
The need to visualize unstructured volu-
metric data arises in a broad spectrum of

applications including structural dynamics, structural
mechanics, thermodynamics, fluid mechanics, and
shock physics. One of the most powerful visualization
techniques is direct volume rendering, a set of render-
ing techniques that avoids generating intermediary sur-
face representations of the volume data. Direct volume
rendering techniques are based on creating optical

models that determine how the vol-
ume data interacts with light. By
changing the modeling, it’s possible
to render different features of the
volume.1

Here we address the problem of
direct volume rendering of large,
unstructured volumetric grids on
machines with limited memory. This
problem is interesting because such
data sets are likely to come from
computations generated on super-
computers, while visualization often
happens on smaller, desktop
machines. Our work also comple-
ments the recent trend of develop-

ing efficient out-of-core scientific visualization
techniques. Given large, unstructured grids, currently
several external memory visualization tools exist (such
as isosurface computation,2 streamline computation,3

and surface simplification4) that help scientists visual-
ize their large data sets on machines with limited mem-
ory. For instance, by coupling the techniques of
Lindstrom4 and Chiang, Silva, and Schroeder,2

researchers can compute and simplify isosurfaces of arbi-
trarily large data sets, effectively visualizing such large
data sets on any machine with enough disk space. Our
work adds direct volume-rendering algorithms to this
already powerful toolbox. (See the “Related Work” side-
bar for more background information.)

We present two techniques that vary in rendering
speed, disk and memory usage, ease of implementation,
and preprocessing costs. The first is a memory-insensi-
tive rendering (MIR) technique that is completely disk-
based and requires a small amount of constant main
memory. The second technique is based on our ZSweep
algorithm. It’s more involved in its preprocessing, imple-
mentation, and main-memory requirements but can be
substantially faster.

Memory-insensitive rendering
In developing efficient external memory algorithms,

users must know some characteristics of computer disks
and their differences from the in-core main-memory
system we’re all accustomed to. The basic difference is
that disks aren’t efficient for random access to locations
because “seeks” require a large amount of mechanical
movement (of the heads). For sequential access, disks
are fast, with a raw bandwidth within a factor of 20 of
the main-memory system. Also, we can increase disk
bandwidth inexpensively by using several disks in par-
allel. The appeal of hard drives is that the cost is much
lower—on the order of 100 times cheaper than main
memory. The need for sequential access when using
disks has profound implications for external memory
algorithms.

First, the file formats used for out-of-core algorithms
must be different and generally more redundant.
Indexed mesh formats are common for main-memory
techniques. For instance, it’s common to save a list of
the vertices represented with four floats: the position
(x, y, z); scalar field value; and a list of tetrahedra, ref-
erenced by four integers that refer to the vertices defin-
ing the given tetrahedron. Before we can use such data
sets in our algorithm, they must be normalized—a
process that dereferences the pointers to vertices. (The
Chiang, Silva, and Schroeder paper thoroughly explains
this process.2)

For completeness, we’ll briefly explain how to nor-

0272-1716/01/$10.00 © 2001 IEEE

Large-Scale Data Visualization

2 July/August 2001

We address the problem of

rendering large, unstructured

volumetric grids and present

a set of techniques that

render arbitrarily large data

sets on machines with limited

memory.

Ricardo Farias
State University of New York at Stony Brook

Cláudio T. Silva
AT&T

Out-Of-Core
Rendering of
Large,
Unstructured Grids

IEEE Computer Graphics and Applications 3

The work we describe in this article is mainly
related to techniques for rendering unstructured
grids and out-of-core visualization techniques.
Both are active research areas in scientific visual-
ization. In this sidebar, we briefly review each of
these areas.

Unstructured-grid volume rendering
Here we consider existing unstructured-grid

volume-rendering techniques from a memory-
usage point of view, their applicability to render
large grids, and potential extensions for out-of-
core rendering. The memory usage of current
techniques vary widely, and a straightforward
classification of the different techniques isn’t
possible. Here are some of the various charac-
teristics that generally affect the memory usage of
existing techniques:

� the data set’s size, in terms of its number and type
of cells and vertices. (Given a mesh with t tetra-
hedra and n vertices, the minimum memory nec-
essary to hold it—assuming uncompressed data
and 32 bits for integers and floating-point num-
bers—is 16(t + n) bytes.)

� screen resolution and the data set’s image-space
depth. (In image space, the memory costs depend
on the screen resolution and the data set’s thick-
ness along the z direction. Some techniques com-
pute slices along z by intersecting discrete buffers
of the same resolution as the screen with the
unstructured grid. Assuming 1 byte per color
channel, for computing an image of size N-by-N
with s slices, we need 4sN2 bytes. We note that s
should vary with the resolution of the data set in
z. That is, if a ray that intersects the data set in smax

cells exists, then the closer s gets to smax the more
accurate the image we can obtain.)

