
Greedy Cuts: An Advancing Front Terrain Triangulation Algorithm

Cláudio T. Silva� Joseph S. B. Mitchell†

IBM T. J. Watson Research Center State University of New York at Stony Brook

Abstract

We apply an advancing front technique to the problem of sim-
plification of dense digitized terrain models. While most sim-
plification algorithms have been based on either incremental
refinement or decimation techniques, ourGreedy-Cutsalgo-
rithm uses a simple triangulation-growth procedure. We im-
prove on our earlier advancing-front technique, which was not
able to backtrack in its triangulation decisions, resulting in tri-
angulations that may have low quality. The new algorithm
we propose overcomes this shortcoming by maintaining two
“fronts”, a real front and a virtual front, that bound between
them a region of the terrain that has only a tentative triangula-
tion. By allowing simple local operations (edge collapses and
edge flips) in the tentative triangulation, we are able to avoid
many of the artifacts of the earlier advancing-front technique,
while not significantly affecting memory usage.

GcTin , our terrain triangulation tool, is publicly available
for research purposes. The original version ofGcTin has been
in use at several commercial and non-commercial sites since
1995. The new algorithms described here are integrated in the
latest release and result in substantially improved triangula-
tions.

1 Introduction

The problem of triangulating dense terrain models, while ap-
proximating them to within a user-specified error bound, is
fundamental to several GIS applications, and has been stud-
ied actively since the early 1970’s. Many algorithms have ex-
ploited the good quality properties of Delaunay triangulations;
e.g., one standard “refinement” approach is based on building
triangulations incrementally by inserting vertices into a coarse
triangulation while maintaining the Delaunay property (e.g.,
see [1]). In contrast with refinement methods, which start with
a coarse triangulation and refine it, decimation techniques start

�csilva@watson.ibm.com; Visual and Geometric Computing
Group, P.O. Box 704, IBM T. J. Watson Research Center, Yorktown
Heights, NY, 10598

†jsbm@ams.sunysb.edu; Department of Applied Mathematics and
Statistics, State University of New York at Stony Brook, Stony Brook,
NY 11794–3600

with a fine triangulation (the original data) and iteratively re-
move selected points, resulting in a coarsening of the trian-
gulation [6, 7, 8]. We refer the readers to the recent survey
of Garland and Heckbert [4] or of van Kreveld [5] for a more
extensive discussion of prior work.

There are several tradeoffs between incremental refinement
and decimation techniques. If we seek a coarse approxima-
tion, incremental refinement methods tend to converge faster,
since they start already with a very coarse triangulation. On
the other hand, very accurate approximations, with a low er-
ror tolerance, are computed most directly using a decimation
procedure, starting from the full resolution data.

Memory consumption is an important issue in designing tri-
angulation methods. Most of the current techniques need to
keep fairly large data structures in memory, since they rely on
having the triangulation in memory at intermediate stages of
the algorithm.

Largely due to its low memory consumption, we have fo-
cussed on “advancing-front” techniques for terrain triangula-
tion. In short, advancing-front techniques are based on incre-
mentally triangulating the terrain, one triangle at a time, at its
final resolution, while advancing a “front” across the data. The
front is a set of polygonal curves that represent the boundary
between the already triangulated region and the yet-to-be tri-
angulated region. The memory consumption is low, since we
only have to store a representation of the front in memory;
as triangles are created, they can be output (e.g., written to a
file). Another potential advantage of advancing-front meth-
ods is that they lend themselves readily to being able to han-
dle structural fidelityconstraints (e.g., river, road, and fault
line boundaries), by insisting that these edges appear as edges
within the output triangulation, while still respecting the er-
ror bounds. The method also readily permits one to partition
the data, possibly specifying a different error bound in differ-
ent regions of the terrain; this may be useful in applications
requiring real-time triangulation.

In a predecessor [9] to this paper, we developed an
advancing-front algorithm and its implementation (GcTin ).
While the algorithm was shown to have favorable properties in
terms of memory consumption and total number of triangles,
it was much less effective at producing highquality triangula-
tions from the point of view of angles that are close to zero or
close toπ.

