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V I S u A l I z A t I o n  C o r n E r

Provenance for visualizations

reProducibility and beyond

By Claudio T. Silva, Juliana Freire, and Steven P. Callahan

The demand for the construction of complex visualizations is growing in many disciplines of science, as users 
are faced with ever increasing volumes of data to analyze. The authors present VisTrails, an open source 
provenance-management system that provides infrastructure for data exploration and visualization.

C omputing has been an enor-
mous accelerator for science, 
leading to an information ex-

plosion in many  different fields. Fu-
ture scientific advances depend on our 
ability to comprehend the vast amounts 
of data currently being produced and 
acquired. To analyze and understand 
this data, though, we must assemble 
complex computational processes and 
generate insightful visualizations, 
which often require combining loosely 
coupled resources, specialized librar-
ies, and grid and Web services. Such 
processes could generate yet more 
data, adding to the information over-
flow scientists currently deal with.

Today, the scientific community 
uses ad hoc approaches to data ex-
ploration, but such approaches have 
serious limitations. In particular, 
scientists and engineers must expend 
substantial effort managing data 
(such as scripts that encode computa-
tional tasks, raw data, data products, 
images, and notes) and recording 
provenance information (that is, all the 
information necessary to reproduce 
a certain piece of data) so that they 
can answer basic questions: Who cre-
ated a data product and when? When 
was it modified, and who modified it? 
What process was used to create the 
data product? Were two data products 
derived from the same raw data? This 
process is not only time-consuming, 
but also error-prone.

Without provenance, it’s diffi-
cult (and sometimes impossible) to 
reproduce and share results, solve 
problems collaboratively, validate re-
sults with different input data, and 
understand the process used to solve 
a particular problem. In addition, 
data products’ longevity becomes 
limited—without precise and suffi-
cient information about how the data 
product was generated, its value di-
minishes significantly.

The lack of adequate provenance 
support in visualization systems mo-
tivated us to build VisTrails, an open 
source provenance-management sys-
tem that provides infrastructure for 
data exploration and visualization 
through workflows. VisTrails trans-
parently records detailed provenance 
of exploratory computational tasks 
and leverages this information be-
yond just the ability to reproduce and 
share results. In particular, it uses this 
information to simplify the process of 
exploring data through visualization.

Visualization Systems
Visualization systems such as Maya-
Vi (http://mayavi.sourceforge.net) and 
ParaView (www.paraview.org)—which 
are built on top of Kitware’s Visual-
ization Toolkit (VTK)1—as well as 
SCIRun (http://software.sci.utahedu/
scirun.html) enable users to interac-
tively create and manipulate complex 
visualizations. Such systems are based 

on the notion of data flows,2 and they 
provide visual interfaces for produc-
ing visualizations by assembling pipe-
lines out of modules (or functions) 
connected in a network. SCIRun 
supports an interface that lets users 
directly edit data flows. MayaVi and 
ParaView have a different interac-
tion paradigm that implicitly builds 
data flows as the user makes “task-
 oriented” choices (such as selecting 
an isosurface value).

Although these systems let users 
create complex visualizations, they 
lack the ability to support data explo-
ration at a large scale. Notably, they 
don’t adequately support collabora-
tive creation and exploration of mul-
tiple visualizations. Because these 
systems don’t distinguish between 
the definition of a data flow and its 
instances, to execute a given data 
flow with different parameters (for 
example, different input files), users 
must manually set these parameters 
through a GUI. Clearly, this process 
doesn’t scale to more than a few vi-
sualizations at a time. Additionally, 
modifications to parameters or to a 
data flow’s definition are destruc-
tive—the systems don’t maintain any 
change history. This requires the 
user to first construct the visualiza-
tion and then remember the input 
data sets, parameter values, and the 
exact dataflow configuration that led 
to a particular image.
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RepRoducibility and ShaRing 
data and pRoceSSeS foR the 
ViSualization coRneR