� the use of mesh connectivity information. Some
techniques explicitly use connectivity information,
while others use different means of inferring it
(such as discrete buffers used for determining
depth information) or completely avoid using any
kind of connectivity.

� the underlying data structures used for efficiency
or accuracy. For instance, some techniques cache
extra information per cell or per face of the data
set for efficiency.

Researchers have developed several efficient
algorithms for rendering irregular grids. One class
of algorithms is based on adapting ray-tracing
techniques for rendering unstructured grids, such
as in the works of Garrity,1 Uselton,2 and Bunyk,
Kauman, and Silva.3 In general, these techniques
require random access to the cells, connectivity
information, and in some cases, extra memory to
optimize the computation of intersections of rays
with faces of the cell complex. Yang, Mitra, and

Chiueh’s paper4 proposes an optimization for the
technique in the Bunyk paper3 that attempts to
reduce the memory requirements by compositing
samples as early as possible, but the proposed
view-independent traversal doesn’t limit the
overall memory use. (The work of Hong and
Kaufman,5 although similar to that in the Bunyk
paper,3 is optimized for curvilinear grids. They
used considerably less memory because their
system uses the grid structure and doesn’t
explicitly store cell or connectivity information.)

Researchers have developed other techniques
that use scan-line algorithms, which sweep the
data with a plane perpendicular to the image
plane.6 Some of these techniques7 are designed to
be memory efficient but still use the mesh’s
connectivity. Others, such as those proposed by
Giertsen8 and Westermann and Ertl,9 use discrete
buffers to determine the compositing order and
completely avoid the need for connectivity infor-
mation. Using discrete buffers in z potentially
lowers the accuracy of these techniques, and the
buffers themselves can require a substantial
amount of memory.

Some methods6,10 employ a different kind of
sweep algorithm and sweep planes in z. Yagel et
al.11 sample the irregular grid with a fixed number
of planes that are later composited together. Their
technique doesn’t use connectivity, but the space
to keep the planes can be substantial because it
amounts to computing and caching many images.
Farias, Mitchell, and Silva10 developed ZSweep,
which is also based on sweeping a plane in the z
direction.

Another approach for rendering irregular grids is
using face projection, or feed-forward, methods12-14

in which the cells are projected onto the screen one
by one. Most of these techniques exploit the
graphics hardware to compute the volumetric
lighting models13 by first computing a visibility
ordering12,15,16 and incrementally accumulating
their contributions to the final image. With respect
to memory usage, we can separate the visibility
ordering algorithms into two classes: those that use
connectivity to compute the ordering12,16 and those
that use some form of power-sorting.14 The power
sorting techniques only require an extra floating-
point number per cell, and they don’t use connec-
tivity information. In general, those techniques
aren’t guaranteed to generate correct sorting
results for a wide class of grids.

One simple approach17 is to naively compute all
intersections between each ray cast with all the
cells and perform a postsorting to compute the
image. That is, given an N-by-N image and n cells,
for each of the N2 rays, compute the O(n)
intersections with cell facets in time O(n) and then
sort these crossing points in O(n log n) time.

Related Work

continued on p. 4

Large-Scale Data Visualization

4 July/August 2001

However, this results in overall time O(N2n log n)
and doesn’t take advantage of coherence in the
data—the sorted order of cells crossed by one ray
isn’t used in any way to assist in the processing of
nearby rays.

Ma and Crockett18 used this approach in the
context of parallel architectures. Their technique
distributes the cells among processors in a round-
robin fashion. For each viewpoint, each processor
independently computes the ray intersections,
which are later composited in the algorithm’s
second phase. To avoid storing many ray inter-
sections, Ma and Crockett cleverly schedule the
computation using a k-d tree.

Out-of-core scientific visualization
For a general introduction to out-of-core

scientific visualization theory and practice of
external memory algorithms, readers should see
Abello and Vitter.19

Cox and Ellsworth20 propose a general frame-
work for the systems based on application-
controlled demand paging. Leutenegger and Ma21

propose using R-trees22 to optimize searching
operations on large unstructured data sets. Ueng,
Sikorski, and Ma23 use an octree partition to
restructure unstructured grids, optimizing the
computation of streamlines. Shen, Chiang, and
Ma24 and Sutton and Hansen25 have developed
techniques for indexing time-varying data sets.
Shen, Chiang, and Ma24 apply their technique for
volume rendering, while Sutton and Hansen25

focus on isosurface computations.
Chiang and Silva26 worked on I/O-optimal

algorithms for isosurface generation. Their work
assumes that even the preprocessing is performed
completely on a machine with limited memory.
Although their technique is fast in terms of actually
computing the isosurfaces, the disk and prepro-
cessing overhead of their technique is substantial.
This led to further research27 on techniques that can
trade disk overhead for time in the querying for the
active cells. They developed a set of useful metacell
preprocessing techniques. Recently, Lindstrom28

and El-Sana and Chiang29 developed external
memory algorithms for surface simplification. The
technique in Lindstrom30 simplifies arbitrarily large
data sets on machines with just enough memory to
hold the output triangle mesh.

