
Editors: Claudio Silva, csilva@cs.utah.edu
Joel E. Tohline, tohline@rouge.phys.lsu.edu

82	 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 ©2007 IEEE	 Computing in SCienCe & engineering

V I S u A l I z A t I o n C o r n E r

Provenance for visualizations

reProducibility and beyond

By Claudio T. Silva, Juliana Freire, and Steven P. Callahan

The demand for the construction of complex visualizations is growing in many disciplines of science, as users
are faced with ever increasing volumes of data to analyze. The authors present VisTrails, an open source
provenance-management system that provides infrastructure for data exploration and visualization.

C omputing has been an enor-
mous accelerator for science,
leading to an information ex-

plosion in many different fields. Fu-
ture scientific advances depend on our
ability to comprehend the vast amounts
of data currently being produced and
acquired. To analyze and understand
this data, though, we must assemble
complex computational processes and
generate insightful visualizations,
which often require combining loosely
coupled resources, specialized librar-
ies, and grid and Web services. Such
processes could generate yet more
data, adding to the information over-
flow scientists currently deal with.

Today, the scientific community
uses ad hoc approaches to data ex-
ploration, but such approaches have
serious limitations. In particular,
scientists and engineers must expend
substantial effort managing data
(such as scripts that encode computa-
tional tasks, raw data, data products,
images, and notes) and recording
provenance information (that is, all the
information necessary to reproduce
a certain piece of data) so that they
can answer basic questions: Who cre-
ated a data product and when? When
was it modified, and who modified it?
What process was used to create the
data product? Were two data products
derived from the same raw data? This
process is not only time-consuming,
but also error-prone.

Without provenance, it’s diffi-
cult (and sometimes impossible) to
reproduce and share results, solve
problems collaboratively, validate re-
sults with different input data, and
understand the process used to solve
a particular problem. In addition,
data products’ longevity becomes
limited—without precise and suffi-
cient information about how the data
product was generated, its value di-
minishes significantly.

The lack of adequate provenance
support in visualization systems mo-
tivated us to build VisTrails, an open
source provenance-management sys-
tem that provides infrastructure for
data exploration and visualization
through workflows. VisTrails trans-
parently records detailed provenance
of exploratory computational tasks
and leverages this information be-
yond just the ability to reproduce and
share results. In particular, it uses this
information to simplify the process of
exploring data through visualization.

Visualization Systems
Visualization systems such as Maya-
Vi (http://mayavi.sourceforge.net) and
ParaView (www.paraview.org)—which
are built on top of Kitware’s Visual-
ization Toolkit (VTK)1—as well as
SCIRun (http://software.sci.utahedu/
scirun.html) enable users to interac-
tively create and manipulate complex
visualizations. Such systems are based

on the notion of data flows,2 and they
provide visual interfaces for produc-
ing visualizations by assembling pipe-
lines out of modules (or functions)
connected in a network. SCIRun
supports an interface that lets users
directly edit data flows. MayaVi and
ParaView have a different interac-
tion paradigm that implicitly builds
data flows as the user makes “task-
 oriented” choices (such as selecting
an isosurface value).

Although these systems let users
create complex visualizations, they
lack the ability to support data explo-
ration at a large scale. Notably, they
don’t adequately support collabora-
tive creation and exploration of mul-
tiple visualizations. Because these
systems don’t distinguish between
the definition of a data flow and its
instances, to execute a given data
flow with different parameters (for
example, different input files), users
must manually set these parameters
through a GUI. Clearly, this process
doesn’t scale to more than a few vi-
sualizations at a time. Additionally,
modifications to parameters or to a
data flow’s definition are destruc-
tive—the systems don’t maintain any
change history. This requires the
user to first construct the visualiza-
tion and then remember the input
data sets, parameter values, and the
exact dataflow configuration that led
to a particular image.