By Claudio Silva and Joel E. Tohline

Greetings! We’re the new co-editors for the Visualiza-
tion Corner. Claudio is a computer science professor at 

the university of utah and faculty member of the Scientific 
Computing and Imaging Institute, where he does research 
primarily in visualization, graphics, and applied geometry. 
Joel is a professor of physics and astronomy at louisiana 
State university and a faculty member in lSu’s Center for 
Computation and technology, with a research focus on 
complex fluid flows in astrophysical systems. We both have 
extensive experience in high-performance computing. In 
partnership with our readers and colleagues, we hope to 
bring you relevant and effective information about visual-
ization techniques that can directly affect the way our read-
ers do science. We would like to use new Web technologies 
(Wikis, blogs, and so on) to encourage the community to 

more actively participate in the way we do things.
this first column discusses the benefits of provenance 

and makes a case that better provenance mechanisms are 
needed for visualization. In upcoming installments, we’ll 
attempt to inform the scientific community at large about 
the benefits and technologies related to provenance. In 
particular, we want to promote the idea of reproducible 
visualizations. We encourage authors of articles published 
here to provide metadata for visualizations in their articles 
that let readers reproduce images as well as generate 
related ones (for example, using different data). ultimately, 
our hope is that this trend will spread to the point that 
published articles will contain not only textual descriptions 
of the techniques, but links to data, code, and the complete 
overall process used to generate the scientific results.

As a mechanism to capture and share provenance meta-
data, authors can use Vistrails to produce specifications 
of the figures and plots presented in their articles. We’ll 
archive this information at www.vistrails.org/index.php/
CiSE. the data and processes associated with this column 
are already available on the Web site, so you can reproduce 
them, right now, from your desktop!

Finally, before constructing a vi-
sualization, users must often acquire, 
generate, or transform a given data 
set—for example, to calibrate a simu-
lation, they must obtain data from sen-
sors, generate data from a simulation, 
and finally construct and compare the 
visualizations for both data sets. Most 
visualization systems, however, don’t 
give users adequate support for cre-
ating complex pipelines that support 
multiple libraries and services.

VisTrails: Provenance 
for Visualization
The VisTrails system (www.vistrails.
org) we developed at the Univer-
sity of Utah is a new visualization 
 system that provides a comprehensive 
 provenance-management infrastruc-
ture and can be easily combined with 
existing visualization libraries. Unlike 
previous systems, VisTrails uses an 
action-based provenance model that 
uniformly captures changes to both 
parameter values and pipeline defini-
tions by unobtrusively tracking all 
changes that users make to pipelines 
in an exploration task. We refer to 

this detailed provenance of the pipe-
line evolution as a visualization trail, 
or vistrail.

The stored provenance ensures 
that users will be able to reproduce 
the visualizations and lets them easily 
navigate through the space of pipe-
lines created for a given exploration 
task. The VisTrails interface lets users 
query, interact with, and understand 
the visualization process’s history. In 
particular, they can return to previous 
versions of a pipeline and change the 
specification or parameters to gener-
ate a new visualization without losing 
previous changes.

Another important feature of the 
action-based provenance model is 
that it enables a series of operations 
that greatly simplify the exploration 
process and could reduce the time to 
insight. In particular, the model al-
lows the flexible reuse of pipelines 
and provides a scalable mechanism 
for creating and comparing numer-
ous visualizations as well as their cor-
responding pipelines. Although we 
originally built VisTrails to support 
exploratory visualization tasks, its 

extensible infrastructure lets users in-
tegrate a wide range of libraries. This 
makes the system suitable for other 
exploratory tasks, including data min-
ing and integration.

Creating an Interactive 
Visualization with VisTrails
To illustrate the issues involved in 
creating visualizations and how prov-
enance can aid in this process, we 
present the following scenario, com-
mon in medical data visualization.

Starting from a volumetric computed 
tomography (CT) data set, we generate 
different visualizations by exploring 
the data through volume rendering, 
isosurfacing (extracting a contour), and 
slicing. Note that with proper modi-
fications, this example also works for 
visualizing other types of data (for ex-
ample, tetrahedral meshes).