References
1. M. Garrity, “Raytracing Irregular Volume Data,” Com-

puter Graphics (San Diego Workshop Volume Visual-
ization), vol. 24, no. 5, Nov. 1990, pp. 35-40.

2. S. Uselton, Volume Rendering for Computational Fluid

Dynamics: Initial Results, tech. report RNR-91-026,
NASA Ames Research Center, Moffett Field, Calif., 1991.

3. P. Bunyk, A. Kaufman, and C. Silva, “Simple, Fast, and
Robust Ray Casting of Irregular Grids,” Scientific Visu-

alization (Proc. Dagstuhl 97), IEEE CS Press, Los Alami-
tos, Calif., 2000, pp. 30-36.

4. C.-K. Yang, T. Mitra, and T. Chiueh, “On-the-Fly Ren-
dering of Losslessly Compressed Irregular Volume
Data,” Proc. IEEE Visualization 2000, ACM Press, New
York, 2000.

5. L. Hong and A. Kaufman, “Accelerated Ray-Casting for
Curvilinear Volumes,” Proc. IEEE Visualization 98, ACM
Press, New York, 1998, pp. 247-254.

6. J. Wilhelms et al., “Hierarchical and Parallelizable Direct
Volume Rendering for Irregular and Multiple Grids,”
Proc. IEEE Visualization 96, ACM Press, New York, 1996,
pp. 57-64.

7. C. Silva and J. Mitchell, “The Lazy Sweep Ray Casting
Algorithm for Rendering Irregular Grids,” IEEE Trans.

Visualization and Computer Graphics, vol. 3, no. 2,
Apr.–Jun. 1997, pp. 104-157.

8. C. Giertsen, “Volume Visualization of Sparse Irregular
Meshes,” IEEE Computer Graphics and Applications, vol.
12, no. 2, Mar. 1992, pp. 40-48.

9. R. Westermann and T. Ertl, “The VSbuffer: Visibility
Ordering of Unstructured Volume Primitives By Poly-
gon Drawing,” Proc. IEEE Visualization 97, ACM Press,
New York, 1997, pp. 35-42.

10. R. Farias, J. Mitchell, and C. Silva, “ZSweep: An Effi-
cient and Exact Projection Algorithm for Unstructured
Volume Rendering,” Proc. 2000 Volume Visualization

Symp., ACM Press, New York, 2000, pp. 91-99.
11. R. Yagel et al., “Hardware Assisted Volume Rendering

of Unstructured Grids by Incremental Slicing,” Proc.

1996 Volume Visualization Symp., ACM Press, New
York, 1996, pp. 55-62.

12. P.L. Williams, “Visibility-Ordering Meshed Polyhedra,”
ACM Trans. Graphics, vol. 11, no. 2, Apr. 1992,
pp. 103-126.

13. P. Shirley and A. Tuchman, “A Polygonal Approxima-
tion to Direct Scalar Volume Rendering,” Computer

Graphics (San Diego Workshop Volume Visualization),
vol. 24, no. 5, Nov. 1990, pp. 63-70.

14. N. Max, P. Hanrahan, and R. Crawfis, “Area and Vol-
ume for Efficient Visualization of 3D Scalar Functions,”
Computer Graphics (San Diego Workshop Volume Visu-
alization), vol. 24, no. 5, Nov. 1990, pp. 27-33.

15. C. Stein, B. Becker, and N. Max, “Sorting and Hard-
ware Assisted Rendering for Volume Visualization,”
Proc. 1994 Symp. Volume Visualization, ACM Press, New
York, 1994, pp. 83-90.

