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Figure 1: Convexification of space using a BSP-based filling algorithm. The boundary faces of a non-convex region of space are
used as cuts in a BSP-tree. Enumeration of regions associated with outside leaves of the BSP-tree fills the space in a simple
and numerically stable way.

ABSTRACT

Convex representations of shapes have several nice properties that
can be exploited to generate efficient geometric algorithms. At the
same time, extending algorithms from convex to non-convex shapes
is non-trivial and often leads to more expensive solutions. An al-
ternative and sometimes more efficient solution is to transform the
non-convex problem into a collection of convex problems using a
convexification approach. In this paper, we address the issue of
building convexification of 3D spatial domains. This process is
non-trivial, since it might lead to many convex cells and the com-
putations are subject to numerical errors. In particular, we give the
first fully automatic convexification technique of non-convex poly-
hedral meshes that leads to most of the time to a small increase in
the number of convex cells. The basic idea of our technique is to
use the leaves of a binary space partition tree (BSP-tree) to create
the cells that we use for filling up the space between the non-convex
polyhedral mesh and its convex hull. We show an application of our
ideas to volume rendering of unstructured grids.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms
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1 INTRODUCTION

In this paper, we address the issue of building convexification of 3D
spatial domains. Given a set of polyhedral boundaries, our algo-
rithm creates a convex envelope that completely fill the space out-
side of such boundaries. The basic idea of our technique is to use

∗comba@inf.ufrgs.br
†csilva@cse.ogi.edu

the leaves of the binary space partition tree used in BSP-XMPVO
[1] to create the cells that fill up the space between the boundary of
the grid and its convex hull. Unfortunately, such a naive solution
does not work: geometric degeneracies cause such a computation
to be all but impossible. Instead, we make novel use of properties
of the BSP-tree to robustly compute all the necessary information.

This kind of research has direct applications in visualization,
in the form of optimizing the volume rendering of unstructured
grids. In particular, using our technique, it is possible to perform
fully automatic convexification technique for unstructured volumet-
ric grids. Previous work in this particular topic by Williams [11]
and Kraus and Ertl [4] lead to partial solutions.

This paper is organized as follows. We first describe some re-
lated work in Section 2. In Section 3, we describe our new algo-
rithm. In Section 4, we discuss the issues in using our convexi-
fication algorithm for volume rendering of unstructured grids. In
Section 5, we report some experimental results. We finish the paper
in Section 6 with final remarks.

2 RELATED WORK

The computational geometry and mesh generation community have
done most of the work on topics related to the space triangulation of
the outside of the boundary of polyhedral domains [3]. Particularly
relevant are the works in the computation of constrained Delaunay
triangulations [8, 7], which has in fact been the class of solutions
advocated by Williams [11], who was possibly the first to encounter
this problem in the context of visualization. Computing such geo-
metrical structures is no easy task, and is often limited to datasets of
reasonably small sizes because of both memory and computational
constraints. Furthermore, the implementation requires carefully de-
signed exact-arithmetic primitives [6]. The algorithms proposed in
this paper are considerably simpler than this more general solution.



Another solution, proposed by Kraus and Ertl [4], is to use semi-
automatic techniques. That is, often, the non-convexity can be
solved by the careful addition of a few new vertices. This process
can be achieved interactively by a semi-automatic tetrahedrilization
scheme, where a user would place points, and specify the area to be
triangulated.

3 BSP FILLER ALGORITHM

3.1 Using BSP-trees to fill space
We claim that the BSP-tree is a good supporting structure to cap-
ture the geometry and topology of empty space. As the geometry
of empty space adjacent to a mesh is given by the boundary faces
of the model, it suffices to build a BSP-tree with only the boundary
faces of the model as cuts in space. One reason for choosing BSP-
trees is that cuts in space only use normals that come from boundary
faces, which greatly reduces numerical problems that usually arise
if new normals are created. In addition, known normals makes it
more stable to recover the topological relations among cells. Fi-
nally, computation is extremely fast by using the search structure
properties of the BSP-tree.

In Figure 2 we illustrate the basics of the algorithm. Given an
input mesh, shown in Figure 2a, the boundary faces are extracted
and used as cuts in the BSP-tree. The resulting BSP-tree is repre-
sented by its decomposition in Figure 2b (for convenience enclosed
in a bounding box), and its tree structure, shown in Figure 2c. An
important property of BSP-trees is that each node corresponds to a
convex region of space, defined by the intersection of the halfspaces
in a path from the node of interest until the root of the tree. A related
property is that the union of all convex regions associated with all
leaves in the tree fills the space. This can be observed in the exam-
ple, where the leaves of the BSP-tree are colored accordingly to the
convex region they represent in the decomposition. Enumerating
only the convex regions outside the input model requires separating
between inside and outside cells. We assume that the face normals
in the input model always point outside the model, and we encode
this information implicitly in the tree by having the right subtree
always correspond to the region facing the normal. As a result of
this convention, leaf nodes that descend in left (right) subtrees cor-
respond to internal (external) regions of the model. Therefore, the
filler set correspond to the convex regions associated with all right
descendants leaf nodes in the BSP-tree. The resulting input mesh
augmented with the filler cells is shown in Figure 2d.

