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Abstract—Recent results have shown a link between geometric properties of isosurfaces and statistical properties of the underlying
sampled data. However, this has two defects: not all of the properties described converge to the same solution, and the statistics
computed are not always invariant under isosurface-preserving transformations. We apply Federer’s Coarea Formula from geometric
measure theory to explain these discrepancies. We describe an improved substitute for histograms based on weighting with the
inverse gradient magnitude, develop a statistical model that is invariant under isosurface-preserving transformations, and argue that
this provides a consistent method for algorithm evaluation across multiple datasets based on histogram equalization. We use our
corrected formulation to reevaluate recent results on average isosurface complexity, and show evidence that noise is one cause of
the discrepancy between the expected figure and the observed one.

F

1 INTRODUCTION

In scientific and medical visualization, we commonly represent physi-
cal quantities as continuous functions defined over a continuous do-
main. These are constructed by resampling observed points using
some reconstruction kernel defined on the underlying space or on the
connectivity of a geometric grid. When visualizing data, we work di-
rectly on the continuous function, which is mathematically and com-
putationally convenient.

Since humans are not good at assimilating large quantities of nu-
merical data, visualization seeks to map numerical properties of this
continuous function to visual properties such as colour, brightness and
saturation or to geometric properties such as boundaries and edges.
Thus, one of the first steps in visualization is to define a mapping from
the function to visual properties. Defining this mapping often depends
on understanding the frequency and possibly the spatial distribution of
the numerical values.

Historically, function distributions have been computed with his-
tograms, which simply count the number of samples with each func-
tion value. However, recent work by Carr et al. [2] has shown that
there are serious problems in using histograms as representations of
function distributions. In particular, histogram computation assumes
that the reconstruction uses a box filter (or nearest neighbor interpola-
tion).

Using this observation, Carr et al. [2] proposes several alternative
statistics that converge faster than histograms. These are based on
interpreting the isosurface areas as measurements of higher-order in-
terpolants on the domain. In addition, the authors related their statis-
tics (and, implicitly, the histogram) to the algorithmic complexity of
isosurface rendering, demonstrating a larger (O(N0.82)) experimental
result than the O(N2/3) previously predicted [6]. While the proposed
statistics certainly converge faster than histograms, two problems can
be identified. First, these seem to converge to a slightly different re-
sult than histograms. Second, the mathematics suggest some counter-
intuitive results about the average complexity of isosurfaces in the do-
main. Here, we use the term “convergence” to mean that as we use
increasingly finer grids, the computed functions approach some limit
function.

In this paper, we address these issues by revisiting the development
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of the isosurface statistics using a celebrated result in geometric mea-
sure theory: Federer’s Coarea Formula [11]. This formula relates inte-
grals over level sets of a function to integrals over the domain on which
the function is defined. Crucially, it has the effect of normalizing iso-
surface statistics to the packing density of the isosurfaces, allowing
us to correct the problems identified and propose improved solutions.
Moreover, this formula gives us additional results. In particular, we
show that histogram equalization can be used as a normalization to get
the O(N2/3) result originally predicted. Throughout the paper, we use
the term “level set” interchangeably with isosurface, but will choose
the term “level set” when we want to disregard the particular isovalue
associated to the set of points in the preimage.

Our contributions are as follows. We build on the work of Carr
et al. [2], and introduce a more mathematically grounded approach
based on Federer’s Coarea Formula (FCF). It clarifies the subtle re-
lation between histograms and isosurface areas, and, crucially, shows
the role of gradient magnitudes in that relationship. It also provides
a well-founded way to compute expectations over all isosurfaces in a
volume. Practically, we suggest using the cell span as an approxima-
tion for gradient magnitude, and provide experimental evidence for the
validity of this approximation. Finally, we revisit Carr et al.’s study on
average isosurface complexity and study the effect of volume noise in
those estimates.