16. J. Comba et al., “Fast Polyhedral Cell Sorting for Inter-
active Rendering of Unstructured Grids,” Computer

Graphics Forum, vol. 18, no. 3, Sept. 1999, pp. 369-376.
17. C. Silva, J. Mitchell, and A. Kaufman, “Fast Rendering

of Irregular Grids,” Proc. 1996 Volume Visualization

Symp., ACM Press, New York, 1996, pp. 15-22.
18. K.-L. Ma and T.W. Crockett, “A Scalable Parallel Cell-

Projection Volume Rendering Algorithm for Three-
Dimensional Unstructured Data,” Proc. IEEE Parallel

Rendering Symp., IEEE CS Press, Los Alamitos, Calif.,
1997, pp. 95-104.

continued from p. 3

malize such a file, with v vertices and t tetrahedra. In an
initial pass, we create two binary files: one with the list
of vertices and another with the list of tetrahedra. Next,
in four passes, we dereference each tetrahedral file index
and replace it with the actual position and scalar field
values for the vertex. To do this efficiently, we first exter-
nally sort the current version of the tetrahedra file in the
index we intend to dereference. This takes time O(t log
t) using an external memory merge–sort. Then, we per-
form a synchronous scan of both the vertex and sorted
tetrahedra file, reading one record at a time and appro-
priately outputting the deferenced value for the vertex.
Note that we can do this efficiently in time O(v + t)
because all the references for vertices are sorted. When
we’re done with all four passes, the tetrahedra file will
contain t records with the value (not reference) of each

of its four vertices.
In our first out-of-core rendering technique, MIR, the

algorithm receives a transformation matrix, screen res-
olution, the normalized tetrahedron file, and associat-
ed transfer functions for lighting calculations as input.

1. The first step in our algorithm is to read each cell
(tetrahedron) from the normalized file, transform it
with the specified transformation matrix, and com-
pute all its ray intersections. For each pixel ρi, which
intersects the cell in the interval (z0, z1), we output
two records (ρi, z0) and (ρi, z1). For color calcula-
tions, we also save an interpolated scalar field value.
This allows for fast regeneration of images with dif-
ferent transfer functions or (with some changes) the
efficient rendering of time-varying data sets. The
amount of memory necessary to perform this step is
minimal; it’s just enough to hold the cell’s descrip-
tion and enough temporary storage to compute one
intersection, because they’re written to disk one by
one as they’re computed. The amount of disk space
required is proportional to the number of actual ray
stabbings between rays and cells.

2. The second (and generally, most time consuming)
step consists of sorting the file with the ray inter-
sections computed in the previous step, using an
appropriate compare function. The compare func-
tion we use sorts primarily on the pixel identifica-
tion ρi and secondarily on the depth of intersection
z. In other words, after the file is sorted and the
records for a particular pixel are together (that is,
they appear sequentially in the file), the records are
ordered in increasing depth.

3. The third and final step in our scheme is to traverse
the ordered file generated in the previous step, use
the transfer functions to light, and composite the
samples, which are already in the correct order.

Our simple algorithm is essentially an external mem-
ory version of a technique previously considered by other
researchers.5,6 One group5 discarded the technique as
too inefficient because it didn’t use coherency between
rays. Ma and Crockett6 used this technique for its good
load-balancing characteristics. However, to make it prac-
tical, they had to optimize it to save space. No space opti-
mizations are necessary for the out-of-core version to be
useful. With this scheme, we can render an arbitrarily
large image of an arbitrarily large data set if enough disk
space exists to save the intersection crossings. It’s also
simple to implement. It doesn’t use any random access
to the data set, and its implementation only requires an
external sort routine and code to perform ray-cell inter-
section.

Out-of-core ZSweep
Our second technique is slightly more complex but is

often a more efficient out-of-core unstructured grid ren-
derer. It’s based on our ZSweep algorithm7 (see Figure
1, next page, for an overview).

The in-core ZSweep algorithm is based on sweeping
the data with a plane parallel to the viewing plane (see
the blue plane in Figure 1a) in order of increasing z, pro-

IEEE Computer Graphics and Applications 5

19. J. Abello and J. Vitter, External Memory Algorithms,
American Mathematical Soc., Providence, R.I., 1999.

20. M. Cox and D. Ellsworth, “Application-Controlled
Demand Paging for Out-of-Core Visualization,” Proc.

IEEE Visualization 97, ACM Press, New York, 1997,
pp. 235-244.

21. S. Leutenegger and K.-L. Ma, “Fast Retrieval of Disk-
Resident Unstructured Volume Data for Visualiza-
tion,” External Memory Algorithms and Visualization,

Center for Discrete Mathematics and Theoretical
Computer Science (DIMACS) Book Series, vol. 50,
American Mathematical Soc., Providence, R.I., 1999.

22. A. Guttman, “R-trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD Conf. Princi-

ples Database Systems, ACM Press, New York, 1984,
pp. 47-57.

23. S.-K. Ueng, C. Sikorski, and K.-L. Ma, “Out-of-Core
Streamline Visualization on Large Unstructured
Meshes,” IEEE Trans. Visualization and Computer

Graphics, vol. 3, no. 4, Oct.–Dec. 1997, pp. 370-380.
24. H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A Fast Vol-

ume Rendering Algorithm for Time-Varying Fields
Using A Time-Space Partitioning (TSP) Tree,” Proc.