September/oCtober 2007 83

RepRoducibility and ShaRing
data and pRoceSSeS foR the
ViSualization coRneR

By Claudio Silva and Joel E. Tohline

Greetings! We’re the new co-editors for the Visualiza-
tion Corner. Claudio is a computer science professor at

the university of utah and faculty member of the Scientific
Computing and Imaging Institute, where he does research
primarily in visualization, graphics, and applied geometry.
Joel is a professor of physics and astronomy at louisiana
State university and a faculty member in lSu’s Center for
Computation and technology, with a research focus on
complex fluid flows in astrophysical systems. We both have
extensive experience in high-performance computing. In
partnership with our readers and colleagues, we hope to
bring you relevant and effective information about visual-
ization techniques that can directly affect the way our read-
ers do science. We would like to use new Web technologies
(Wikis, blogs, and so on) to encourage the community to

more actively participate in the way we do things.
this first column discusses the benefits of provenance

and makes a case that better provenance mechanisms are
needed for visualization. In upcoming installments, we’ll
attempt to inform the scientific community at large about
the benefits and technologies related to provenance. In
particular, we want to promote the idea of reproducible
visualizations. We encourage authors of articles published
here to provide metadata for visualizations in their articles
that let readers reproduce images as well as generate
related ones (for example, using different data). ultimately,
our hope is that this trend will spread to the point that
published articles will contain not only textual descriptions
of the techniques, but links to data, code, and the complete
overall process used to generate the scientific results.

As a mechanism to capture and share provenance meta-
data, authors can use Vistrails to produce specifications
of the figures and plots presented in their articles. We’ll
archive this information at www.vistrails.org/index.php/
CiSE. the data and processes associated with this column
are already available on the Web site, so you can reproduce
them, right now, from your desktop!

Finally, before constructing a vi-
sualization, users must often acquire,
generate, or transform a given data
set—for example, to calibrate a simu-
lation, they must obtain data from sen-
sors, generate data from a simulation,
and finally construct and compare the
visualizations for both data sets. Most
visualization systems, however, don’t
give users adequate support for cre-
ating complex pipelines that support
multiple libraries and services.

VisTrails: Provenance
for Visualization
The VisTrails system (www.vistrails.
org) we developed at the Univer-
sity of Utah is a new visualization
 system that provides a comprehensive
 provenance-management infrastruc-
ture and can be easily combined with
existing visualization libraries. Unlike
previous systems, VisTrails uses an
action-based provenance model that
uniformly captures changes to both
parameter values and pipeline defini-
tions by unobtrusively tracking all
changes that users make to pipelines
in an exploration task. We refer to

this detailed provenance of the pipe-
line evolution as a visualization trail,
or vistrail.

The stored provenance ensures
that users will be able to reproduce
the visualizations and lets them easily
navigate through the space of pipe-
lines created for a given exploration
task. The VisTrails interface lets users
query, interact with, and understand
the visualization process’s history. In
particular, they can return to previous
versions of a pipeline and change the
specification or parameters to gener-
ate a new visualization without losing
previous changes.

Another important feature of the
action-based provenance model is
that it enables a series of operations
that greatly simplify the exploration
process and could reduce the time to
insight. In particular, the model al-
lows the flexible reuse of pipelines
and provides a scalable mechanism
for creating and comparing numer-
ous visualizations as well as their cor-
responding pipelines. Although we
originally built VisTrails to support
exploratory visualization tasks, its

extensible infrastructure lets users in-
tegrate a wide range of libraries. This
makes the system suitable for other
exploratory tasks, including data min-
ing and integration.

Creating an Interactive
Visualization with VisTrails
To illustrate the issues involved in
creating visualizations and how prov-
enance can aid in this process, we
present the following scenario, com-
mon in medical data visualization.

Starting from a volumetric computed
tomography (CT) data set, we generate
different visualizations by exploring
the data through volume rendering,
isosurfacing (extracting a contour), and
slicing. Note that with proper modi-
fications, this example also works for
visualizing other types of data (for ex-
ample, tetrahedral meshes).

Dataflow-Processing Networks
and Visual Programming
A useful paradigm for building visu-
alization applications is the dataflow
model. A data flow is a directed graph in
which nodes represent computations,

V I S u A l I z A t I o n C o r n E r

84	 Computing in SCienCe & engineering

and edges represent data streams:
each node or module corresponds to
a procedure that’s applied on the in-
put data and generates some output
data as a result. The flow of data in
the graph determines the order in
which a dataflow system executes the
processing nodes. In visualization, we
commonly refer to a dataflow network
as a visualization pipeline. (For this
article, we use the terms workflow,
data flow, and pipeline interchange-
ably.) Figure 1b shows an example of
the data flow used to derive the im-
ages shown in Figure 1c. The green
rectangles represent modules, and
the black lines represent connec-
tions. Most of the modules in Figure
1 are from VTK, and labels on each
module indicate the corresponding
VTK class. In this figure, we natu-
rally think of data flowing from top
to bottom, eventually being rendered
and presented for display.