The main contribution of this paper is ahybrid method that
addresses the main weakness of our earlier advancing front
technique – triangle quality. The potential for low triangle
quality is an intrinsic shortcoming of advancing front meth-
ods, which do not permit backtracking of decisions. The novel
feature of our new algorithm is that we maintain two “fronts”,
a real front, and a virtual “back” front, and the tentative trian-
gulation of the region in between. By allowing edge collapses,
and flips in the region between the fronts, we are able to main-
tain much higher quality triangulation, while preserving the
low-memory feature of the advancing-front method.



The input to our problem is a height field,H(x;y), giving
elevations at a regular array of points(x;y) within a rectangle
R in the plane. We are also given a user-specified error toler-
ance,ε > 0. We desire to output a triangulated surface (TIN)
that represents the terrain onR, such that the TIN has few trian-
gles, the triangles are of good quality, and the TIN represents
a surface that isε-close to that represented byH(x;y).

2 Review of Greedy Cuts

This section gives a high-level description of the Greedy Cuts
method as originally proposed in [9].

The algorithm maintains a list ofuntriangulated simple
polygons, P , which represent the portion ofR over which
no triangulated surface has yet been constructed. At each
step, our goal is to select a “large” triangleT within one of
the polygonsP 2 P , such that (1) the verticesv1 = (x1;y1),
v2 = (x2;y2), and v3 = (x3;y3) of T are grid points (points
(x;y) for which we have the altitudeH(x;y)); (2) at least two of
these vertices are vertices ofP (i.e.,T shares at least one edge
with P); and (3) the triangleT corresponds to a triangleT 0 in
space (with coordinates(x1;y1;H(x1;y1)), (x2;y2;H(x2;y2)),
(x3;y3;H(x3;y3))) such thatT 0 is “feasible” with respect toε
(see below for a precise definition). For the sake of efficiency,
the implemented version of our algorithm does not search all
possible trianglesT; instead, we do an approximate (limited)
search for a goodT, based on three basic operations, which
will be described below. Since each polygonP 2 P corre-
sponds to an independent subproblem, we can work on each
separately. Thus, at each step of the algorithm, abite (trian-
gle) T is taken out of the polygonP at the head of the listP ,
until P is reduced to a single feasible triangle, or it is divided
into two new simple polygons, each of which is inserted into
the list. The final result of our algorithm is the list of all trian-
gles (bites),T . There is no need to store in memory the listT
of triangles as it is generated. Each triangle can be written out
directly to a file. No triangle connectivity information is saved
at this point. Each polygonP2 P is saved as a simple list of
vertices, in counterclockwise order. Thus, only very small and
simple data structures are required.

The algorithm works by performing three basic operations,
one at a time: ear cutting, greedy biting, and edge splitting.
Each operation is applied to a current active polygon. The
algorithm simply applies the above three operations, giving
priority (in order) to ear cutting, greedy biting, and then edge
splitting. A short description of the core of our (old) algorithm
is outlined as follows:

GreedyCuts(Polygon *p)
{

if(p == NULL)
return;

while(empty(p) == false) {
if(EarCut(p) == false)

if(GreedyCut(p) == false)
if(SplitEdges(p) == false)

NonFeasibleEarCut(p);
}
GreedyCuts(p->pNext);

}

Ear Cutting. This operation traverses a polygonP2 P look-
ing for possible “ears” to cut. Anear of a simple polygonP is

a triangle contained withinP that shares two of its edges with
P. We simply traverse the boundary of the polygon, “cutting
off” any ear that we discover that corresponds to afeasibletri-
angle (i.e., one that meets the feasibility criterion forε). Given
a vertexvi , we check if the edge(vi ;vi+2) is an internal diag-
onal to the polygon, that is, it is to the inside of the polygon
and it does not intersect any other edge. Each cut we perform
lowers the complexity (number of edges) of polygonP by one,
thus taking the algorithm closer to completion. Ear cutting is
the mechanism the algorithm uses to adapt itself to lower sam-
pling rates (larger triangles).

Greedy Biting. In this basic operation, we find a pointv inside
the polygonPand an edge,(vi ;vi+1) of P, such that(vi ;v;vi+1)
forms a triangle,T, insideP that meets the feasibility criterion.
We accomplish two things with this operation: (1) subdivid-
ing an edge ofP in two (replacing(vi ;vi+1) with (vi ;v) and
(v;vi+1)), thereby achieving a higher “sampling rate”; and, (2)
taking a bite out of the polygonP, thus progressing further
in “eating away” all ofP. The actual operation is a bit more
complicated (see [9] for details), as it involves also “polygon
splitting” whenv lies close enough to another edge ofP..