IEEE Visualization 99, ACM Press, New York, 1999,
pp. 371-378.

25. P.M. Sutton and C.D. Hansen, “Accelerated Isosur-
face Extraction in Time-Varying Fields,” IEEE Trans.

Visualization and Computer Graphics, vol. 6, no. 2,
Apr.–Jun. 2000, pp. 98-107.

26. Y.-J. Chiang and C.T. Silva, “I/O Optimal Isosurface
Extraction,” IEEE Visualization 97, ACM Press, New
York, 1997, pp. 293-300.

27. Y.-J. Chiang, C.T. Silva, and W.J. Schroeder, “Inter-
active Out-of-Core Isosurface Extraction,” Proc. IEEE

Visualization 98, ACM Press, New York, 1998,
pp. 167-174.

28. P. Lindstrom, “Out-of-Core Simplification of Large
Polygonal Models,” Computer Graphics (Proc. Sig-
graph 2000), ACM Press, New York, 2000,
pp. 259-262.

29. J. El-Sana and Y.-J. Chiang, “External Memory View-
Dependent Simplification,” Computer Graphics

Forum, vol. 19, no. 3, Aug. 2000, pp. C-139–C-150.

jecting the faces of cells that are incident to vertices as
they’re encountered by the sweep plane. ZSweep’s face
projection differs from the ones used in other projective
methods.8 During face projection, we compute the inter-
section of the ray emanating from each pixel and store
their z-value and other auxiliary information in a sort-
ed list of intersections for the given pixel. Our data struc-
ture for keeping the intersections is similar to an
A-buffer.9 We defer the lighting calculations1 to a later
phase (see Figure 1b). The algorithm performs com-
positing when it reaches the target Z plane (see the gray
plane in Figure 1a). The efficiency arises because the
algorithm exploits the implicit (approximate) global
ordering that the vertices’ z-ordering induces on the
cells that are incident on them. This leads to only a few
ray intersections that must be processed out of order.
The efficiency also arises from using early compositing,
which makes the algorithm’s memory footprint quite
small. The key properties for ZSweep’s efficiency is that
given a mesh with v vertices and c cells, the amount of

sorting ZSweep does is O(v log v) in practice. Depend-
ing on the number of ray intersections, this is substan-
tially lower than the amount necessary to sort all the
intersections for each pixel.

ZSweep has two sources of main-memory usage: the
pixel intersection lists and the actual data set. The data-
set storage requirements represent our largest memory
use. Besides the storage for the actual vertices and cells,
we must also keep each vertex’s use set—that is, the cells
incident to each vertex.

The basic idea in our out-of-core technique is to break
the data set into chunks of fixed size that we can render
independently without using more than a constant
amount of memory. To further limit the amount of mem-
ory necessary, we subdivide the screen into tiles, and for
each tile, we render the chunks that project into it in a
front-to-back order. This gives us the same optimiza-
tions as the in-core ZSweep algorithm where we’ve
shown that image tiling leads to substantial perfor-
mance improvement because of better cache coher-

Large-Scale Data Visualization

6 July/August 2001

(a)

(b)

Z

XX

V

tTarget Z

Sweep
direction

Pixel
list

PP

1 The in-core ZSweep algorithm.
(a) 3D sweep portion of ZSweep. In
blue, we show the sweep plane. The
swept points are in black, and
points that haven’t been touched
yet are in red. We highlight the
tetrahedra incident on the current
event point. The newly found faces
(which generate new intersections)
are in yellow, and the old faces are
in cyan. (b) ZSweep compositing in
2D (that is, along a plane perpen-
dicular to the viewing direction) for
clarity. The current event point v is
in yellow. We also show the newly
found faces and the intersections
along a general ray. Each intersec-
tion contributes a color and has to
be composited in the correct order.
The ordering computed with an
insertion sort is on the right.

ence.10 Subdividing the screen into tiles and the data set
into chunks that are rendered independently has suc-
cessfully been applied to a parallelization of ZSweep.

We divided our algorithm into two parts: a view-inde-
pendent preprocessing phase, which must be performed
only once and generates a data file on disk that we can
use for all rendering requests, and a view-dependent
rendering algorithm.

Preprocessing
Our preprocessing is simple, and it resembles the

metacell creation in the Chiang article.2 Basically, we
break the data-set file into several metacells of small,
roughly fixed size. (The metacells and their construction
are slightly different in Chiang,2 because each cell
belongs to a single metacell. In our case, a cell belongs
to as many metacells as it spatially intersects. This isn’t a
substantial difference, and the normalization techniques
described there still apply.) Given a target number of ver-
tices per metacell m out of v total vertices, we first exter-
nally sort all vertices by the x-values and partition them
into 3√v/m consecutive parts. Then, for each such chunk,
we externally sort its vertices by the y-values and parti-
tion them into 3√v/m parts. Finally, we repeat the process
for each refined part, except that we externally sort the
vertices by the z-values. We take the final parts as chunks.
This is the main step in constructing the chunks because
it determines their shape and location in space. Chunks
might differ dramatically in their volumes, but their
numbers of vertices are roughly the same.