This paper is organized as follows. Section 2 briefly reviews rel-
evant previous work, while Section 3 summarizes the contents of the
previous result [2]. We then introduce the FCF in Section 4, and use
this mathematical tool to develop an improved formulation of isosur-
face statistics in Section 5, based on dividing the statistics by the lo-
cal gradient magnitude of the continuous function. In Section 6, we
extend the application of the FCF to the computation of average iso-
surface complexity, and show that there exist transformations that pre-
serve level sets, but change the original isosurface statistics (we will
make this notion precise). We also show how to compute the average
complexity in a way that implicitly accounts for any such transforma-
tions, and explain the discrepancy in the original results. In Section
7 we confirm that the average isosurface complexity of a function,
when sampled increasingly finely in a domain, is O(N2/3). We also
revisit the experiments of Carr et al. [2] in light of the corrected inte-
gral formulation. In our experiments, we find an even higher average
complexity, of O(N0.96). Finally, we show that noise seems to largely
explain this high figure, by performing a set of experiments on syn-
thetic data. We then summarize our results in Section 8 and speculate
on future directions of research in Section 9.

2 PREVIOUS WORK

Histograms are ubiquitous in plotting, and also in computer graphics
and visualization. It is one of the oldest techniques available for dis-
playing data [5], and is often used as the basis of techniques such as
histogram equalization [4], which defines a non-linear transfer func-
tion that attempts to distribute the intensity in an image uniformly over



Fig. 1: Convergence properties of histograms (left) and isosurface area (right), from Carr et al. [2]. Note that the histogram’s convergence is much poorer than the
isosurface area; furthermore that the latter apparently converges to a slightly different result: at maximum resolution, the peaks are concave cusps for the histogram,
but convex cusps for the isosurface area.

the range. Fundamentally, the histogram is a bar graph used to repre-
sent the distribution of function values in a population. In this bar
graph, the independent variable represents the possible values of a set
of observations, and the dependent variable represents the number of
observations with a given value.

In computer graphics, histograms are often computed for sample
values in a dataset. The histograms themselves are then used for equal-
ization [4], transfer function construction [8] and detection of impor-
tant isovalues [14, 15].

Isosurfaces are level sets of a function, and are commonly extracted
and rendered using geometric approximations of the surface [9, 16].
Much subsequent work has gone into accelerating their construction—
see [13] for a recent review. Crucially, most of the acceleration work
has exploited the relationship between k, the output complexity (num-
ber of triangles) in the isosurface, and N, the input complexity (number
of samples) in the data. A dimensionality argument has been used to
estimate that k ≡ O(N2/3) [6], but this estimate was not then tested
rigorously.

Geometric statistics have also been used in visualization, princi-
pally in the form of the contour spectrum [1], which computes geo-
metric and topological properties of isosurfaces and displays them in
an interface to provide cues to interesting isovalues that can be used
for guiding users during visualization.

Carr et al. [2] showed that histograms, isosurface complexity and
geometric statistics were intimately related, and gave experimental
results on the average complexity of isosurfaces in a range of freely
available datasets. Since the present paper revises and extends these
results, we defer full discussion of this work to the following section.

Our work depends heavily on a classic result in geometric measure
theory—Federer’s Coarea Formula, which describes the relationship
between integrals defined on level sets and integrals on the space in
which the level sets are defined. For an introduction to the topic, see
Morgan’s book [11]. To the best of our knowledge, the Coarea For-
mula has only very recently been presented to the computer graphics
community by Mullen et al. [12]. We will return to this topic in Sec-
tion 4.

3 REVIEW OF HISTOGRAMS AND ISOSURFACE STATISTICS

In the previous section, we identified the convergence of results on
histograms, geometric isosurface statistics and algorithmic complex-
ity. We now delve further into this convergence by reviewing the pre-
viously published results of Carr et al. [2].