Edge Splitting. It may happen that both ear clipping and
greedy biting fail to find a feasible triangle. In this case, our al-
gorithm attempts to split some edge of the polygonP. Check-
ing each edge ofP in succession, starting with the longest,
we look for an edge to split (roughly) in half (or possibly in
smaller pieces, recursively, if splitting in half fails). When we
split edge(vi ;vi+1) at a (grid) pointv, we are actually creating
a skinny (feasible) triangle,(vi ;v;vi+1).

Triangle Feasibility. We now define precisely what we mean
by a triangle (in space) being “feasible” for input terrainH,
with respect to a givenε. The input DEMH can be regarded
as an instance of a TIN (a polyhedral surface,S), if we estab-
lish a set of edges that form a triangulation of the grid points
for which H gives elevation values. Specifically, we fix a tri-
angulation of the input data by considering point(x;y;H(x;y))
to have six neighbors, namely, those data points correspond-
ing to (x�1;y�1) (the standard four grid neighbors) and the
diagonal points(x+1;y+1) and(x�1;y�1). We say that a
triangleT 0 (in space) satisfiesweak feasibility with respect to
ε if, for every grid point(x;y) that lies within the projectionT
of T 0 onto the(x;y)-plane,T 0 intersects the vertical segment
joining (x;y;H(x;y)� ε) and(x;y;H(x;y)+ ε); i.e.,T 0 fits the
function at the relevant internal grid points. Note that any tri-
angleT 0 that has a “skinny” or “small” enough projection, con-
taining no grid points, is automatically weakly feasible. We
say that triangleT 0 (in space) satisfiesstrong feasibility with
respect toε if T 0 lies completely above the surfaceS�ε and
completely below the surfaceS+ε, whereS�ε (resp.,S+ε) is
the surface obtained by shiftingSdownwards (resp., upwards)
by ε. Strong feasibility implies weak feasibility, but the con-
verse is not true in general. In order to test weak feasibility
of T 0, we only have to examine the elevations at grid points
internal to the projected triangleT. Such internal grid points
are identified using a standard scan conversion ofT. Strong
feasibility, however, requires that we also check the altitudes
corresponding to those points that lie at the intersections of an
edge ofT with a grid edge.

Weaknesses.The main shortcoming of the original Greedy-
Cuts triangulation algorithm of [9] is that it is not possible to
backtrack at all during the generation of triangles: Each tri-



A

B

C

(a) (b)

Figure 1: Illustration of the bottleneck problem. (a) The “C” part of the boundary of the front, interferes with the “A” part as it
attempts to grow. Instead of the triangulation being able to neatly close with few triangles being generated, the curve “A” will
approach “C”, by closer and closer curves, such as “B”, generating a large number of small and badly shaped triangles. This can
happen even if the terrain is perfectly flat in the neighborhood of the subcurves. (b) Snapshot (perspective projection) of a partial
triangulation depicting the bottleneck problem in practice.

angle that is generated is committed, with no possibility to
modify it later. This can lead to poor triangle quality, particu-
larly in the case of “bottlenecks,” as illustrated in Fig. 1. The
bottleneck problem happens when one portion of the bound-
ary interferes with the progress of the triangulation near an-
other portion of the boundary. The bottleneck problem may be
caused by two portions of the front coming close, while having
substantially different sampling rates (resolutions) – one side
is a polygonal curve having vertices placed much more closely
along the curve than those on the other side. Then, it is diffi-
cult to complete the triangulation without doing many splits
or creating very skinny triangles. The bottleneck problem can
also arise if the sampling rates are comparable, but the por-
tions of the front have gotten so close together in forming the
bottleneck that no ear cuts or high-quality bites are possible.

In fact, any advancing front technique may suffer from the
bottleneck problem, and related issues, since decisions that are
made early in the triangulation process may force the algo-
rithm into a difficult situation to resolve later. Incremental re-
finement and decimation methods avoid this issue by being
“global” algorithms that are allowed to make changes any-
where within the triangulation.