In general, the number of metacells is relatively small,
so we can safely assume they fit in the memory. To ren-
der a metacell, ZSweep must have all the cells that spa-
tially intersect that metacell and all the vertices that
belong to those cells. These computations can be effi-
ciently computed in external memory. (For full details,
see the Chiang article.2) Our preprocessing outputs two
files. The small one is a high-level description of the
metacells, including their bounding box, number of ver-
tices, number of cells, and a pointer to the start of the
data for the metacell in the main data file. The larger
data file is a list of the vertices and cells for each meta-
cell. Note that several vertices and cells are repeated
(possibly multiple times) in this data file, because each
metacell is a self-contained unit.

Rendering algorithm
Our rendering algorithm is simple. Basically, we

divide the screen into tiles and render the image tile by
tile. For each tile, we compute the metacells that inter-
sect that tile, sort the metacells in a front-to-back order,
and render it using the ZSweep algorithm.

Figure 2 shows the details. For each tile, we find M,
the set of the metacells that project into it. Then, we sort
the vertices of the bounding boxes of M in front-to-back
order by inserting them on a queue Q. The queue is used
for sweeping the vertices, which have several marks. In
particular, we tag vertices based on whether they’re
bounding-box or data-set vertices. When the sweep
plane touches the first bounding-box vertex of a meta-
cell m, we retrieve all the vertices and cells of m from
disk, transform the vertices, and insert them on Q, tag-

ging them as data-set vertices. Out-of-core ZSweep pro-
cessing is essentially the same as the in-core algorithm,
but it performs reading operations lazily. As it reaches
vertices, it projects faces; Figure 1 shows the overall
operation. As the algorithm touches bounding-box ver-
tices, we keep track of the number of bounding-box ver-

IEEE Computer Graphics and Applications 7

A

B

aB

bA dA

cAaA

cBdB

bBB

(a)

(b)

2 The render-
ing portion of
out-of-core
ZSweep, which
is performed in
(a) tiles.
(b) After reach-
ing eight
bounding-box
vertices of a
given metacell,
we can safely
deallocate the
metacell.

tices of a given metacell that we’ve seen so far. When
this number reaches eight, we can safely deallocate the
metacell (see Figure 2b). When we reach vertex da, we
can free the memory from metacell a.

Experimental results
Here we report results for our two out-of-core ren-

dering techniques and the in-core ZSweep algorithm.
When not indicated, we obtained our results on a PC-
class machine equipped with an AMD K7 Thunderbird
1-GHz processor, one IDE disk, and 1 Gbyte of main
memory running Linux. To limit the amount of main
memory available for testing purposes, we used the
Linux kernel to indicate the amount of main memory to
use by specifying the boot parameters directly into Linux
Loader (lilo)—for example, specifying linux mem=32M
at the boot prompt. (Chiang, Silva, and Schroeder use a
similar methodology.2 Simply limiting the amount of
memory generally isn’t enough because the operating
system is likely to perform aggressive caching if enough
memory is available, thus effectively transferring the
data set into memory implicitly.) Table 1 has informa-
tion about the data sets we used in our tests. The first
four are tetrahedralized versions of the well-known

NASA data sets. SPX is an unstructured grid (see Figure
1a and 2a) composed of tetrahedra. We subdivided each
tetrahedron into eight for each version of the last
three—that is, SPX3 is 512 times larger than SPX.

MIR
We’ve generated several images of the benchmark

data sets using our MIR rendering algorithm. Theoret-
ically, MIR shouldn’t depend on the amount of main
memory available (see Table 2). The four columns in
Table 2 for each image dimension show the time it took
to project the cells on the screen, the time to order the
projection file, the time to compose all intersections, and
the total render time.

In all our experiments, our code never used more than
5 Mbytes of main memory. It takes the normalized file
as its input. Given a new point of view, it rotates the cells
one by one and projects their faces on the screen with a
scan conversion that’s directly saved in the projection
file. The projection file’s size depends on the image’s
dimension and also on the number of segments gener-
ated for each pixel. It can get large, but the algorithm
works the same. Note that the cost of the algorithm’s
last step, the compositing, also depends on the average

Large-Scale Data Visualization

8 July/August 2001

Table 1. Main data sets we used for benchmarking.