Briefly, the paper points out that a histogram can be expressed as:

H(h) = ∑
f (xi)=h

1 (1)

while the distribution of the function could be defined as:

π f (h) =
∫

f−1(h)
1 dS (2)

where f : R ⊂R3 →R is a scalar field whose image is in the range
[h0,h1]. A preimage f−1(h) is an isosurface of f , and h is an iso-
value. As we will see shortly, Equation 2 is subtly incorrect, but the
underlying point is clear: that the histogram is closely related to in-
tegrals defined over the isosurface at the function value h. It is this
particular equation that we re-examine carefully, present a theoretical
correction, and show experimental evidence for its superiority in terms
of convergence to the histogram.

The Equation 2 result was then expanded to show that the histogram
in fact assumes a nearest neighbour interpolant. Since isosurfaces ex-
plicitly represent the interpolant in the geometric extraction process, it
follows that geometric statistics of the isosurfaces were better repre-
sentations of function distributions. This was demonstrated by exam-
ining plots of histograms and isosurface statistics as the sampling den-
sity increased, in which it was clear that histograms had much poorer
convergence properties. Figure 1 shows the convergence of histograms
on the left and isosurface statistics on the right; it also shows one of
the errors in the paper—that the isosurface area in fact converges to a
different result from the histogram.

Having illustrated the convergence properties, the paper then illus-
trated the difference between the two sets of statistics for non-analytic
data sets, describing consistent trends over a large number of freely
available data sets. In this work, we show that using the isosurface
area is not in fact the correct solution in that it does not converge to
the same result as the histogram.

Finally, the paper measured the average isosurface complexity for
all of the data sets on a log-log plot and demonstrated that the ex-
perimental complexity for uniform sampling in the range showed a
O(N0.82) relationship between k and N rather than the O(N2/3) pre-
viously predicted [6]. With the machinery we introduce in this paper,
we revise this result as well. For a single volume sampled increasingly
densely, we can analytically show the O(N2/3) result. However, for
the same set of datasets collected on the internet as used in Carr et al.
[2], we find a relationship closer to O(N0.96).



Fig. 2: A histogram of a continuous, one-to-one function. The histogram is side-
ways so that its relation to the original function is clear. Notice that the histogram
peaks where the function derivative is low, and troughs where the derivative is
high. If π f didn’t contain a term to account for the gradient magnitude, the his-
togram would be flat.

Fig. 3: Illustrating the coarea formula. The coarea formula allows us to go
from an integral on the level sets of a (sub-)region R to an integral on the region
itself. Even though isovalues of the level sets are uniformly spaced, changes in
the gradient magnitude cause the level sets to have different local densities. It is
exactly this change in density that is accounted for in the co-area formula by the
|∇ f (x)| term. The dashed cross-section of the domain is plotted in the bottom.

We note that we are not advocating the use of a different range map-
ping for determining important isosurfaces, or that the distributions
computed by Carr et al. [2] are more or less effective at informing the
user about the volume. We are interested in finding histogram substi-
tutes that converge as fast as previous proposals, while matching the
histogram distribution in the limit. As we will show, this leads more
generally to a mathematically sound way of determining integrals over
all isosurfaces of a volume, when the particular isovalues of each iso-
surface are not important.

4 REVISITING HISTOGRAMS AS DISTRIBUTIONS

We begin by presenting Federer’s Coarea Formula, the primary mathe-
matical tool used in this work. The original result is extremely general
in nature, and requires a level of sophistication that will be unnec-
essary for our purposes (see, e.g., Morgan’s book [11]). We instead
follow Mullen et al.’s presentation of the formula [12], who recently
introduced the Coarea Formula to the computer graphics community
as a useful geometry processing tool. At its core, the formula converts
integrals over a range of level sets to integrals over the domain where
the level sets are defined:∫

R

∫
f−1(h)∩R

q(x) dS dh =
∫
R

q(x)|∇ f (x)| dV (3)

Fig. 4: Isosurface statistics for a spherical function distribution with non-constant
gradient magnitude. Our improved isosurface statistics converge to the histogram
even in the case of nonconstant gradient magnitudes in the domain. Notice al-
though both weighted and unweighted triangle areas are smooth curves, indicat-
ing fast convergence, only the gradient weighted areas (and its approximations)
converge to the histograms.

where q : R→R is any scalar function defined over the same domain
as f , and f is a Lipschitz function. Note that in order to be consistent
with the notation from Carr et al., the notation used in this paper is
slightly different from Mullen et al.