3.2 Generating filler cells
The hierarchical representation of convex regions encoded in a
BSP-tree suggests a traversal-type of algorithm to enumerate the
filler regions of the outside cells. Our algorithm performs a depth-
first traversal of the BSP-tree, keeping at each visited node the con-
vex region associated with the node. In Figure 3 we illustrate this
traversal and the regions obtained in all nodes in the BSP-tree of
Figure 2c. The convex region associated with the root of the tree
is unbounded, and for convenience, we replace it by a bounded re-
gion that is guaranteed to enclose the input mesh. The region is
represented by a list of faces (or list of edges in the case of the
2D example of the figure). The algorithm proceeds recursively as
follows. For each node, the cell associated with the node is par-
titioned by the hyperplane used to cut the space. This operation
is simply a partition of the cell (a collection of faces) by a plane,
generating two set of faces, one for each halfspace. Note that an
important face is missing, the one defined by the node itself, which
comes from the intersection of its convex cell with the hyperplane
of the node. Each new cell formed is passed into the subtree that
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Figure 2: BSP-Filler Algorithm. (a) Input non-convex mesh. (b)
BSP decomposition using the boundary faces of input mesh. (c)
Corresponding BSP tree (d) Input mesh augmented with cells gen-
erated by the filler algorithm.

corresponds to the halfspace associated with the cell, and compu-
tation proceeds as described. Once an outside leaf node is reached,
a new fille cell is added to the filler set and we proceed to compute
adjacency relations.

3.3 Finding adjacency relations in the
BSP-tree

In order to connect the input polyhedral mesh with the cells gen-
erated during convexification, it is necessary to build an adjacency
graph between the two types of cells. A common procedure to find
adjacency information in the BSP-tree is to query which leaves con-
tain a given geometric entity. In the case of points, for instance, it
corresponds to a simple point location algorithm, that starts at the
root of the tree, and follows the point down the tree, choosing the
subtree to continue the search depending on which side with of a
node’s hyperplane the point lies.

If the queried entity is a face (represented as a collection of
points), a similar procedure can be applied, comparing each point
of a face against the hyperplane of a given node in the tree. If some
points lie in opposite sides, the face is split in two faces, generat-
ing two sub-faces where computation proceeds recursively. Unlike
points, it is likely that more than one leaf node may be reached
by sub-faces, which means that more than one cell of the BSP-tree
contains the queried face. We simply call this a face-location algo-
rithm, receiving as input a query face and a node indicating where
the search starts, and returns a list of the cells reached by the face.

There are three types of adjacencies relating filler and mesh cells
that need to be computed by the filler algorithm: filler face to mesh
cell (fM ), filler face to filler cell (fF ), and mesh face to filler cell
(mF ).

Filler to Filler Adjacencies
We start describing how to obtain fF adjacencies. In the moment
that the traversal in the filler algorithm reaches an outside leaf node,
all faces of the cell corresponding to this node are available. For
each filler face, we look for adjacent cells in the BSP-tree using
the face-location algorithm described above. Instead of starting the
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Figure 3: Extracting convex regions from BSP-trees.

face-location search at the root of the tree, we start at the deepest
node in the tree that is guaranteed to contain all adjacent cells. In
this case, if the face was defined in the left halfspace of a node n
in the tree, then this node corresponds to the right child of n (and
vice-versa). The starting node for face-location is found quickly
because we keep, for each face, a pointer to this node whenever a
new face is generated in the filler algorithm. Finaly, we change the
result of the face-location algorithm to discard inside cells, because
filler to cell adjacencies will be treated elsewhere. In Figure 4 we
describe an example of the face-location algorithm in action.

Mesh to Filler Adjacencies
The computation of mF relations preceeds the filler algorithm, and
saves information at the leaves of the tree that are later used to re-
cover fM adjacency relations. For each boundary face of the mesh,
we use a face-location algorithm starting at the root of the tree,
looking for all outside leaf nodes that are reached by the face. For
each node obtained, we establish the mF adjacency relation. Also,
we keep at each node a list of boundary faces that reaches the node,
call this MFLIST (node).