We can use different mechanisms

for creating visualization pipelines—
for example, scripting in a modern
dynamic language, such as Python.
Consider Figure 1a, which defines the
workflow via a script written in Py-
thon that uses VTK to read a volume
data set from a file, extract an isosur-
face, map the isosurface to renderable
geometry, and then finally render it in
an interactive window.

Visual programming interfaces for
designing data flows have become
popular and several systems, such as
SCIRun, have adopted them. These
interfaces give users a more intuitive
view of the pipeline. They also dy-
namically perform type checking and
guide the connection between mod-
ules’ input and output ports—once
the user selects a module’s output,
connections are allowed only to the
target module’s appropriate input.
VisTrails automatically pulls edges
toward the correct input port. As we
discuss later, another benefit of hav-

ing a high-level, structured workflow
description is that we can use expres-
sive languages in querying and updat-
ing workflows.

Comparing and Exploring
Multiple Visualizations
Regardless of the specific mechanism
we use to define a pipeline, the visu-
alization process’s end goal is to gain
insight from the data. To obtain such
insight, users must often generate
and compare multiple visualizations.
Going back to our scenario, several
alternatives exist for rendering our
CT data. Isosurfacing is a commonly
used technique. Given a function f:
Rn → R and a value a, an isosurface
consists of the set of points in a do-
main that map to a—that is, Sa = {x ∈
Rn: f(x) = a}.

The range of a values determines all
possible isosurfaces that the user can
generate. To identify “good” a values
that represent a data set’s important

(a) (b) (c)

Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides,
facilitate the creation and maintenance of these dataflow pipelines. The green rectangles represent modules, and
the black lines represent connections. (c) The end result of the script or VisTrails pipeline is a set of interactive
visualizations.

September/oCtober 2007 85

features, we can look at the range of
values taken by a, and their frequen-
cy, in the form of a histogram. Using
VisTrails, we can straightforwardly
extend the isosurface pipeline to
also display a histogram of the data.
VisTrails provides a very simple plug-
in functionality that you can use to
add packages and libraries, including
your own. For our example, we used
matplotlib’s 2D plotting functionality
(http://matplotlib.sourceforge.net) to
generate the histogram at the top of
Figure 1c. This histogram helps in
data exploration by suggesting re-
gions of interest in the volume. The
plot shows that the highest frequency
features lie between the ranges [0,25]
and [58,68]. To identify the features
that correspond to these ranges, we
must explore these regions directly
through visualization.

Scalable exploration of parameter spaces.
VisTrails provides an interface for
parameter exploration that lets users
specify a set of parameters to explore,
as well as how to explore, group, and
display them. As a simple 1D example,
Figure 2 shows an exploration of the

isosurface value as four steps between
50 and 70, displayed horizontally in
the VisTrails spreadsheet.

This spreadsheet lets us compare
visualizations in different dimensions
(row, column, sheet, and time); we
can also link the spreadsheet’s cells to
synchronize the interactions between
visualizations. Note that VisTrails
leverages the dataflow specifications
to identify and avoid redundant op-
erations. By using the same cache
for different cells in the spreadsheet,
VisTrails lets users efficiently explore
numerous related visualizations.

Comparing different visualization tech-
niques. Volume rendering is a power-
ful computer graphics technique for
visualizing 3D data. Whereas many
visualization algorithms focus on
creating a rendering of surfaces—
 although they might be surfaces of
3D objects—volume rendering lets us
see “inside” the volume. This tech-
nique models the volume as cloud-
like cells of semitransparent material.
A surface rendering of the human
body might show only the skin, for
example, but a complete volume ren-

dering might also show the bones and
internal organs.

Volume rendering and isosurfacing
are complementary techniques, and
they can generate very similar imag-
ery depending on parameters. In fact,
distinguishing between them can be
difficult. The VisTrails system lets us
compare workflows using a visual dif-
ference interface. To demonstrate this
capability, we compute the difference
between the original isosurface-gen-
eration pipeline and the new volume-
rendering pipeline. Figure 3 shows
the visual difference of the workflows
that we can inspect, along with their
resulting visualizations. In Figure 3a,
we use volume rendering to create the
image, in which we can see the skin
on top of the bone structure; Figure
3b shows only the bone structure ren-
dered with our standard isosurface
technique. This ability to (efficiently)
compare workflows and visualizations
is one of the benefits of the VisTrails
action-based provenance model and
becomes increasingly important as a
workflow becomes more complex and
is shared among collaborators.