In words, the formula says that if we want to integrate a certain
function over a range of level sets of f , we can instead integrate the
function directly over the domain of f , provided we compensate for
the local density of isosurfaces. We will use this formula to provide
an appropriate definition of the distribution function on a continuous
domain. We would like to define a distribution function π f (h), that
gives a measure of the “size” of the set of points for which f (x) = h.
We first define the cumulative distribution function:

C f (h) = P[ f (x) < h]

=

∫
h0≤ f (x)≤h 1 dV∫

h0≤ f (x)≤h1
1 dV

=
1
V

∫
h0≤ f (x)≤h

1 dV (4)

We will assume without loss of generality that V = 1. Given this
definition of C f as an integral over a subset of the domain R, we will
use Federer’s Coarea Formula to rewrite it in terms of integrals on the
level sets. By defining q(x) = |∇ f (x)|−1, and restricting the set of
isovalues we are integrating over, we can write:∫ h

h0

∫
f−1(h̄)

|∇ f (x)|−1 dS dh̄ =
∫

h0≤ f (x)≤h
1 dV (5)

This can be directly substituted into C f :

C f (h) =
∫

h0≤ f (x)≤h
1 dV

=
∫ h

h0

∫
f−1(h̄)

|∇ f (x)|−1 dS dh̄ (6)

By the Fundamental Theorem of Calculus, π f = C′f :

π f (h) =
∫

f−1(h)
|∇ f (x)|−1 dS (7)

Note that this is in contrast with how π f is defined by [2] (in this paper,
Equation 2). As we will show, when this inverse gradient magnitude



Fig. 5: Histograms and Corrected Isosurface Statistics. Notice that the unweighted isosurface areas show fast convergence, but produce different results from the
histogram. The corrected term we introduce in this paper keeps the fast convergence, while still approaching the histogram distribution.

term is accounted for in the computations, the isosurface statistics in-
vestigated in that work converge to the same results as the histograms.
One way of connecting the two results is to note that Carr et al.’s origi-
nal formulation generates correct results whenever the volume satisfies
a particular case of the Eikonal equation: |∇ f (x)| = k for some non-
zero constant k.

To highlight the relationship between the gradient magnitude of a
function and its histogram, we show two examples. In Figure 2 we
show a simple one-dimensional example where we restrict ourselves
to a one-to-one function. Notice that the histogram of a continuous
function measures the density of values in the domain that attain a
certain value in the image. Differentially, however, the density of the
domain is inversely proportional to the derivative of the function at
a point, since it is given by the “amount” of domain in an infinitesi-
mally small slab of range values. If the derivative of the function (or
more generally, its gradient magnitude) was not taken into account, we
would expect the histogram of a one-to-one function to be constant —
which cannot possibly be true in general. In Figure 3, we illustrate the
co-area formula in two dimensions.

5 REVISITING ISOSURFACE STATISTICS AS DISTRIBUTIONS

With the correction presented above, we introduce an improved sub-
stitute for histograms which, unlike that presented in [2], converges to
the histograms themselves. Instead of computing isosurface area di-
rectly, we need to weigh the area contributions by the inverse gradient
magnitude of the level set. We also propose an approximation for the
gradient magnitude at a level set that is easy to compute.