3 The New Algorithm

Our new technique is based on a hybrid approach, which at-
tempts to exploit the advantages of both the (local) advancing-
front approach and the (global) refinement/decimation meth-
ods. We accomplish this by providing a simple and efficient
partial backtracking mechanism for Greedy-Cuts, which al-
lows the quality of the triangulation to be improved as the al-
gorithm progresses, giving a means of keeping a good triangu-
lation throughout the execution. In order to keep the memory
complexity low, we allow for only a limited amount of back-
tracking. In particular, we consider the terrain to be partitioned
into three types of regions: regions with afinal triangulation,
regions with atentativetriangulation, and the yet-to-be trian-

gulated regions. The region with a tentative triangulation is
kept “small,” including only those triangles that are adjacent
to vertices on the (true) front. The boundaries between the
three types of regions are determined bytwo “fronts” – the
usual front (which we will simply call thefront), delineating
the boundary between the triangulated region and the yet-to-
be triangulated region, and a second front (which we will call
theback front), delineating the boundary between the tentative
triangulation and the final triangulation. The tentative triangu-
lation lies in the region between the front and the back front;
we can think of the back front as “lagging behind” the front,
in the expansion of the region that we triangulate. Since the
tentative triangulation that we maintain is very small (propor-
tional to the complexity of the front), we are able to preserve
the low memory overhead of the advancing-front technique.

Data Structures. Instead of explicitly keeping the two fronts
and the tentative triangulation, we only keep a list of associ-
ated vertices and triangles. TheTriangle andPoint data
structures are (roughly) as follows:

typedef struct point {
Point2 position;
int refCount;
int nTriangle;
Triangle *triList;

} Point;

typedef struct triangle {
struct point *p[3];
int refCount;

} Triangle;

The vertices are instantiated only during greedy bites
(which now include the edge split operation). When a triangle
is created, it is not immediately written to the output; initially,
it is considered to be tentative (we say that it isactive), and
it is flushed to the output only when all of its corresponding
vertices no longer belong to the outer front. Each triangle has



a pointer to each of its corresponding vertices, and also an in-
dependent reference count (refCount ). Also, each vertex
has pointers to each triangle in its “use set” (also known as the
“star” of the vertex),triList . When a vertex is “output”
in the ear cutting phase (see below), each of the triangles in
its use set is “dereferenced” (itsrefCount is decremented
by one); similarly, when a triangle is dereferenced, each of
its vertices is dereferenced (by decrementingnTriangle ).
When the reference count (refCount ) of a triangle hits zero,
its storage can be safely reclaimed and it can be written to a
file. Since a vertex can be on more than one connected com-
ponent of the front, a second reference count (refCount ) is
used to keep track of the number of active boundary compo-
nents containing the vertex. A vertex is written to the output
when itsrefCount hits zero.

Triangle Quality. In generating our triangles, instead of sim-
ply using a greedy selection, as in [9], we now enforce a qual-
ity criterion based on Gueziec’s notion of “compactness” [3].
Given a triangle with edge lengthsl0; l1; l2, the compactness
measureg is given by

g=
4
p

3A

l20+ l21+ l22
; (1)

where A is the (positive) area of the triangle. Note that
0� g� 1, and asg gets closer to 1, the triangle gets closer
to an equilateral triangle. Basically, when generating new tri-
angles, we give preference to ear cuts and greedy bites that
result in a triangle whose compactness is close to 1 (within a
user-specified tolerance).

Ear Cutting. The ear cutting procedure has two new features:

(1) We compute the compactness measure on each candidate
ear triangle.

(2) Before performing an ear cut, we first attempt to advance
the front by anedge collapseoperation on an edge of the
front, in which one front vertex is moved on top of an-
other front vertex, and the incident edges are adjusted ac-
cordingly. This edge collapse is considered to be feasible
only if the resulting new triangles also meet the quality
standard.

In Fig. 2a, we illustrate a standard ear cut, which generates tri-
angle(p;q; r), while causing vertexq to be removed from the
active list. Fig. 2b illustrates the result of performing instead
an edge collapse on(q; r). This edge collapse is possible, using
our data structures, because we have not discarded any trian-
gles that contain a vertex that still belongs to the active front
boundary. Note that the edge collapse operation saves the cre-
ation of a new triangle. We will also see later that this new
local edge collapse operation during an ear cut works nicely in
concert with the new edge split operation.