Data Number of Number of Metacell File Metacell Data Normalized
Set Vertices (1,000) Cells (1,000) (Kbytes) (Mbytes) File (Mbytes)

Blunt Fin 41 187 40 26 12.7
Combustion Chamber 47 215 40 23 14.6
Oxygen Post 109 513 110 82 34
Delta Wing 212 1,005 254 205 68
SPX 2.9 13 2.6 1.2 0.8
SPX1 20 103 15 12 8
SPX2 150 830 63 110 71
SPX3 1,150 6,620 56 706 641

Table 2. Rendering times (in seconds) for our memory-insensitive irregular grid rendering algorithm.

Screen Resolution 512 x 512
Data Set Blunt fin Combustion chamber Oxygen post Delta wing
Projection time 45 10 81 103
Time to order 213 19 386 412
Compositing time 44 6 75 79
Total time 302 35 542 594

Screen Resolution 1024 x 1024
Data Set Blunt fin Combustion chamber Oxygen post Delta wing
Projection time 171 24 291 338
Time to order 1,030 82 1,747 1,965
Compositing time 180 26 316 322
Total time 1,381 132 2,354 2,625

Screen Resolution 2048 x 2048†

Data Set Blunt fin Combustion chamber Oxygen post Delta wing
Projection time 254 52 435 496
Time to order 589 190 922 1,062
Compositing time 233 55 422 430
Total time 1,076 297 1,779 1,988

† We obtained the times for the 2,048 × 2,048 on a SGI R12K 400-Mhz system, with a fast SCSI disk array. Faster disks on
the SGI lead to substantially improved times.

length of segments. Depending on the data set and
image size, MIR can use a lot of disk space. For exam-
ple, for the Delta, the projection file has 304 Mbytes for
a 512 × 512 image, 1.2 Gbytes for a 1024 × 1024, and 4.8
Gbytes for a 2048 × 2048.

Large images
We ran some tests with a large data set (not included

in Table 1) containing roughly 1.5 million vertices and
8.5 million cells. Generating a 5000 × 5000 image (which
takes up more than 70 Mbytes of disk) took MIR 224 sec-
onds on a SGI Origin 3000 equipped with R12K 400-Mhz
processors and a fast SCSI disk array. This is faster than
our other data sets because the number of ray intersec-
tions is small. We also generated a 10,000 × 10,000 image
from the same data set that took 824 seconds. In this
case, the image occupies 300 Mbytes of disk.

Out-of-core ZSweep
Tables 3 and 4 show some results for our out-of-core

ZSweep code. Out-of-core ZSweep has constant mem-
ory usage per data set, irrespective of the size of the
images being generated, and can generate images that
the original in-core ZSweep couldn’t. For a 2048 × 2048
image of the Delta, the in-core ZSweep would need
more than 380 Mbytes of memory, but the out-of-core
ZSweep only needs about 24 Mbytes.

Our experiments show that MIR and out-of-core
ZSweep are practical techniques we can use under dif-
ferent conditions. Out-of-core ZSweep is usually more
efficient than MIR, sometimes by a factor of 10 or more,
but it requires that we preprocess the files with the meta-
cell technique before rendering. However, out-of-core
ZSweep uses more memory than MIR. For generating a
few high-resolution images of large data sets, MIR might
be a good choice.

The MIR code is considerably slower because it per-
forms more sorting and disk I/O. MIR might be partic-
ularly useful when trying to render a data set from the
same viewpoint with a different transfer function.
Because the mapping from scalar values to color (as
specified in the transfer function file) is performed dur-
ing compositing, we can effectively generate images
with different classifications efficiently. Also, it would
be efficient to render time-varying data sets because the
expensive ordering doesn’t need to be redone.

Conclusions
We presented two out-of-core volume techniques,

which we implemented and tested against one another,
and compared their rendering times and memory
requirements against the in-core ZSweep algorithm.7

The simplest technique, MIR, is useful when the amount
of memory available is highly limited or only a few
images of a given data set are necessary. We can also use
MIR to compute several images of a given data set from
the same viewpoint with different classifications (such
as transfer functions). For using our out-of-core ZSweep,
it would be best if the data’s metacell representation is
already available. Because such representations are use-
ful for other purposes, such as isosurface generation,2

we believe this scheme will prove beneficial.
We are currently exploring several extensions of our

work. One of the simplest is using prefetching and multi-
threading to speedup the rendering further in out-of-core
ZSweep, especially when multiple processors are avail-
able. For real-time rendering, it would be interesting to
develop a time-critical version of out-of-core ZSweep,11

which trades accuracy for speed during rendering. �

Acknowledgments
We thank Peter Williams and Will Schroeder for inter-

esting data sets and NASA for the Blunt Fin, Liquid Oxy-
gen Post, and Delta Wing data sets. Ricardo Farias
acknowledges partial support from CNPq-Brazil under
a PhD fellowship. This work was made possible by the
generous support of Sandia National Labs and the US
Department of Energy Mathematics, Information, and
Computer Science Office.

