repository to each collaborator, and adding
the changes to each collaborator’s local version tree. Note that we are not merg-
ing workflow specifications but synchronizing workflow evolution provenance.
Each collaborator can continue their work and they need not even view the new
changes. Before describing the implementation of our prototype, we describe the
algorithm for synchronizing the version tree.

3.1 Algorithm

There are two key requirements for our algorithm. First, we need a way to save
data from a local version tree to the centralized repository. Second, we need a way
to load data from that repository to update the collaborators’ local version trees.
Below, we describe the mechanisms we developed to satisfy these requirements.

Recall that the version tree is induced by a set of actions A. Each action
a ∈ A has a unique identifier derived by the function id : A → N, where id
assigns the smallest unassigned integer to a new action. This function is trivially
monotonic: given a1, a2 ∈ A,

id(a1) < id(a2) ⇐⇒ a1 was added before a2

We will leverage this property to easily determine what has changed in a given
version tree. Specifically, let

N(A) = max
ai∈V

id(ai)

be the largest action id in a set of actions A. Then, for two sets of actions,
A1 ⊆ A2, the set of new actions, ∆A, is

∆A = {a ∈ A2 | N(A1) < id(a) ≤ N(A2)}

This means that we can efficiently determine which actions a user requires to
update his version tree. If a user has copied all of the actions in the database
up to id ND, then we only need to copy actions ai with id(ai) > ND from the
database. Conversely, if a user has already saved all actions up to NL to the
database, only actions ai with id(ai) > NL need to be sent to the database.
Figure 2 shows a simple example of the steps of the algorithm.

Relabeling. Determining the set of new actions is easy when one of the two
sets being compared is a superset of the other. However, when multiple users are
collaborating, we might not be in this situation. Consider the scenario shown in
Figure 3, where user A and user B made changes at the same time. Both clients
will try to simultaneously save their actions to the database before being notified



Algorithm 1: Incremental Load Algorithm
Input: The local version tree V , idV (the id function for V ), the
global-to-local id map M , and the centralized repository D.
Output: None. It updates both V and M in place.
Load(V , idV , M , D)
(1) max id← Query V for the maximum id
(2) A← Query D for all actions with id > max id
(3) foreach a in A:
(4) Create a′, a local copy of a
(5) a′.id← idV (a)
(6) a′.prev id←Mlocal(a.prev id)
(7) Add pair (a.id, a′.id) to M
(8) Add a′ to V

of the other’s changes. In each of their local version trees, they both have actions
with id 7, but these actions are not the same. Assuming A’s request gets to the
repository first, her action will be given id 7 while B’s action will become id 8.
Thus, after pushing out the other’s updates, A and B will have the same tree
except that the ids of the nodes may differ.

Since an update of the ids in the local version tree might interfere with a
user’s current work, we choose to maintain a set of local ids that can be mapped
to the global repository ids. Specifically, we maintain a bijective map

M : idglobal ↔ idlocal

Let Mlocal denote the reverse mapping from global to local and Mglobal denote the
forward mapping from local to global. All user operations will be accomplished
using the local ids, but whenever we need to save to the centralized repository,
we translate everything to the global set of ids. Figure 3 shows an example of
this relabeling.

Beyond Actions. As described earlier, an action contains metadata and a
set of atomic operations. The metadata and the atomic operations, in turn,
contain their own ids and may also include references to other entities. Thus, the
relabeling of an action needs to update these references as well. For example, each
action stores both its own id (action.id) and its parent id (action.prev id). If we
update the id of the action referenced by action.prev id, we also need to update
the prev id field. The same is true for child objects. Suppose the connection in
an add connection operation references the two modules it connects by id. If
we remap the id of one or both of those modules in an add module operation, we
need to update the ids in the add connection operation as well. This requires an
ordering that respects the properties being updated; we impose an explicit order
on modules and connections so that all modules are relabeled before connections
to ensure all references are updated.