Dataflow-Processing Networks 
and Visual Programming
A useful paradigm for building visu-
alization applications is the dataflow 
model. A data flow is a directed graph in 
which nodes represent computations, 
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and edges represent data streams: 
each node or module corresponds to 
a procedure that’s applied on the in-
put data and generates some output 
data as a result. The flow of data in 
the graph determines the order in 
which a dataflow system executes the 
processing nodes. In visualization, we 
commonly refer to a dataflow network 
as a visualization pipeline. (For this 
article, we use the terms workflow, 
data flow, and pipeline interchange-
ably.) Figure 1b shows an example of 
the data flow used to derive the im-
ages shown in Figure 1c. The green 
rectangles represent modules, and 
the black lines represent connec-
tions. Most of the modules in Figure 
1 are from VTK, and labels on each 
module indicate the corresponding 
VTK class. In this figure, we natu-
rally think of data flowing from top 
to bottom, eventually being rendered 
and presented for display.

We can use different mechanisms 

for creating visualization pipelines—
for example, scripting in a modern 
dynamic language, such as Python. 
Consider Figure 1a, which defines the 
workflow via a script written in Py-
thon that uses VTK to read a volume 
data set from a file, extract an isosur-
face, map the isosurface to renderable 
geometry, and then finally render it in 
an interactive window.

Visual programming interfaces for 
designing data flows have become 
popular and several systems, such as 
SCIRun, have adopted them. These 
interfaces give users a more intuitive 
view of the pipeline. They also dy-
namically perform type checking and 
guide the connection between mod-
ules’ input and output ports—once 
the user selects a module’s output, 
connections are allowed only to the 
target module’s appropriate input. 
VisTrails automatically pulls edges 
toward the correct input port. As we 
discuss later, another benefit of hav-

ing a high-level, structured workflow 
description is that we can use expres-
sive languages in querying and updat-
ing workflows.

Comparing and Exploring 
Multiple Visualizations
Regardless of the specific mechanism 
we use to define a pipeline, the visu-
alization process’s end goal is to gain 
insight from the data. To obtain such 
insight, users must often generate 
and compare multiple visualizations. 
Going back to our scenario, several 
alternatives exist for rendering our 
CT data. Isosurfacing is a commonly 
used technique. Given a function f: 
Rn → R and a value a, an isosurface 
consists of the set of points in a do-
main that map to a—that is, Sa = {x ∈ 
Rn: f(x) = a}.

The range of a values determines all 
possible isosurfaces that the user can 
generate. To identify “good” a values 
that represent a data set’s important 

(a) (b) (c)

Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing 
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides, 
facilitate the creation and maintenance of these dataflow pipelines. The green rectangles represent modules, and 
the black lines represent connections. (c) The end result of the script or VisTrails pipeline is a set of interactive 
visualizations.
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features, we can look at the range of 
values taken by a, and their frequen-
cy, in the form of a histogram. Using 
VisTrails, we can straightforwardly 
extend the isosurface pipeline to 
also display a histogram of the data. 
VisTrails provides a very simple plug-
in functionality that you can use to 
add packages and libraries, including 
your own. For our example, we used 
matplotlib’s 2D plotting functionality 
(http://matplotlib.sourceforge.net) to 
generate the histogram at the top of 
Figure 1c. This histogram helps in 
data exploration by suggesting re-
gions of interest in the volume. The 
plot shows that the highest frequency 
features lie between the ranges [0,25] 
and [58,68]. To identify the features 
that correspond to these ranges, we 
must explore these regions directly 
through visualization.

Scalable exploration of parameter spaces. 
VisTrails provides an interface for 
parameter exploration that lets users 
specify a set of parameters to explore, 
as well as how to explore, group, and 
display them. As a simple 1D example, 
Figure 2 shows an exploration of the 

isosurface value as four steps between 
50 and 70, displayed horizontally in 
the VisTrails spreadsheet. 