With other workflow systems, these

Figure 2. VisTrails’ parameter exploration interface. The system computes the results efficiently by avoiding
redundant computation and displays them in the spreadsheet for interactive comparative visualization.

V I S u A l I z A t I o n C o r n E r

86	 Computing in SCienCe & engineering

comparisons are challenging because
they require module-by-module (vi-
sual programming) or line-by-line

(scripting) comparisons. Although the
former can be computationally intrac-
table (the related decision problem of

subgraph isomorphism is NP-complete),
the latter could lead to results that are
hard to interpret.

(a) (b)

(c)

Figure 4. Multiple rendering techniques. (a) VisTrails renders visualizations by combining volume rendering and
isosurfacing and updates them with user interactions. (b) The corresponding pipeline represents the data flow for
creating interactive visualizations. (c) VisTrails provides a fully browseable history of the exploration process that led
to this final set of visualizations.

(a)

(b) (c)

Figure 3. A visual difference between different pipelines in VisTrails. We show the difference between pipelines that
generated (a) volume rendering and (b) isosurface visualizations. (c) The interface distinguishes shared modules in
dark gray, the modules unique to isosurfacing in blue, those unique to direct volume rendering in orange, and those
with parameter changes in light gray.

September/oCtober 2007 87

Interacting with visualizations. The
images we generated so far corre-
spond to simple, static workflows. To
perform a more dynamic compari-
son between volume rendering and
isosurfacing, we add a feedback loop
into the workflow to let users adjust
the visualization interactively. We
thus build a new workflow that uses
the isosurfacing and volume render-
ing algorithms simultaneously. We
add a clipping plane into the volume
visualization to assign the volume
regions used for each algorithm. In
addition, we use a point on the plane
to define axis-aligned slices of the
volume that we display in distinct
spreadsheet cells. The pipeline in-

teractively updates these slices along
with the plane during user interac-
tions. Figure 4 shows the resulting
visualizations along with the com-
plex dynamic workflow required to
produce them.

Provenance and
Exploratory Visualization
The combination of multiple visual-
ization algorithms, different librar-
ies, and the interactions between
them considerably complicates the
workflow specification. In addition,
creating a set of visualizations from
data is not always a linear process
and often involves several itera-
tions as a user formulates and tests

hypotheses. Whereas for simple
experiments, manual approaches
to provenance management might
be feasible, complex computational
tasks involving large volumes of data
or multiple researchers require au-
tomated approaches. As these tasks’
complexity and scale increases, data
organization becomes a major com-
ponent of the process.

VisTrails manages the data ma-
nipulated and metadata created in
the course of an exploratory task.3 As
a user (or group of users) generates
a series of visualizations, VisTrails
transparently tracks all the steps this
exploration followed—that is, the
modules and connections added and

the ViStRailS SyStem

In this article, we focus on using Vistrails as a tool for
exploratory visualization. Additional features might be

relevant for CiSE readers:

Flexible provenance architecture. Vistrails transparently
tracks changes made to workflows by maintaining a
detailed record of all the steps followed in the explora-
tion. the system can optionally track runtime informa-
tion about workflow execution (such as who executed
a module, on which machine, and how much time
elapsed). Vistrails also provides a flexible annotation
framework through which users can specify application-
 specific provenance information.
Querying and reusing history. Provenance information
is stored in a structured way. users have the choice of
using a relational database (such as MySQl or IBM DB2)
or XMl files in the file system. the system provides
flexible and intuitive query interfaces through which
users can explore and reuse provenance information.
users can formulate simple keyword-based and selection
queries (find a visualization that a given user created, for
example) as well as structured queries (find visualizations
that apply simplification before an isosurface computa-
tion for irregular grid data sets).
Support for collaborative exploration. users can configure
the system with a database back end that can act as a
shared repository. this back end also provides a syn-
chronization facility that lets users collaborate asynchro-
nously and in a disconnected fashion—they can check
changes in and out, akin to a version-control system
(such as subversion (SVn), http://subversion.tigris.org).