Algorithm Specifics. We combine the method for determining new actions
with our relabeling strategy to obtain robust algorithms for incrementally load-



Algorithm 2: Incremental Save Algorithm
Input: The local version tree V , idD (the id function for D), the
global-to-local id map M , and the centralized repository D.
Output: None. It updates both V and M in place.
Store(V , idD, M , D)
(1) max id← Query D for the maximum id
(2) A← Query V for all actions with id > max id
(3) foreach a in A:
(4) Create a′, a global copy of a
(5) a′.id← idD(a)
(6) a′.prev id←Mglobal(a.prev id)
(7) Add pair (a′.id, a.id) to M
(8) Add a′ to D

Client A Repository Client B

1

2 3

1

2 3

1

2 3

(3) Update

1

2 3

1

2 3

1

2

(2) Notify

1

2 3

1

2

1

2

(1) Save

Fig. 2. The synchronization algorithm. Client A creates a new change (labeled as
version 3). This new version is automatically saved to the repository (Step 1). Whenever
the repository is updated, it notifies all clients of the new change (Step 2). All clients
(including Client B) then incremenetally update themselves (Step 3).

ing from and saving to a database. Algorithm 1 describes the loading algorithm
and Algorithm 2 summarizes the saving algorithm. In each algorithm, we use
either the database or local version tree to update the other depending on the
direction, ensuring that new ids are assigned, existing ids are remapped, and
the global-to-local mapping M is updated. Note that all entities are updated in
place, copying only the (new) required information from one side to the other.



1

2 3

4 6 5

7 8

Client A Client BRepository

1

2 3

5 6 4

7

Local:
Repository:

1
1

2
2

3
3

5
4

4
5

6
6

7
7

1

2 3

4 6 5

7

Local:
Repository:

1
1

2
2

3
3

4
4

5
5

6
6

7
8

Fig. 3. Relabeling. Because two users may make updates at the same time or may
temporarily lose their connections with the repository, the ids of their nodes may not
correspond with the repository’s ids. To solve this problem, each client stores the tree
according to its own local ids and maintains a map to the repository’s global ids.

3.2 Implementation

We have implemented the synchronization mechanism on top of the VisTrails sys-
tem (http://www.vistrails.org). The implementation consists of a client/server
architecture shown in Figure 2. The server-side is a MySQL database that stores
version trees. Users can create synchronization sessions through the user inter-
face (see below). The standard VisTrails database schema has been extended
to store information about synchronized sessions. This information includes the
ids of synchronized version trees, user ids, IP addresses, and port numbers. A
database trigger uses this information to notify clients when relevant updates
are available. The notification is done by an external MySQL function that uses
a socket to connect to the client. The message to the client includes the version
tree id number so that the client can request the updates for that version tree.
Note that messages about changes to a given version tree are sent to all users
using that version tree, except to the user whose changes activated the trigger.

The client-side application is a modified version of VisTrails; the modifica-
tions include code for performing incremental updates and saves against the
database and for receiving notification messages from the database. Because the
system contains a controller object for each version tree, we use it to monitor
these notifications and start update procedures. Because the controller is linked
to the GUI, we also need to redraw the version tree whenever synchronization
modifies the tree.

To setup synchronization, users need to select (or create a database) to serve
as a centralized repository. This database must have the schema as outlined
above and the synchronization triggers that send the update notifications. Once
the database is in place, users connect to the database and select the version
trees they want to share. After that, the synchronization (sync) mode can be
enabled with the push of a button. From that point on, the version tree will be



kept in sync with the central repository and the other users. To help distinguish
between versions, those created by other users are shown in blue while a user’s
own versions are highlighted in orange.

3.3 Issues

Mutable Objects. The monotonicity of the version tree is required for the
synchronization process. Change actions and operations are immutable: they
are never modified after they are stored in the repository. Thus, the system only
needs to check for new objects in order to perform synchronization. There are,
however, mutable objects associated with actions for which this optimization
cannot be applied. For example, VisTrails has version tags and version annota-
tions associated with workflows that can be modified, and these modifications
are not saved as actions. Version tags assign text labels to workflow versions while
version annotations store general notes about the version. Because changes to
these objects are non-monotonic (and destructive), all objects must be saved
and loaded during each incremental load/save. Locally, we can keep a flag that
indicates whether or not the entity changed so that we only need to save it when
it does, but the same cannot be done for the global repository. Nonetheless, since
the volume of mutable data is small, we copy all instances during an incremental
load.