This spreadsheet lets us compare 
visualizations in different dimensions 
(row, column, sheet, and time);  we 
can also link the spreadsheet’s cells to 
synchronize the interactions between 
visualizations. Note that VisTrails 
leverages the dataflow specifications 
to identify and avoid redundant op-
erations. By using the same cache 
for different cells in the spreadsheet, 
VisTrails lets users efficiently explore 
numerous related visualizations.

Comparing different visualization tech-
niques. Volume rendering is a power-
ful computer graphics technique for 
visualizing 3D data. Whereas many 
visualization algorithms focus on 
creating a rendering of surfaces—
 although they might be surfaces of 
3D objects—volume rendering lets us 
see “inside” the volume. This tech-
nique models the volume as cloud-
like cells of semitransparent material. 
A surface rendering of the human 
body might show only the skin, for 
example, but a complete volume ren-

dering might also show the bones and 
internal organs.

Volume rendering and isosurfacing 
are complementary techniques, and 
they can generate very similar imag-
ery depending on parameters. In fact, 
distinguishing between them can be 
difficult. The VisTrails system lets us 
compare workflows using a visual dif-
ference interface. To demonstrate this 
capability, we compute the difference 
between the original isosurface-gen-
eration pipeline and the new volume-
rendering pipeline. Figure 3 shows 
the visual difference of the workflows 
that we can inspect, along with their 
resulting visualizations. In Figure 3a, 
we use volume rendering to create the 
image, in which we can see the skin 
on top of the bone structure; Figure 
3b shows only the bone structure ren-
dered with our standard isosurface 
technique. This ability to (efficiently) 
compare workflows and visualizations 
is one of the benefits of the VisTrails 
action-based provenance model and 
becomes increasingly important as a 
workflow becomes more complex and 
is shared among collaborators.

With other workflow systems, these 

Figure 2. VisTrails’ parameter exploration interface. The system computes the results efficiently by avoiding 
redundant computation and displays them in the spreadsheet for interactive comparative visualization.
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comparisons are challenging because 
they require module-by-module (vi-
sual programming) or line-by-line 

(scripting) comparisons. Although the 
former can be computationally intrac-
table (the related decision problem of 

subgraph isomorphism is NP-complete), 
the latter could lead to results that are 
hard to interpret.

(a) (b)

(c)

Figure 4. Multiple rendering techniques. (a) VisTrails renders visualizations by combining volume rendering and 
isosurfacing and updates them with user interactions. (b) The corresponding pipeline represents the data flow for 
creating interactive visualizations. (c) VisTrails provides a fully browseable history of the exploration process that led 
to this final set of visualizations.

(a)

(b) (c)

Figure 3. A visual difference between different pipelines in VisTrails. We show the difference between pipelines that 
generated (a) volume rendering and (b) isosurface visualizations. (c) The interface distinguishes shared modules in 
dark gray, the modules unique to isosurfacing in blue, those unique to direct volume rendering in orange, and those 
with parameter changes in light gray.
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Interacting with visualizations. The 
images we generated so far corre-
spond to simple, static workflows. To 
perform a more dynamic compari-
son between volume rendering and 
isosurfacing, we add a feedback loop 
into the workflow to let users adjust 
the visualization interactively. We 
thus build a new workflow that uses 
the isosurfacing and volume render-
ing algorithms simultaneously. We 
add a clipping plane into the volume 
visualization to assign the volume 
regions used for each algorithm. In 
addition, we use a point on the plane 
to define axis-aligned slices of the 
volume that we display in distinct 
spreadsheet cells. The pipeline in-

teractively updates these slices along 
with the plane during user interac-
tions. Figure 4 shows the resulting 
visualizations along with the com-
plex dynamic workflow required to 
produce them.

Provenance and 
Exploratory Visualization
The combination of multiple visual-
ization algorithms, different librar-
ies, and the interactions between 
them considerably complicates the 
workflow specification. In addition, 
creating a set of visualizations from 
data is not always a linear process 
and often involves several itera-
tions as a user formulates and tests 

hypotheses. Whereas for simple 
experiments, manual approaches 
to provenance management might 
be feasible, complex computational 
tasks involving large volumes of data 
or multiple researchers require au-
tomated approaches. As these tasks’ 
complexity and scale increases, data 
organization becomes a major com-
ponent of the process.