Filler to Mesh adjacencies
Now consider fM adjacencies. Because of coplanarity among
boundary faces of the mesh, it is possible that a face of a filler cell
maybe adjacent to more than one cell of the input mesh. When the
filler algorithm reaches an outside cell, we process the MFLIST
associated with the node. For each boundary face m in this list, we
compare m against the list of faces f that define the convex region
of the node. For each f that lies on the same supporting hyperplane
of m, we create a fM adjacency relation between f and the mesh
cell associated with the boundary face m. Note that this lies-on-
hyperplane operation is numerically stable because we compare ids
of hyperplanes.

4 APPLICATION: VOLUME RENDERING

An effective technique for exploring graphics hardware for volume
rendering is the Projected Tetrahedra (PT) algorithm proposed in
[9]. The main idea is to break a volumetric grid into a collection
of tetrahedra, which are then rendered by splatting its faces on the
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Figure 4: Face Location algorithm example. Find the cells adja-
cent to the marked face in cell 2, defined on cut b, facing the left
subtree of b. Insert face in the right subtree of b. Each node tested
against the face is highlighted. The test against node d passes the
face to its right subtree, while against the node e splits the face in
two. Leaf nodes (5, 6) reached by sub-faces are the adjacent cells.

screen. In order to apply PT, one needs to compute a visibility-
ordering of the cells. One way to compute such an ordering for
convex meshes is to partially order the cells based on adjacency in-
formation and the orientation of faces and do a search through the
resulting graph to determine a correct depth ordering, as for exam-
ple in the Meshed Polyhedra Visibility Ordering (MPVO) algorithm
described by Williams [11, 5] (see Figure 5).

The MPVO sorting algorithm is both fast and accurate: it runs in
linear time with low computational overhead and uses linear space
for its data structures. Unfortunately, many data sets violate the
convex mesh constraints of MPVO. For example, cells may be in
a nonconvex mesh, or there may be multiple disconnected compo-
nents to the mesh (see Figure 6). In the case of disconnected com-
ponents, there are cells which cannot be related by any transitive
chain of in-front relationships across shared faces and yet which
may occlude each other, so an ordering based purely on such rela-
tionships may incorrectly order the cells.

Recently, several extensions of MPVO for general meshes have
been proposed [10, 1, 2]. These techniques are based on augment-
ing the visibility graph used by MPVO with extra relations, while
keeping the same nodes (i.e., cells). Computing extra relations can
be costly, and modify the underlying MPVO algorithm. An alter-
native approach (originally proposed in [11]) is to use a convexifi-
cation algorithm, such as the one proposed in this paper, to fill the
space between the convex hull of the grid, and its (possibly multi-
connected) boundary with extra convex cells, as to complete the ad-
jacency information. In other words, a transitive chain of in-front
relationships between occluding cells would always exist. Note that
the extra cells are used for sorting purposes only, and ignored dur-
ing rendering.

The filler cells and its adjacencies need to be inserted into the
adjacency graph in MPVO. Creating nodes in this graph is trivialy
done by adding a node for each cell in the filler set. Edge insertions
are more complex because they require adding adjacency relations
between mesh and filler cells. Unlike the input mesh, where adja-
cencies were defined from one cell to one cell by a single face (an
edge in the graph), the new adjacency relations in the presence of
filler cells can be from one cell to various cells by each face.
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Figure 5: MPVO algorithm. The adjacencies define an adjacency
graph. A topological sorting of this graph produces the cells in
visibility ordering with respect to the viewing direction.
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Figure 6: MPVO missing relations.

Discussion
Our convexification algorithm automatically fills the empty space
surrounding a non-convex model with cells (also called filler cells)
in order to form a single convex model, allowing the MPVO algo-
rithm to be used. This approach is advantageous when the com-
plexity added by the additional cells can be compensated by the
speed-up gained by using a faster algorithm for convex cells (e.g.,
MPVO) instead of a non-convex algorithm (e.g., SXMPVO or BSP-
XMPVO).

One of the limitations of our approach is that it does not guar-
antee to generate convexifications that are cycle free. In some
datasets, such as the SPX, there are cycles formed that include a se-
quence of mesh-filler-mesh or mesh-filler-mesh adjacencies. This
can be explained by the fact that BSP-trees imposes a total ordering
only at the convex cells it creates, but not at objects that are split
by BSP-tree cuts. Therefore, the choosing of cuts in the BSP-tree
is critical to avoid the creation of such cycles.

5 RESULTS

All results produced in this section were obtained in a Pentium 4
1.4GHz with 1GB of memory (a Dell Precision 330). We explored
several BSP-tree construction techniques in the BSP-tree used by
the filler algorithm. Overall, our goal was to produce a BSP-tree
that has the fewer number of outside leaf nodes, while being as bal-
anced as possible. We used the following heuristic to pick the next
cut in the BSP-tree Let cin(f), cout(f) and ccross(f) count the
number of faces that lie in the inside, outside and both hyperplanes
of a candidate cut. Let score(f) = 2 ∗ ccross + abs(cin − cout).
Among a user-defined number of candidates we chose the one that
minimized this score.