A high-level description of the ear cutting is:

int EarCut(Polygon *pg)
{

workFlag = 0;
curEdge = pg->firstEdge;
do {

p = curEdge;
q = curEdge->nextPtr;
r = curEdge->nextPtr->nextPtr;
if(Diagonal(p, r)) {

q r

p

(a)

p

q = r

(b)

Figure 2: (a). A standard ear cut results in the addition of the
edge(p; r) and the creation of the new triangle(p;q; r). (b).
An edge collapse, of edge(q; r), results in the triangulation
shown.

if(CollapseEdge(p, q) == false)
if(IsFeasibleTriangle(p, q, r)) {

ExecuteCut(curEdge, edgeList, 1);
workFlag = 1;

}
curEdge = curEdge->nextPtr;

} while(curEdge != pg->firstEdge);
return workFlag;

}

When generating a new triangle by greedy biting, our al-
gorithm attempts to avoid creating a triangle (even a nicely
shaped triangle) that leaves behind small angles in the front,
as these will end up forcing small angles later in the triangu-
lation process (e.g., by way of an ear cut). For example, in
Fig. 3, we may avoid using vertexa to create a triangle with
baseqr, even though the triangle(q;a; r) is almost equilateral,
because the angle(p;q;a) might be too small; we may prefer
creating triangle(q;b; r) in this situation.

q r

sa b

p

Figure 3: Angle considerations in selecting a new triangle. A
quality measure is used in order to bias the algorithm in favor
of nicely shaped triangles during triangulation.

Greedy Biting and Edge Splitting. As with ear cutting, our
new greedy biting procedure has two new features:

(1) We compute the compactness measure on each candidate
triangle.

(2) We integrate now the edge splitting process into the
greedy biting, as follows: If there is not a “good” bite
(according to the quality measure) from a base edgee



q r

p

m

(a)

q r

p

m

(b)

Figure 4: Edge splitting: If no feasible bite is possible from
the base edgee= (p; r), thene is split at a nearby pointm.
The prior Greedy-Cuts method creates a very skinny triangle
(p;m; r), as there was not option to change the existing triangle
(p;q; r). Now, we allow an edge swap to take place, removing
(p; r), and adding(q;m) instead, as in (b).

that is on the front, then we automatically perform an
edge split one. (The rationale is that ife is unsuitable for
biting now, then it is “too long,” in a sense; since it will
remain unsuitable as the algorithm progresses, we may
as well do the split now.) An edge split involves creating
a new vertexm near the middle of the edgee= (p; r);
however, now that we have available to us the triangles
that are incident on the front, we are able to perform an
edge swapin conjunction with the edge split, allowing
us to avoid creating very skinny triangles in the process.
See Fig. 4.

(3) The polygon splitting that takes place in [9] when a bite re-
sults in a new vertex close to an existing (opposite) front
edge is now replaced by an edge collapse operation.

A high-level description of the greedy biting operation is as
follows:

int GreedyBite(Polygon *pg)
{

workFlag = 0;
curEdge = pg->firstEdge;
do {

successFlag = SplitAtEdge(curEdge, pg);
if(successFlag) {

workFlag = 1; return workFlag;
}
successFlag = BiteEdge(curEdge, pg);
if(successFlag) {

workFlag = 1;
}
curEdge = curEdge->nextPtr;

} while(curEdge != pg->firstEdge);
return workFlag;

}

Initial Boundary Smoothing. During the initialization phase
of [9], we perform a curve fitting for the boundary of the ter-
rain, finding a minimum-link approximation of the boundary,

subject to the error toleranceε. The resulting approximate
boundary serves as an initial front, which is then advanced in-
wards. Unfortunately, this level of greediness has the undesir-
able effect of potentially oversimplifying the boundary, mak-
ing it difficult later to utilize high-quality triangles to triangu-
late between the boundary and some nearby portion of higher
terrain complexity. Thus, in our new algorithm we perform
a “smoothing” operation on the simplified boundary, splitting
edges as needed in order to have a bound on the ratio of the
length of any one boundary edge and the length of its prede-
cessor or successor edge along the boundary. This procedure
ensures a logarithmic scale on the size of the edges.

4 Experimental Results

We have implemented our new algorithm and compared it ex-
perimentally with the prior Greedy-Cuts algorithm [9] as well
as an algorithm of Franklin [2]. We compared average error of
the approximating surface, the complexity of the output (num-
ber of triangles), and the quality of the output triangles.