VisTrails manages the data ma-
nipulated and metadata created in 
the course of an exploratory task.3 As 
a user (or group of users) generates 
a series of visualizations, VisTrails 
transparently tracks all the steps this 
exploration followed—that is, the 
modules and connections added and 

the ViStRailS SyStem

In this article, we focus on using Vistrails as a tool for 
exploratory visualization. Additional features might be 

relevant for CiSE readers:

Flexible provenance architecture. Vistrails transparently 
tracks changes made to workflows by maintaining a 
detailed record of all the steps followed in the explora-
tion. the system can optionally track runtime informa-
tion about workflow execution (such as who executed 
a module, on which machine, and how much time 
elapsed). Vistrails also provides a flexible annotation 
framework through which users can specify application-
 specific provenance information.
Querying and reusing history. Provenance information 
is stored in a structured way. users have the choice of 
using a relational database (such as MySQl or IBM DB2) 
or XMl files in the file system. the system provides 
flexible and intuitive query interfaces through which 
users can explore and reuse provenance information. 
users can formulate simple keyword-based and selection 
queries (find a visualization that a given user created, for 
example) as well as structured queries (find visualizations 
that apply simplification before an isosurface computa-
tion for irregular grid data sets).
Support for collaborative exploration. users can configure 
the system with a database back end that can act as a 
shared repository. this back end also provides a syn-
chronization facility that lets users collaborate asynchro-
nously and in a disconnected fashion—they can check 
changes in and out, akin to a version-control system 
(such as subversion (SVn), http://subversion.tigris.org).

•

•

•

Extensibility. Vistrails provides a very simple plug-in 
functionality that can help dynamically add packages 
and libraries. neither changes to the user interface nor 
system recompilation are necessary. Because Vistrails is 
written in Python, integrating Python-wrapped libraries 
is straightforward.
Scalable derivation of data products and parameter explora-
tion. Vistrails supports a series of operations for simulta-
neously generating multiple data products, including an 
interface that lets users specify sets of values for different 
parameters in a workflow. users can display the results 
of a parameter exploration side by side in the Vistrails 
spreadsheet for easy comparison.
Task creation by analogy. Vistrails supports analogies as 
first-class operations to guide semiautomated changes to 
multiple workflows, without requiring users to directly 
manipulate or edit the workflow specifications.

Please visit www.vistrails.org to access the Vistrails 
community Web site. You’ll find information including 
instructions for obtaining the software, online docu-
mentation, video tutorials, and pointers to papers and 
presentations.

Vistrails is written in Python and uses the multiplat-
form Qt library for its user interface. the system is open 
source, released under the GPl 2.0 license. the pre-com-
piled versions for Windows, Mac oS X, and linux come 
with an installer and several packages, including VtK, 
matplotlib, and Image Magick. Additional packages, 
including ones users have written, are also available, 
but you can easily add new packages using the Vistrails 
plug-in infrastructure. Detailed instructions are available 
at our Web site.

•

•

•
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deleted, parameter value changes, and 
so on. Figure 4c shows a history tree 
of the different pipelines created in the 
course of our running example. The 
nodes in this tree correspond to pipe-
lines; an edge between two pipelines 
corresponds to changes performed on 
the parent pipeline to obtain its child. 
For readability, by default, only the 
nodes in the tree that the user tags as 
important are displayed.