References
1. N. Max, “Optical Models for Direct Volume Rendering,”

IEEE Trans. Visualization and Computer Graphics, vol. 1, no.
2, June 1995, pp. 99-108.

2. Y.-J. Chiang, C.T. Silva, and W.J. Schroeder, “Interactive
Out-of-Core Isosurface Extraction,” IEEE Visualization 98,
ACM Press, New York, 1998, pp. 167-174.

3. S.-K. Ueng, C. Sikorski, and K.-L. Ma, “Out-of-Core Stream-
line Visualization on Large Unstructured Meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 3, no. 4,
Oct.–Dec. 1997, pp. 370-380.

4. P. Lindstrom, “Out-of-Core Simplification of Large Polyg-
onal Models,” Computer Graphics (Proc. Siggraph 2000),
ACM Press, New York, 2000, pp. 259-262.

5. C. Silva, J.S.B. Mitchell, and A.E. Kaufman, “Fast Render-
ing of Irregular Grids,” 1996 Volume Visualization Symp.,
ACM Press, New York, 1996, pp. 15-22.

6. K.-L. Ma and T.W. Crockett, “A Scalable Parallel Cell-Pro-
jection Volume Rendering Algorithm for Three-Dimen-

IEEE Computer Graphics and Applications 9

Table 3. Rendering times (in seconds) for the in-
core ZSweep code running with 1 Gbyte of RAM.

Data Set 5122 10242 20482

SPX 7 26 118
SPX1 14 46 203
SPX2 29 93 383
SPX3 107 238 834

Table 4. Rendering times for the out-of-core
ZSweep using 128 Mbytes of RAM. We show the
time (in seconds) to generate the image and the
cost per cell (in µs).

Data Set 5122 10242 20482

SPX 8 615 34 2,615 154 11,846
SPX1 24 233 72 699 305 2,961
SPX2 78 93 160 192 595 716
SPX3 289 43 418 63 1,157 174

sional Unstructured Data,” Proc. IEEE Parallel Rendering
Symposium, IEEE CS Press, Los Alamitos, Calif., 1997, pp.
95-104.

7. R. Farias, J. Mitchell, and C. Silva, “ZSweep: An Efficient
and Exact Projection Algorithm for Unstructured Volume
Rendering,” Proc. 2000 Volume Visualization Symp., ACM
Press, New York, 2000, pp. 91-99.

8. P. Shirley and A. Tuchman, “A Polygonal Approximation to
Direct Scalar Volume Rendering,” Computer Graphics, vol.
24, no. 5, Nov. 1990, pp. 63-70.

9. L. Carpenter, “The A-buffer, An Antialiased Hidden Sur-
face Method,” Computer Graphics (Proc. Siggraph 1984),
ACM Press, New York, 1984, pp. 103-108.

10. R. Farias and C. Silva, “Parallelizing the ZSweep Algorithm
for Distributed-Shared Memory Architectures,” to be pub-
lished in Proc. Int’l Volume Graphics Workshop, 2001.

11. R. Farias et al., “Time-Critical Rendering of Irregular
Grids,” Proc. SIBGRAPI 2000 (Brazilian Computer Graph-
ics Conference), IEEE CS Press, Los Alamitos, Calif., 2000,
pp. 243-250.

Ricardo Farias is a PhD student
in operations research in the Applied
Math Department at the State Uni-
versity of New York at Stony Brook.
His primary research is on visual-
ization of large volumetric data sets
and high-performance computing.

He has a BS in physics from Fluminense Federal Universi-
ty (Rio de Janeiro, Brazil) and an MS in computer vision
from the Graduate School and Research in Engineering
Institute (COPPE) of the Federal University of Rio de
Janeiro (UFRJ).

Cláudio Silva is a senior member
of the technical staff in the Informa-
tion Visualization Research Depart-
ment at AT&T Labs–Research. His
main research interests are in
graphics, visualization, applied com-
putational geometry, and high-per-

formance computing. His current research focuses on
architectures and algorithms for building scalable displays,
rendering techniques for large data sets, 3D scanning, and
algorithms for graphics hardware. He has a BS in mathe-
matics from the Federal University of Ceará, Brazil. He has
an MS and a PhD in computer science from the State Uni-
versity of New York at Stony Brook. He is an ACM, IEEE,
and Eurographics member.

Readers can contact Silva at AT&T Labs–Research, 180
Park Ave., Room D265, Florham Park, NJ 07932, email
csilva@research.att.com.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Large-Scale Data Visualization

10 July/August 2001