Franklin’s Algorithm. Franklin’s algorithm [2] is an incre-
mental refinement method. Initially, the algorithm approxi-
mates the DEM by 2 triangles. Then, a general step of the
algorithm involves finding the most deviant point within each
current triangle and inserting this new point into the triangula-
tion, splitting one triangle into three. Each time a point is in-
serted, the algorithm checks each quadrilateral that is formed
by a pair of adjacent triangles, at least one of which is a new
triangle (one of the three incident on the new point). A lo-
cal condition on the quadrilateral determines whether or not to
perform a diagonal swap to improve the quality of the trian-
gles. The original code works by performing a predetermined
number of splits. We have changed the code to make as many
splits as necessary in order to meet a prespecified error bound
ε. Franklin’s implementation is done carefully, with emphasis
on efficiency. For the sake of speed, it uses internal memory
as much as possible.

Experimental Setup. Our experiments were conducted on
a Silicon Graphics O2, equipped with one R5000 processor
and 192MB of RAM. In Table 1, we show the results of run-
ning all three algorithms on seven real terrain datasets. We ran
Franklin’s algorithm, the originalGcTin [9], and our new al-
gorithm. The table shows the choice ofε, and the total number
of triangles in the output TIN, for each of the seven terrains.
All the input terrains were 120-by-120 elevation arrays. See
Fig. 5(a)–(d) for screen shots of partial triangulations of the
Denver terrain during the running of the new algorithm.

In our previous work ([9]), we determined thatGcTin
with weak-feasibilityresults in a lower triangle count than
Franklin’s code, in all instances. Here, we are applyingstrong-
feasibility with GcTin and both strong and weak feasibility
with our new algorithm. In terms of triangle count, when
using strong feasibility bothGcTin and our new algorithm
are showing a slightly higher triangle count than Franklin’s,
which essentially uses weak feasibility. However, note that
the triangle counts of our new algorithm underweakfeasibility
are substantially lower than those under strong feasibility, and
compare very favorably to those of Franklin’s algorithm. Note,
however, that with our new algorithm, making direct compar-
isons is somewhat complicated by the additional triangle qual-
ity parameters (bound ong). The results in Table 1 are based
on usingg= 0:5. Overall, we have been able to improve on



(a) (b) (c) (d)

Figure 5: Screen shots during the triangulation of the Denver terrain, using the new algorithm. Colors correspond to the current
state of a triangle: light green (3 vertices on the front), dark green (2 vertices on the front), red (1 vertex on the front), or gray (fully
committed – no vertex on the front). (See color version on our web site.) (a). early stages of the algorithm; (b). at a split; (c). the
triangulation around a split; (d). an early stage of the algorithmwithoutquality measures imposed on triangles.

Terrain ε Franklin GcTin New
Buffalo 2.5 2044 2279 2610, 1758
Denver 2.5 2698 2849 2661, 1833
Eagle Pass 1.5 1559 1578 1653, 1377
Gr. Canyon 15 2804 3115 3050, 2050
Jackson 0.5 1430 1127 1430, 928
Moab 15 2572 2430 2358, 2204
Seattle 5 2703 2763 2476, 2107

Table 1: Experimental results of approximations and trian-
gle counts: The counts for the new algorithm are shown with
strong and then weak feasibility.

both the number of triangles generated as well as their number,
with respect to the originalGcTin code. The memory cost is
about the same, with a slight increase overGcTin , since we
are storing a small number of (tentative) triangles. (In [9], we
show thatGcTin uses an order of magnitude less memory
than Franklin’s code.)

Triangle Quality Measures. Figs. 6–11 show histograms of
Gueziec’s quality measure for six (of the seven) terrains. It is
clear that the new algorithm gives a substantially better dis-
tribution of triangle quality that either Franklin’s algorithm or
our earlierGcTin . In particular, we can see that the number
of good triangles (the major peak) is always higher in the (c)
column.

5 Final Remarks

Preliminary input from our current users have been very fa-
vorable on the released version ofGcTin . We plan to re-
lease a new version of the software with the new algorithm,
and several improvements (and new features) based on their
comments. We would very much like to know more about
how effectiveGcTin can be in real GIS applications.