Integrating Changes. One nice feature of our synchronization framework is
that it does not require the user to integrate another user’s changes. However,
consider the situation where two users (A and B) are working on a similar
problem, and they have attacked different pieces of it from a common starting
point. Each has seen that the other has made changes, but they wanted to finish
their own piece. Later, when they decide to integrate these changes, user A can
switch to B’s version and make the changes applied in her own version. A more
efficient alternative would be for user A to use the analogies mechanism [10]
implemented in VisTrails to automatically apply the changes from one branch
to another.

Local parameters. Workflows may not always have the same meaning to all
users, and they may disagree about certain parameter settings or methods used.
For example, an input filename parameter may differ between two users because
the users store the file in different disk locations. Currently, the only way to deal
with such local parameter settings is to create a different version for each set of
parameters. This means that a change in one user workflow will not propagate
to the other version, which is not desirable. A solution to this problem could be
to separate the shared workflow from the local settings creating a division of the
workflow in some way.

Data sharing. The ability to share data is an important part of collaboration.
For workflows, you may want to share output data as well as input and inter-
mediate results. This can be done with a data pool which maintains up-to-date
data items created by the users. This would make it possible for users not only to



see each other’s results, but also use the data as inputs to other workflows. The
COVISA project[12] implements this kind of data sharing. Users can exchange
data and directly use them in their pipelines. Another system that implements
the idea of a data pool is the Data Playground [4]. The Data Playground pro-
vides a workflow editor that is highly data centric, letting users view and import
data while they compose workflows that in turn create new data items. This
gives the users control over their data while they experiment with different data
manipulation operations. The prototype only works for one user but it shows
how a data centric view can be used in collaborative workflow design.

Module packages. A requirement for users to be able to share workflow spec-
ifications is that they both use the same repository of module packages. Module
packages contain sets of modules that perform similar functions, much like web
services. If one collaborator is missing a module, a workflow containing that mod-
ule can not be executed. For collaborations that require many different packages
and libraries, an effective mechanism is needed for sharing. For example, through
the use of public repositories or automatic methods for users to import module
packages from other users as they are required. The packages are often platform
specific and versioned, so finding the right package is not trivial. This requires
packages to use a good version scheme, with possibly backward-compatible pack-
ages. There also needs to exist different versions for different platforms so that
the users platform can be identified and the correct package used. Another way
to handle module sharing is to use shared computing infrastructure, such as the
TeraGrid (http://www.teragrid.org), which can provide a comprehensive set of
packages.

3.4 Discussion

While there are many systems that provide mechanisms to deal with the diffi-
culties associated with the collaborative modification of files, they are not built
to handle structured information like workflows. For this reason, many workflow
systems lack comprehensive version control for their workflow specifications.

Many systems have been developed with the singular purpose of providing
version control. Software such as SVN [8], CVS [1], and Visual Source Safe [7]
are optimized to robustly handle the version control requirements associated
with source code. Unfortunately, when dealing with workflow descriptions, the
standard merge operations common to text files are inadequate and require spe-
cialized processing. A second issue is that these systems require users to manually
perform check-ins and check-outs in order to synchronize versions. Finally, users
are often required to merge their changes with older changes, making it more
difficult to explore new directions.

We address the shortfalls of standard version control with our method based
on synchronizing workflow evolution provenance. Using this approach, workflow
descriptions can be analyzed and modified to provide a truly multi-user, col-
laborative environment, in real time. These modifications provide the basis for
version control of rapidly evolving, collaboratively created workflows. The intu-



Fig. 4. An example of a TA session. The TA can highlight interesting versions in the
students version tree as well as create new versions that explain some part of the
workflow design.

itive system allows closer collaboration between users by immediately alerting
all users of each other’s changes.

4 Use Cases

Collaboration between two or more parties plays an important role in scientific
discovery and in education. By carefully examining the working process of ex-
isting collaborative research projects, we have been able to design a system that
not only respects individual working habits, but also strengthens and enhances
the interaction among multiple users engaged in collaborative efforts. Here, we
explore the benefits of real-time, synchronous collaborative workflow design.