Filler Statistics
Mesh Faces FillCells FillFaces Avg(Adj) Max(Adj)

DODEC 12 12 42 3.1 4
MUSH 240 396 2269 14 19

BUNNY 948 810 5063 5.68 15
SPX 2760 3032 17698 9.00 50

SPX,k=3 2760 2787 16283 8.25 43
SPX2,k=3 5520 5845 25872 8.75 40
SPX4,k=3 11040 11417 67333 7.21 59

BLUNT 13516 62 284 0.015 21

Figure 8: Filler construction statistics for various datasets. Un-
less mentioned, the number of kdtree levels (k) is 0. Note that for
SPX we obtain fewer cells with 3 kdtree levels. SPX2 contains two
copies, side by side, of the SPX dataset. SPX4 contains four copies.

We also experimented with adding external cuts parallel to co-
ordinate axes, in the same way that a kd-tree does. These cuts are
added before the boundary cuts in the BSP-tree. We chose to add
kd-tree cuts until a certain level of the tree, which is a parameter
to the construction. We use as heuristic to choose the kd-tree axis
as the one that has the greatest variance in the vertices of the faces,
and cuts the space at the median of chosen axis.

The boundary faces input to the filler algorithm are assumed
to be defined along a consistent orientation (clockwise or anti-
clockwise), which is used to define inside and outside cells. We
tested the performance of the algorithm with the boundary extracted
from a volumetric dataset (BLUNT), and with other boundary files
like a dodecahedron, a mushroom and the Stanford bunny. We dis-
play results in Figure 8.

We used the filler data to augment the MPVO adjacency graph
to obtain the visibility ordering of the BLUNT dataset. We call it
the SF-MPVO algorithm (Space Filled MPVO). For the BLUNT
dataset, a model with 187K tetrahedron, fewer filler cells were
added to the models as it is almost convex. For this dataset, we
produce an ordering in 0.71s, which is comparable with the results
of MPVONC, which corresponds to MPVO augmented with an ad-
ditional sort step that works for most but not all cases. It is impor-
tant to note that the increase in the MPVO adjacency graph is not
substantial, which explains the fact that the sorting times among
MPVONC and SF-MPVO are almost equivalent. In figures 9 and
10 we illustrate our algorithm in action, with the display of the input
mesh and filler cells generated, followed by a sequence of images
that show the ordering produced by the SF-MPV0 algorithm. A
video showing an animation of this process is also included with
this submission.

6 CONCLUSIONS AND FUTURE WORK

In this paper we presented an automatic and numerically stable way
to the convexification of space problem, used to accelerate the vol-
ume rendering of unstructured grids. We chose a BSP-tree as the
supporting structure for this problem, using the boundary faces as
cuts in space. Enumerating the geometry and topology of empty
space can be done very efficiently with the filler algorithm. The re-
sulting convex cells that form empty space are incorporated into the
MPVO algorithm with little overhead in the number of cells. Re-
sults shown that the performance obtained is compatible with the
performance of convex algorithms. An alternative technique would
be to instantiate the convex cells generated by the BSP-tree com-
pletely numerically, and to use these cells as input to MPVO. This
has shortcomings. First, the construction of such cells is computa-
tionally expensive. Also, the numerical instabilities associated with
such a process make it hard to use the output, (e.g., to apply MPVO,
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Figure 7: (a)-(d) Examples of filler decompositions in the dodecahedron, mushroon, bunny and SPX datasets.

it is necessary to compute connectivity information from possibly
inexact cells).

In future work, we are exploring extensions of the algorithm for
dynamic scenes, and ways to simplify even further the number of
cells generated by the filler algorithm. There are interesting theo-
retical questions associated with the filling process. An important
question is to compute non-trivial theoretical bounds on the number
of filling cells. Another important questions is related to the order-
ing properties of the complex after convexification. It is possible
to design examples which show that our technique can potentially
generate cycles as part of the filling process. Although not actually
a problem in practice1, it would be nice to understand this better.
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Figure 9: SF-MPVO in a dataset with disjoint parts and holes. (a) Input mesh (b) BSP-tree subdivision (c)-(i) Several instances of the
algorithm showing the cells projected so far (filler meshes are drawn in wireframe)
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Figure 10: SF-MPVO in the BLUNT dataset. (a) Input mesh (b) BSP-tree subdivision (c)-(i) Several instances of the algorithm showing the
cells projected so far (filler meshes are drawn in wireframe)