As future work, we plan to extend our technique to allow
real-time triangulation and to avoid actually storing the TINs
for viewing purposes. Other interesting directions are the han-
dling of gigabyte-size terrains, and more general data types.

The web site (http://cg.ams.sunysb.edu/ c̃silva/gctin.tgz)

contains the currentGcTin code. The updated version dis-
cussed in this paper will be available soon at the same
url.

Acknowledgements. We have used GeomView, from the Geometry
Center at the University of Minnesota, for generating some of the pic-
tures for this paper. We thank Martin Held for supplying us terrain
data and a program that decodes the DEM terrain datasets. Special
thanks to Wm. Randolph Franklin for making his triangulation code
freely available on the internet.

References
[1] R. Fowler and J. Little. Automatic extraction of irregular net-

work digital terrain models.Computer Graphics, 13(2):199–
207, August 1979.

[2] W. Franklin. Triangulated irregular network to approximate dig-
ital terrain, Section 2.3, Research Interests. Technical report,
Electrical, Computer, and Systems Engineering Dept., Rensse-
laer Polytechnic Institute, Troy, NY, 1994. Manuscript and code
available on ftp://ftp.cs.rpi.edu/pub/franklin/.

[3] A. Gueziec. Surface simplification with variable tolerance. In
Second Annual International Symposium on Medical Robotics
and Computer Assisted Surgery, pages 132–139, 1995.

[4] P. Heckbert and M. Garland. A Survey of Terrain Triangula-
tion Algorithms. Technical report, Carnegie Mellon University,
1995.

[5] M. van Kreveld. Digital elevation models and TIN algorithms.
In Algorithmic Foundations of Geographic Information Systems,
LNCS volume 1340, pages 37–78, Springer-Verlag, 1997.

[6] J. Lee. A drop heuristic conversion method for extracting irreg-
ular network for digital elevation models. InGIS/LIS ’89 Proc.,
volume 1, pages 30–39. American Congress on Surveying and
Mapping, Nov. 1989.

[7] J. Lee. Comparison of existing methods for building triangular
irregular network models of terrain from grid digital elevation
models.Intl. J. of Geographical Information Systems, 5(3):267–
285, July-Sept. 1991.

[8] W. Schroeder, J. Zarge, and W. Lorensen. Decimation of triangle
meshes. InSIGGRAPH ’92, volume 26, pages 65–70, July 1992.

[9] C. Silva, J. Mitchell, and A. Kaufman. Automatic generation
of triangular irregular networks using greedy cuts.Proc. IEEE
Visualization ’95, pages 201–208, 1995.



0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

Franklin

(a)

0

100

200

300

400

500

600

700

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

GcTin

(b)

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

New

(c)

Figure 6: Histogram of Gueziec’s quality measure for Buffalo terrain. Franklin’s algorithm is shown in (a). The original GcTin in
(b), and our new algorithm in (c).

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

Franklin

(a)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

GcTin

(b)

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

New

(c)

Figure 7: Histogram of Gueziec’s quality measure for Denver terrain. Franklin’s algorithm is shown in (a). The original GcTin in
(b), and our new algorithm in (c).

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

Franklin

(a)

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

GcTin

(b)

0

100

200

300

400

500

600

700

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

New

(c)

Figure 8: Histogram of Gueziec’s quality measure for Eagle Pass terrain. Franklin’s algorithm is shown in (a). The original GcTin
in (b), and our new algorithm in (c).



0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

Franklin

(a)

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

GcTin

(b)

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

New

(c)

Figure 9: Histogram of Gueziec’s quality measure for Grand Canyon terrain. Franklin’s algorithm is shown in (a). The original
GcTin in (b), and our new algorithm in (c).

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

Franklin

(a)

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

GcTin

(b)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

New

(c)

Figure 10: Histogram of Gueziec’s quality measure for Moab terrain. Franklin’s algorithm is shown in (a). The original GcTin in
(b), and our new algorithm in (c).

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

Franklin

(a)

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

GcTin

(b)

0

200

400

600

800

1000

1200

0 20 40 60 80 100

T
ri

an
gl

e 
C

ou
nt

Gueziec Quality

New

(c)

Figure 11: Histogram of Gueziec’s quality measure for Seattle terrain. Franklin’s algorithm is shown in (a). The original GcTin in
(b), and our new algorithm in (c).