In Figure 4, we show the histogram of an analytic spherical dis-
tribution f (x) = |x|2. Note that, unlike the one presented in [2], we
are using squared distances from the origin, and that the gradient of
this function is not constant across the volume. The previous formu-
lation does not converge to the histogram distribution, while our im-

proved formulation does. The same approximations previously pro-
posed, which use triangle count and active cell count as surrogates for
isosurface area, also perform well when similarly corrected.

Carr et al. show that it is possible to use much cheaper alternatives
such as active edge and active cell counts as a very good replacement
for the potentially expensive isosurface extraction. In our case, there is
an added complication that arises from the gradient magnitude in the
correction term. In particular, we would like to compute the correction
without having to refer to the original spatial distribution of values in
the volume. If that were possible, we could improve the efficiency of
the computations in the same way that using active cell counts can be
used as an approximation of triangle counts. One such candidate is the
cell span: the difference between maximum and minimum value. The
cell span is an admittedly crude approximation of the gradient mag-
nitude. Assuming cell width of 1, and depending on the geometric
configuration of the values on the cell corners, the cell span might be
off to up to a factor of

√
D, since the maximum and minimum val-

ues might be across a main diagonal of the D-dimensional cell. For
D = 3, the cell span will overestimate the gradient magnitude in a cu-
bic cell by ≈ 1.28 on average, if we consider all value configurations
of extremal values are as likely to occur as one another. However, the
histogram is by definition normalized, and since that factor is constant
across all isovalues, the factor is canceled out. We have found this po-
tentially crude approximation to be essentially indistinguishable from
using more sophisticated approximations. Throughout the paper, we
use this cell span approximation.

In Figure 5, we show the new histogram substitutes for a set of
volumes of different modalities. These plots show the same general
behavior as Figure 4: the new formulation converges faster than his-
tograms, and it does so to the histogram distribution, unlike the previ-
ous proposal.



Fig. 6: Some transformations that preserve all level sets of a given volume change the value of Ã. The Coarea formula tells us that Ã (defined in the text) is in essence
the integral of the gradient magnitude. It is clear, then, that Ã( f ) 6= Ã(g◦ f ), even though every level set in f also exists and g◦ f . In other words, the curves are generally
shifted vertically (except for the fixed points of g), but each curve traces the same values in the domain.

6 AVERAGE ISOSURFACE COMPLEXITY

In this section, we investigate the average complexity of an isosurface
in a volume. We use isosurface area as our measure of complexity, for
the same reasons as Carr et al. [2]: it is mathematically convenient and,
in most isosurface extraction algorithms, directly related to triangle
count, which is arguably the most importantly computational unit to
analyze in these algorithms.

The notion of average isosurface complexity is a delicate one. In
particular, when computed naı̈vely, the average isosurface complexity
might be different for two volumes that share exactly the same set of
isosurfaces. In this section, we present a slightly different formulation
that is invariant to these transformations.The straightforward way of
defining the average isosurface complexity Ã( f ) is to simply evaluate
the integral

Ã( f ) =
1

h1−h0

∫ h1

h0

∫
f−1(h)

1 dS dh (8)

=
1

h1−h0

∫
R
|∇ f (x)| dV, (9)

where Equation 8 is the formulation used in [2], and Equation 9 is a
direct application of the FCF. However, we can define f̄ (x) = g( f (x)),
for some function g : R→ R that is smooth and monotonically in-
creasing. Notice that |∇ f̄ (x)|= g′( f (x))|∇ f (x)|, and so Ã( f ) 6= Ã( f̄ ),
even though f and f̄ share the exact same set of isosurfaces ( f−1(h) =
f̄−1(g(h))). If Ã( f ) is to be a measure of the average complexity of
the level sets, we would like it to be invariant under transformations
that preserve the level sets. These transformations preserve the level
sets in the sense that every set of points in the preimage of the func-
tion f and value h (that is, the isosurface of f with isovalue h) exist
in the function f̄ , as the preimage of some value, namely g(h) (that
is, the isosurface of f̄ with isovalue g(h)), and vice-versa. Figure 6
illustrates this preservation of level sets. In what follows, we describe
how to change Ã so that this is indeed the case.