Collaborative Design as a Teaching Aid. Many institutions of higher edu-
cation offer a wide range of courses that utilize workflow systems. For example,
in Scientific Visualization courses, the Visualization Toolkit [6] (VTK) is widely
used to teach different visualization techniques to the students. Instructors use
VTK to introduce various topics to the students by example, while the students
use the library to explore the advantages and caveats associated with the various
techniques they learn.

A first experience in using VisTrails to encapsulate VTK pipelines used in
a Scientific Visualization course was very successful and showed that the repro-
ducibility and sharing enabled by provenance is very beneficial in a teaching
environment. However, even when using a provenance-aware system, a large
amount of work was necessary to assist students with the various assignments.
In these cases, the Teaching Assistant (TA) had to meet individually with each
student to help solve the problems they had.

By providing TA’s with a system capable of synchronous, collaborative de-
sign of workflows, the time necessary to assist students can be greatly reduced.
Instead of the students relying on restrictive office hours to get face-to-face help,
they are able to get assistance from the TA as they work from their worksta-
tion (see Figure 4). This decreases the amount of time the students need to



First Method

Other side after Bugfix

Other SideFixed BugImproved Method

Second Method

Changed Parameters

User 1

User 2

Fig. 5. An example of collaborative design. here, two persons have built on each others
workflow specifications, leading to incrementally better results.

spend waiting for help and allows the TA to interactively explain the reason
the student’s workflow was incorrect. Coupled with an instant messaging (IM)
program, this collaborative session greatly increases the number of people the
TA is capable of helping in a given amount of time.

Collaborative Design in Multi-disciplinary Research. In today’s scientific
community, it is rarely the case that novel scientific discoveries can be made by
a single person. Unfortunately, in many instances of close collaboration, the
various domain experts are unable to work in the same location. These types
of relationships benefit greatly from the ability to concurrently modify a given
workflow description.

An example of the advantages gained from collaboratively designed work-
flows can be seen in collaborations between the authors at the University of
Utah and researchers at the Center for Coastal Margin Observation and Pre-
diction (CMOP).3 CMOP scientists, located in Oregon and Washington, often
spend a significant amount of time describing the various processing and analysis
methods they employ to understand their data. While in many cases e-mail is
satisfactory for sharing knowledge with collaborators, in some situations, a more
immersive collaborative workspace is required.

When a task relating to a specific researcher’s area of expertise is being con-
sidered, it is often necessary to synchronize processing workflows to arrive at a
desired result. By allowing scientists at the CMOP centers in Oregon to work
synchronously with researchers at the University of Utah, the critical task of com-
munication is enriched. Instead of relying on e-mail and telephone conversations
to ask important, and often time-consuming, questions, scientists can explore and
fix each others processing and parameterization errors in real-time. This degree
of collaborative design reduces the number and severity of communication-based
misunderstandings as well as increases the level of productivity of everyone in-
volved in the project.

3 http://www.stccmop.org



5 Related work

This paper presents, to the best of our knowledge, the first proposal for an
infrastructure that supports real-time collaborative workflow design.

There are existing mechanisms that can be used for collaborative design of
workflows. One of the most general and common methods of real-time collabo-
ration is through remote desktops like VNC [9]. By using this in the design of
a workflow, users can see each others operations like dragging modules around
and creating connections. But for more efficient modes of interaction, both users
need to be in control simultaneously, and be able to choose whether to take
notice of other users activities. In addition, provenance information would be
lost, since it would not be possible to distinguish changes performed by different
users.

A related area is that of collaborative visualization such as the COVISA
project[12] and NoCoV [11]. COVISA enables several modes of collaboration
like sharing data, sharing control of parameters and instructor driven collab-
oration where one user is in control of another user’s pipeline. NoCoV enables
users to collaboratively edit a pipeline consisting of instances of Notification Web
Services. Both of these systems enables collaboration in the creation of the visu-
alization pipeline but they do not support the exchange or existence of different
versions of the pipeline.