•

•

•

Extensibility. Vistrails provides a very simple plug-in
functionality that can help dynamically add packages
and libraries. neither changes to the user interface nor
system recompilation are necessary. Because Vistrails is
written in Python, integrating Python-wrapped libraries
is straightforward.
Scalable derivation of data products and parameter explora-
tion. Vistrails supports a series of operations for simulta-
neously generating multiple data products, including an
interface that lets users specify sets of values for different
parameters in a workflow. users can display the results
of a parameter exploration side by side in the Vistrails
spreadsheet for easy comparison.
Task creation by analogy. Vistrails supports analogies as
first-class operations to guide semiautomated changes to
multiple workflows, without requiring users to directly
manipulate or edit the workflow specifications.

Please visit www.vistrails.org to access the Vistrails
community Web site. You’ll find information including
instructions for obtaining the software, online docu-
mentation, video tutorials, and pointers to papers and
presentations.

Vistrails is written in Python and uses the multiplat-
form Qt library for its user interface. the system is open
source, released under the GPl 2.0 license. the pre-com-
piled versions for Windows, Mac oS X, and linux come
with an installer and several packages, including VtK,
matplotlib, and Image Magick. Additional packages,
including ones users have written, are also available,
but you can easily add new packages using the Vistrails
plug-in infrastructure. Detailed instructions are available
at our Web site.

•

•

•

V I S u A l I z A t I o n C o r n E r

88	 Computing in SCienCe & engineering

deleted, parameter value changes, and
so on. Figure 4c shows a history tree
of the different pipelines created in the
course of our running example. The
nodes in this tree correspond to pipe-
lines; an edge between two pipelines
corresponds to changes performed on
the parent pipeline to obtain its child.
For readability, by default, only the
nodes in the tree that the user tags as
important are displayed.

By tracking all the changes made
to a workflow ensemble, VisTrails
properly captures each step, leaving
a complete trail of the work. Hav-
ing access to the different pipelines’
specifications lets others reproduce
and share the results of each step in
the exploratory process. To demon-
strate this, we made the vistrail asso-

ciated with this example available for
download with the VisTrails system
(see “The VisTrails System” sidebar).
You can recreate each figure shown in
this article by executing the different
nodes in the history tree. Note that
by using the action-based provenance
model, we obtain a very concise rep-
resentation of the history, which uses
substantially less space than the alter-
native of explicitly storing multiple
versions of a pipeline.3

The exploration trail VisTrails cap-
tures also supports various activities
that are crucial for performing reflec-
tive reasoning and obtaining insights,
such as following chains of reasoning
backward and forward and comparing
different results.4 The tree-based view
lets users

seamlessly navigate over the history
tree and return to previous pipeline
versions after reaching a dead end;
undo bad changes;
reuse pipelines and pipeline frag-
ments from previous versions;
compare different pipelines and
their results; and
be reminded, intuitively, of the ac-
tions that led to a particular result.

Thus, users can efficiently explore
several related visualizations.

The issue of reproducibility for vi-
sualization has been considered be-
fore,5 but we should note that whereas
some visualization and workflow sys-
tems provide support for provenance
tracking, their focus has been on data
provenance—that is, information
about how the system derived a given
data product, including the param-
eter values used6—and on interaction
provenance (such as capturing a visu-
alization’s viewing manipulations).7
VisTrails is the first system to capture
information about how workflows
evolve over time.

For instance, to generate the
composite visualization in our final
example, we extended our pipeline
labeled Volume Rendering to include

•

•
•

•

•

Figure 5. The VisTrails query-by-example interface. (a) Users can define a set of modules and parameters in the visual
programming interface to create a query template. (b) The query results are shown in the history tree, which users
can browse for specific instances of the match (inset).

Table 1. Query examples.

Query Result

volume Highlights all nodes in the history tree in which
the string “volume” appears (for example, in a
module name, parameter name, annotation)

user:juliana Highlights all nodes in the history tree created by
the user “juliana”

before: March 30, 2007 Highlights all nodes in the history tree created
before “March 30, 2007”

September/oCtober 2007 89

modules from the pipeline labeled
Isosurfacing. (Having two pipelines
lets us further explore the visualiza-
tion—by trying different isosurface
values, for example [see Figure 2]). In
addition, we can compare the pipe-
lines by dragging one node on top
of the other (see Figure 3). These
computed differences are useful for
understanding the visualization pro-
cess, and the user can also reuse them.
In this case, we applied the modules
unique to “Isosurfacing” to “Volume
Rendering” to create a new pipeline
called “Combined Rendering,” that
uses a cutting plane to define regions
for the rendering methods. VisTrails
can automatically apply pipeline dif-
ferences (like a patch) to derive new
pipelines in a process we call visual-
ization creation by analogy.8

Another benefit to having a high-
level specification of the visualiza-
tion process is that users can query
the pipelines and their execution
instances. Scientists can query a vis-
trail to find anomalies in previously
generated visualizations and locate
data products and visualizations
based on operations applied in the
visualization process. VisTrails sup-
ports simple, keyword-based queries
as well as structured queries. In addi-
tion to providing information about
the results (for example, workflow
identifiers and attributes), VisTrails
can visually display query results by
highlighting the workflows and mod-
ules that satisfy the query. Table 1
shows an example.