6.1 Computing with histograms
In Section 4, we showed that the histogram of isosurface areas involves
the integral of the inverse gradient magnitude over the level sets for it
to be the real distribution function. We now show how this distribution
function must be accounted for when computing averages over all iso-
values. We use the standard definition of an average over a parameter
with non-uniform probabilities:

A( f ) =
∫ h1

h0

π f (h)a f (h) dh (10)

a f (h) =
∫

f−1(h)
1 dS (11)

When the average is defined in this way, any transformation g ap-
plied to f will be exactly accounted for by πg◦ f , so we will have
A( f ) = A( f̄ ). Additionally, if g is specifically defined to be the his-
togram equalization function of f :

g(h) =
∫ h

h0

π f (h̄) dh̄ (12)

then the naı̈vely computed average area Ã( f ) will be exactly equal to
the average area A( f ) that compensates for the density, since πg◦ f will
be constant.

There are several ways to numerically estimate the value of Equa-
tion 10 via Monte Carlo integration. It can most directly be written
as:

A( f )≈ h1−h0

n

n

∑
i=1

π f (hi)a f (hi) (13)

where n is the number samples hi taken uniformly in the range [h0,h1].
However, π f may be difficult to evaluate in practice for arbitrary func-
tions f . Instead, we could first perform histogram equalization, to pro-
duce a function f̄ with a constant π f̄ . In this case, we can approximate
A( f ) as:

A( f ) = Ã( f̄ )≈ 1
n

n

∑
i=1

a f̄ (hi) (14)

This is a much simpler computation, but still assumes that histogram
equalization can be done easily and robustly. However, histogram
equalization on quantized data will often produce an imperfectly
equalized result. If we can create the samples hi proportionally to
π f , we can avoid having to either evaluate π f or perform histogram
equalization. This is easy to do, and we approximate A( f ) as:

A( f )≈ 1
n

n

∑
i=1

a f ( f (xi)) (15)

where xi is a random point uniformly chosen from R. That is, if we
choose the values h to average by evaluating f at a random point,
rather than choosing it randomly between h0 and h1, we can implicitly
account for the non-uniform distribution of isosurfaces, and have the
computation be invariant under any transformation g of the ranges.

Interestingly, this tells us how we should compute any average over
isosurfaces. In the context of this paper, we have defined a(h) to be the
area of the isosurface with isovalue h. However, a could be any func-
tion of the isosurface, such as the execution time of some algorithm on



f−1(h), or the maximum gradient magnitude at points in f−1(h). Then
when computing the averages of these functions over all isovalues h,
the distribution function must be taken into account appropriately.

7 FORMAL COMPLEXITY

We now turn to the question of average isosurface complexity over the
volume. For the moment, we will look at the average isosurface area
as a convenient proxy for the correct notion, which involves a sampled
volume and the average active cell count.

We have rigorously defined A( f ) in such a way that it is invariant to
transformations of its range, so we can now investigate how it changes
as a function of a uniform scale of s. We define a new function fs :
Rs→R, where fs(x) = f (x/s) and Rs = {x|x/s ∈R}. We note that
π fs = π f since it is a simple uniform scaling. Additionally,

∫
f−1
s (h)

1 dS = s2
∫

f−1(h)
1 dS (16)

since dS is a 2-form. Therefore, the average area of the isosurfaces of
fs is:

A( fs) =
∫ h1

h0

π fs(h)a fs(h) dh

=
∫ h1

h0

π f (h)s2a f (h) dh

= s2A( f ) (17)

Since the volume of the domain will increase by N = s3, we have the
scaled volume’s average area growing exactly by N2/3, as suggested
by Itoh and Koyamada [6]. Note, however, that this is when consid-
ering a single function f . As Carr et al. [2] suggest, it is possible to
find pathological cases where the average area relative to the volume
increases as O(N), when the functions are not just scaled versions of
some base f . For example, this will happen when f is a checkerboard
defined over allR3, and fN is defined to be f (not scaled, but extended
over a larger region).