By tracking all the changes made 
to a workflow ensemble, VisTrails 
properly captures each step, leaving 
a complete trail of the work. Hav-
ing access to the different pipelines’ 
specifications lets others reproduce 
and share the results of each step in 
the exploratory process. To demon-
strate this, we made the vistrail asso-

ciated with this example available for 
download with the VisTrails system 
(see “The VisTrails System” sidebar). 
You can recreate each figure shown in 
this article by executing the different 
nodes in the history tree. Note that 
by using the action-based provenance 
model, we obtain a very concise rep-
resentation of the history, which uses 
substantially less space than the alter-
native of explicitly storing multiple 
versions of a pipeline.3

The exploration trail VisTrails cap-
tures also supports various activities 
that are crucial for performing reflec-
tive reasoning and obtaining insights, 
such as following chains of reasoning 
backward and forward and comparing 
different results.4 The tree-based view 
lets users

seamlessly navigate over the history 
tree and return to previous pipeline 
versions after reaching a dead end;
undo bad changes;
reuse pipelines and pipeline frag-
ments from previous versions; 
compare different pipelines and 
their results; and
be reminded, intuitively, of the ac-
tions that led to a particular result.

Thus, users can efficiently explore 
several related visualizations.

The issue of reproducibility for vi-
sualization has been considered be-
fore,5 but we should note that whereas 
some visualization and workflow sys-
tems provide support for provenance 
tracking, their focus has been on data 
provenance—that is, information 
about how the system derived a given 
data product, including the param-
eter values used6—and on interaction 
provenance (such as capturing a visu-
alization’s viewing manipulations).7 
VisTrails is the first system to capture 
information about how workflows 
evolve over time.

For instance, to generate the 
composite visualization in our final 
example, we extended our pipeline 
labeled Volume Rendering to include 

•

•
•

•

•

Figure 5. The VisTrails query-by-example interface. (a) Users can define a set of modules and parameters in the visual 
programming interface to create a query template. (b) The query results are shown in the history tree, which users 
can browse for specific instances of the match (inset).

Table 1. Query examples.

Query Result

volume Highlights all nodes in the history tree in which 
the string “volume” appears (for example, in a 
module name, parameter name, annotation)

user:juliana Highlights all nodes in the history tree created by 
the user “juliana”

before: March 30, 2007 Highlights all nodes in the history tree created 
before “March 30, 2007”
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modules from the pipeline labeled 
Isosurfacing. (Having two pipelines 
lets us further explore the visualiza-
tion—by trying different isosurface 
values, for example [see Figure 2]). In 
addition, we can compare the pipe-
lines by dragging one node on top 
of the other (see Figure 3). These 
computed differences are useful for 
understanding the visualization pro-
cess, and the user can also reuse them. 
In this case, we applied the modules 
unique to “Isosurfacing” to “Volume 
Rendering” to create a new pipeline 
called “Combined Rendering,” that 
uses a cutting plane to define regions 
for the rendering methods. VisTrails 
can automatically apply pipeline dif-
ferences (like a patch) to derive new 
pipelines in a process we call visual-
ization creation by analogy.8

Another benefit to having a high-
level specification of the visualiza-
tion process is that users can query 
the pipelines and their execution 
instances. Scientists can query a vis-
trail to find anomalies in previously 
generated visualizations and locate 
data products and visualizations 
based on operations applied in the 
visualization process. VisTrails sup-
ports simple, keyword-based queries 
as well as structured queries. In addi-
tion to providing information about 
the results (for example, workflow 
identifiers and attributes), VisTrails 
can visually display query results by 
highlighting the workflows and mod-
ules that satisfy the query. Table 1 
shows an example.

Users might also define queries by 
example.8 As Figure 5 illustrates, us-
ers can construct (or copy and paste) 
a pipeline fragment into the VisTrails 
query tab to identify in the history 
tree all nodes that contain that frag-
ment. They can then browse through 
the highlighted nodes and click on one 

to display the workflow and highlight 
the modules that match the query. 
Users can then click on the individual 
modules to view the execution log re-
cords associated with them.

The VisTrails project has focused 
on creating an infrastructure to 

manage the provenance data of ex-
ploratory tasks. With this infrastruc-
ture in place, our research focus is 
now on what we can do with all the 
provenance accumulatation. By min-
ing this information, we hope to learn 
useful patterns that can guide users 
in assembling and refining complex 
computational tasks. 
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