The use of real-time collaboration has been explored in other areas. Co-
browsing [2] enables multiple people to browse the by sharing a Web browser
view and following links together. Similar to VNC, co-browsing is useful when a
user wants to guide another through a browsing session. However, unlike VNC
where the whole desktop is shared, in co-browsing users only share a browser
view. Co-browsing can thus be more efficient, since only clicks withing a browser
view need to be propagated to the users.

A more indirect way of sharing workflows is through public repositories, like
myExperiment [5] and Yahoo! Pipes [13], that have become available recently.
These repositories foster the re-use of knowledge. They provide search interfaces
that allow the users to locate workflows that solve a particular task, and then
integrate these workflows into their own. The synchronization infrastructure we
propose could potentially be a useful feature offered by these sites.

6 Conclusion

In this paper, we described an infrastructure that supports real-time collabora-
tive design of workflows. This infrastructure can be integrated with any workflow
system that captures workflow evolution provenance. Our implementation of the
synchronization mechanism on top of the VisTrails system shows that workflow
systems can be a powerful tool for real-time collaboration. Users can collabo-
rate efficiently and effectively, exploring different branches and taking advantage
of each other’s progress. Together with techniques for data sharing and remote
execution, this enables efficient creation of complex workflows.



By leveraging the concise representation of workflows provided by the change-
based provenance model, synchronization is efficient: only incremental changes
need to be propagated to collaborating users. However, further experiments are
needed to assess the scalability of the current implementation.

We believe that our provenance-based synchronization mechanism can be
applied to applications other than workflows. Combined with techniques to vi-
sualize provenance information, this mechanism can serve as a powerful platform
for collaborative design in general. Users can share their work effectively while
inspecting each other’s contributions. The application of our synchronization
infrastructure in other areas of computational design is a direction we plan to
pursue in future work.

Acknowledgements

Our research has been funded by the Department of Energy SciDAC (VACET
and SDM centers), the National Science Foundation (grants IIS-0746500, CNS-
0751152, IIS-0713637, OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692,
CNS-0524096, CCF-0401498, OISE-0405402, CCF-0528201, CNS-0551724), and
IBM Faculty Awards (2005, 2006, 2007, and 2008).

References

1. P. Cederqvist et al. Version Management with CVS (for CVS 1.11.6), 1993.
2. A. Esenther. Instant co-browsing: Lightweight real-time collaborative web brows-

ing, 2002.
3. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo.

Managing rapidly-evolving scientific workflows. In International Provenance and
Annotation Workshop (IPAW), LNCS 4145, pages 10–18, 2006.

4. A. Gibson, M. Gamble, K. Wolstencroft, T. Oinn, and C. Goble. The data play-
ground: An intuitive workflow specification environment. In E-SCIENCE ’07:
Proceedings of the Third IEEE International Conference on e-Science and Grid
Computing, pages 59–68, Washington, DC, USA, 2007. IEEE Computer Society.

5. C. A. Goble and D. C. D. Roure. myexperiment: social networking for workflow-
using e-scientists. In WORKS ’07: Proceedings of the 2nd workshop on Workflows
in support of large-scale science, pages 1–2, New York, NY, USA, 2007. ACM.

6. Kitware. The visualization toolkit (VTK). http://www.kitware.com.
7. Microsoft Corporation. Managing projects with Visual SourceSafe. Redmond,

Washington, 1997.
8. M. C. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with

Subversion. O’Reilly Media, Inc., June 2004.
9. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network

computing. IEEE Internet Computing, 2(1):33–38, 1998.
10. C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying and

creating visualizations by analogy. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1560–1567, 2007.

11. H. Wang, K. Brodlie, J. Handley, and J. Wood. Service-oriented approach to
collaborative visualization. In Proceedings of UK e-Science All Hands Meeting
2006, pages 241–248. National e-Science Centre, 2006.



12. J. Wood, H. Wright, and K. Brodlie. Collaborative visualization. In VIS ’97:
Proceedings of the 8th conference on Visualization ’97, pages 253–ff., Los Alamitos,
CA, USA, 1997. IEEE Computer Society Press.

13. Yahoo! Pipes. http://pipes.yahoo.com [10 March 2008].