7.1 Revisiting the experiments

In addition to these theoretical results, we would also like experimen-
tal confirmation of the formal complexity of isosurfaces. In practice,
the scalar functions are typically represented by a finite set of sam-
ples, which are subject to quantization and aliasing artifacts, and the
isosurfaces are often approximated piecewise linearly by triangles. To
test the formal complexity that is seen in practice under these circum-
stances, we have revisited the experiments in [2] using the appropriate
definition for π f . We can use any of the previously described methods
of accounting for π f when numerically estimating the average isosur-
face complexity. To avoid numerical artifacts of histogram equaliza-
tion of quantized volumes, we use Equation 15.

Figure 7 shows the results of the experiments performed. We have
used approximately 80 different datasets for these experiments. We
have found that the average triangle count across all isosurfaces, using
the appropriately defined notion above, grows at around N0.96, when N
is the number of samples in the volume, close to the pathological O(N)
cases. This figure is even higher than the experiments of [2], which
found the relationship to be approximately N0.82. The difference in
the results comes from compensating for the local density of isovalues
when computing the average surface areas. Notice that the overall
slope is bigger than the slope of the fits particular to any modality. A
full investigation of the reason is not possible without a much bigger
set of volumes than what we had available. However, we speculate that
this is caused partly by a combination of outliers, a simplified growth
model (the real data probably does not follow a power law exactly) and
disparity of the volume sizes: the simulated data sets were typically
smaller than the measured and medical data sets.

Fig. 7: Plot of input sample size versus average triangle count. Our experiments
show an even higher power (O(N0.96)) than previously reported (O(N0.82)).

7.2 Noise and average complexity

The new figure seems to indicate that the average isosurface on
datasets used in practice is close to what has been considered a patho-
logical case, which is unexpected. In this section, we show that noise
seems to be a main cause of this inflated complexity. We start by
showing, in Figure 10a-c, the effect of increasing noise on a spherical
isosurface. As the noise level increases, the surface essentially fills an
increasingly thick region around the original isosurface. Figure 10d
shows a typical random isosurface extracted during the computation
of the results in Figure 7. Note that almost the entire volume is sim-
ilarly punctuated by small individual connected surface components
that arise from the presence of noise in f .

We know from Section 7 that a single volume, when sampled with
increasingly dense points, will result in a O(N2/3) average complex-
ity. However, volume noise is usually modeled as being independent
of the sampling resolution, so as we increase the sampling density,
the volume is no longer the same. The results of our experiments
are shown in Figure 8. In that experiment, we computed the average
isosurface complexity for a series of synthetic sphere and Marschner-
Lobb datasets, of increasing resolution, and examined the effects of
additive gaussian noise on the complexity. As can be seen, a noiseless
sphere has an average complexity close to O(N2/3), while all of the
volumes quickly approach complexity O(N) as the noise increases.

Additionally, aliasing seems to play a similar role to noise in the
observed complexity. By removing the Marschner-Lobb resolutions
that are prone to aliasing (all volumes with less than 403 samples), the
graph of the growth exponent as a function of the noise level is noisier
due to fewer data points, but there is a trend that starts at O(N2/3), and
approaches O(N) asymptotically. When volumes that have aliasing
effects are used, the order of growth seems to be inflated because as
the sample size increases, more of the higher frequency geometry is
resolved, resulting in an increased number of triangles.

Since most of the datasets we collected were quantized to 8 or 16
bits, we also experimented with varying the quantization level of a
particular dataset and computing the average order of growth. This
experiment is presented in Figure 9. The experiment setup is similar to
the previous one, but instead of increasing the noise level, we increase
the quantization. If quantization by itself were a significant factor,
then the plot would show a decreasing trend as we use more bits to
store the data. We did not observe, however, such a trend. There are
theoretical issues of examining severely quantized volumes with our
approach based on the co-area formula (see Section 8), so a deeper
investigation is necessary.