Users might also define queries by
example.8 As Figure 5 illustrates, us-
ers can construct (or copy and paste)
a pipeline fragment into the VisTrails
query tab to identify in the history
tree all nodes that contain that frag-
ment. They can then browse through
the highlighted nodes and click on one

to display the workflow and highlight
the modules that match the query.
Users can then click on the individual
modules to view the execution log re-
cords associated with them.

The VisTrails project has focused
on creating an infrastructure to

manage the provenance data of ex-
ploratory tasks. With this infrastruc-
ture in place, our research focus is
now on what we can do with all the
provenance accumulatation. By min-
ing this information, we hope to learn
useful patterns that can guide users
in assembling and refining complex
computational tasks.

Acknowledgments
This article summarizes work being
done in the VisTrails project. It’s only
possible through the work of all our
team members: Erik Anderson, Jason
Callahan, David Koop, Emanuele
Santos, Carlos E. Scheidegger, and
Huy T. Vo. The data used in this ar-
ticle is available courtesy of the Na-
tional Library of Medicine’s Visible
Human Project. The US National Sci-
ence Foundation partially supported
this work under grants IIS-0513692,
CCF-0401498, EIA-0323604, CNS-
0541560, OCE-0424602, and OISE-
0405402. The US Department of
Energy, an IBM Faculty Award, and
a University of Utah Seed Grant also
partially supported this work.

References
W. Schroeder, K. Martin, and B. lorensen,
The Visualization Toolkit: An Object-Oriented
Approach To 3D Graphics, Kitware, 2003.

E.A. lee and t.M. Parks, “Dataflow Process
networks,” Proc. IEEE, vol. 83, no. 5, 1995,
pp. 773–801.

S. Callahan et al., “Managing the Evolution
of Dataflows with Vistrails (extended ab-
stract),” Proc. IEEE Workshop on Workflow and

1.

2.

3.

Data Flow for Scientific Applications (SciFlow),
IEEE CS Press, 2006.

D.A. norman, Things That Make Us Smart:
Defending Human Attributes in the Age of the
Machine, Addison-Wesley, 1994.

G. Kindlmann, “lack of reproducibility Hin-
ders Visualization Science,” IEEE Visualization
Compendium, IEEE CS Press, 2006, p. 69.

t. Jankun-Kelly, K.-l. Ma, and M. Gertz,
“A Model and Framework for Visualization
Exploration,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 2, 2007, pp.
357–369.

D.P. Groth and K. Streefkerk, “Provenance
and Annotation for Visual Exploration
Systems,” IEEE Trans. Visualization and
Computer Graphics, vol. 12, no. 6, 2006, pp.
1500–1510.

C. Scheidegger et al., Querying and
Creating Visualizations by Analogy,” to be
published in IEEE Trans. Visualization and
Computer Graphics, 2007.

Claudio T. Silva is an associate professor at
the university of utah. His research inter-
ests include visualization, geometry pro-
cessing, graphics, and high-performance
computing. Silva has a PhD in computer
science from SunY at Stony Brook. He
is a member of the IEEE, the ACM, Eu-
rographics, and Sociedade Brasileira
de Matematica. Contact him at csilva@
cs.utah.edu.

Juliana Freire is an assistant professor at
the university of utah. Her research inter-
ests include scientific data management,
Web information systems, and information
integration. Freire has a PhD in computer
science from SunY at Stony Brook. She is a
member of the ACM and the IEEE. Contact
her at juliana@cs.utah.edu.

Steven P. Callahan is a research assistant and
PhD candidate at the university of utah. His
research interests include scientific visual-
ization, visualization systems, and computer
graphics. Callahan has an MS in computa-
tional engineering and science from the
university of utah. Contact him at stevec@
sci.utah.edu.

4.

5.

6.

7.

8.