Fig. 8: Plot of noise level versus average complexity. Noiseless volumes have
average complexity close to O(N2/3), and noise moves the complexity towards the
O(N) asymptote. Notice that aliasing causes a higher initial complexity measure-
ment.

8 DISCUSSION

The formulation we propose in this work converges to the histogram
distribution much faster than directly evaluating the histogram. Re-
cently, there has been work in using local histograms for scientific
visualization [10]. The results presented here should be attractive in
these scenarios. Local histograms have less available data, and so
are potentially much noisier than their global counterparts, making
smoother histogram substitutes such as the ones we present an attrac-
tive possibility.

Section 6.1 focused on how to perform integrals of isosurface area
and triangle count over all isosurfaces in the volume in a way that
is invariant to range transformations. More generally, however, the
techniques presented can be seen as a way to compute expectations
of random variables on isosurfaces that is invariant to the transforma-
tions. The three methods we propose (Equations 13, 14 and 15) can be
used to evaluate expectations of any random variables, by simply us-
ing a different a f (h). For example, comparisons of running times for
isosurface extraction algorithms can use this formulation to sensibly
measure the average time for a given volume.

The gradient magnitude correction we introduce must be treated
carefully in situations where the volume gradient is zero. Volume
quantization, in particular, tends to generate such volumes. While the
Coarea formula ceases to be directly applicable in those cases, we be-
lieve that discrete counterparts of the formula (or volume perturbations
in the spirit of Simulation of Simplicity [3]) could make computation
of π f meaningful in these scenarios. Additionally, some datasets in-
clude regions where there are clear discontinuities in the data (wave
simulations with shocks are the canonical example). We have not ex-
perimented with these datasets, although it certainly warrants further
investigation.

One limitation of the presented formulation is that, in a precise
sense, it regards every isosurface as equally important. We know, how-
ever, that many scientific visualization techniques exploit particular re-
lationships between the isovalues and the underlying volume [7]. This
means that while our method provides a mathematically sound method
for computing integrals over all isosurfaces, the user might actually be
interested in weighting them in a semantically meaningful way. How
to integrate these two aspects remains an exciting avenue for future
investigation. Additionally, we emphasize that we are not claiming
that Carr et al. [2]’s formulation is more or less effective at informing
the user. That is a very important question that merits careful future
examination.

Fig. 9: Quantization level versus average complexity, with no noise. Quantization
does not seem to influence the order of growth in either direction.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we study the relationship between histograms and isosur-
faces statistics following on the footsteps of Carr et al. [2]. We iden-
tify shortcomings of their theoretical framework, and using the Coarea
formula from geometric measure theory, we are able to correct their
method to correctly accounts for the non-constant gradient magnitude
across a volume. This corrected formulation maintains its superior
convergence rate over histograms, while now converging to the actual
histogram. We have also shown that it is possible to define average
isosurface complexity in a way that is invariant to transformations that
change the gradient magnitude but preserve level sets. This formula-
tion explains some of the unexpected results obtained experimentally,
and provides an analytical demonstration that the complexity of aver-
age isosurfaces in a single volume scales as O(N2/3), confirming, for
a particular scenario, the previous estimate of Itoh and Koyamada [6].

In future work, we would like to investigate more deeply the influ-
ence of volume artifacts such as noise, quantization and aliasing in the
average isosurface complexity. We also want to investigate possible
extensions of this work for joint histograms of function and function
derivatives, which are quite popular in scientific visualization applica-
tions.

REPRODUCIBILITY

All of the work in this paper is fully reproducible
with publicly available datasets and open-source soft-
ware. The datasets and software are available at
http://www.sci.utah.edu/˜cscheid/vis2008/histograms.
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