
Navier-Stokes on Programmable Graphics Hardware using SMAC

CARLOS EDUARDO SCHEIDEGGER1, JOÃO LUIZ DIHL COMBA1, RUDNEI DIAS DA CUNHA2

1II/UFRGS–Instituto de Inforḿatica, Universidade Federal do Rio Grande do Sul - Porto Alegre, RS, Brasil
{carlossch, comba }@inf.ufrgs.br

2IM/UFRGS–Instituto de Mateḿatica, Universidade Federal do Rio Grande do Sul - Porto Alegre, RS, Brasil
rcunha@mat.ufrgs.br

Abstract. Modern programmable graphics hardware offers sufficient computing power to suggest the implemen-
tation of traditional algorithms on the graphics processor. This paper describes a complete implementation of a
standard technique to solve the incompressible Navier-Stokes fluid equations running entirely on the GPU: the
SMAC (Simplified Marker And Cell) method. This method is widely used in engineering applications. The de-
scribed implementation works with general rectangular domains, with or without obstacles, and with a variety of
boundary conditions. Furthermore, we show that our implementation is about sixteen times faster than a reference
CPU implementation running on similar cost hardware. Finally, we discuss simple extensions to the method to
deal with more general situations, such as free boundary-value problems and three-dimensional domains.

Figure 1: A1024 × 128 Navier-Stokes simulation running
in interactive rates,Re = 10000.

1 Introduction

Harnessing the modern programmable graphics hardware
processing power for general computation is a very active
area of research [1] [4] [6]. Although this is not a new idea
[9] [12], it was only recently that the graphics hardware
used in consumer-level personal computers reached inter-
esting levels, both in terms of raw performance and pro-
grammability.

Nowadays, modern Graphics Processing Units (GPUs)
have a full 32-bit floating-point pipeline, with programmable
vertex and fragment shading units. This allows us to inter-
pret the GPU as astream processor[13] [3], where streams
are defined as sets of independent uniform data. This is the
main advantage that a GPU has over a CPU: since compu-
tation on pieces of the stream are independent from each
other, it is possible to use multiple functional units to pro-
cess the data efficiently, in parallel.

Of course, not every problem decomposes itself grace-
fully in independent pieces: one must find a way to adapt
the algorithm to the restrictions that the GPU imposes. A
GPU algorithm is a carefully constructed sequence of graph-
ics API calls, with textures serving as storage for arrays
and data structures, and vertex and fragment programs per-
forming the computation. In this work, we use NVIDIA’s
NV35 and NV40 architectures. An implementation of this
kind requires a thorough understanding of the interplay be-
tween the different parts of the graphics system, as, for ex-
ample, the different pipeline stages and respective capabil-
ities, CPU/GPU communication issues and driver and API
quirks.

In this work we demonstrate how to cast SMAC [5], a
computational fluid dynamics algorithm used in engineer-
ing applications, as one such carefully constructed sequence.
We will see that in some cases, this GPU version outper-
forms a single-CPU reference implementation by as much
as 21 times; on average our GPU implementation runs six-
teen times faster.

2 Related Work

Stam’s stable fluids [15] are a standard computer graph-
ics technique for the simulation of fluid dynamics. Stam’s
solver relies on the Hodge decomposition principle and a
projection operator. Being an unconditionally stable solver,
it is able to use much larger timesteps than explicit solvers,
that are typically stable only under certain conditions. Al-
though Stam’s solution to the Navier-Stokes equations pro-
duce visually pleasing fluids, the implicit solver creates too
much numerical dissipation. This deteriorates the solution
to the point where it has no more relation to fluids in real
life. Since we are interested in using the GPU as a numer-

ical co-processor, we must not allow experimental discrep-
ancies in the simulations.

Stable fluids running on graphics hardware are abun-
dant in the literature [1] [10]. Also related is Goodnight et
al.’s multigrid solver [4], which is used to solve the stream
portion of a stream-vorticity formulation of the Navier-Stok-
es equations. Harris et al. [8] show that a variety of natural
phenomena can be simulated efficiently in graphics hard-
ware. Harris et al. [7] also show a simulation of cloud dy-
namics running in graphics hardware, using Stam’s stable
fluids as the dynamics engine.

Recently, Buck et al. [14] developed a data-parallel
programming language that allows the user to abstract away
from the graphics API, letting the compiler convert the code
to the specific calls. This is a major step towards the per-
ception of the GPU as a viable computing platform by the
general developer.

3 The SMAC Method

3.1 The Navier-Stokes Equations

The Navier-Stokes equations are a standard tool for dealing
with fluid dynamics, and the SMAC method relies on a dis-
cretization of these equations. The incompressible Navier-
Stokes equations, in their vector form, are:

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u + g, (1)

∇ · u = 0 (2)

whereu is the velocity vector field andp is the pressure
scalar field. ν andρ are the viscosity and the density of
the fluid, andg represents external forces acting on all of
the fluid (gravity, for example). Our implementation uses
the adimensional, two-component cartesian version of the
equations:

∂u

∂t
+

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
+ gx, (3)

∂v

∂t
+

∂p

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂(uv)

∂x
− ∂(v2)

∂y
+ gy, (4)

∂u

∂x
+

∂v

∂y
= 0 (5)

whereRe is the Reynolds number, relating viscous and dy-
namic forces.

3.2 Boundary Conditions and Domain Discretization

We assume a rectangular domain[0, w] × [0, h] ⊂ R
2 in

which we restrict the simulation. This means we have to
deal with the appropriate boundary conditions along the

Figure 2: Staggered grid discretization.

borders of the domain. We implemented boundary con-
ditions that simulate walls, fluid inflow, and fluid outflow,
which allow a variety of real-life problems to be modeled.
The wall and inflow are Dirichlet boundary conditions: the
velocity field has a certain fixed value at the boundary. The
outflow condition is different. Since this condition is not a
physical condition, we approximate the outflow condition
by assuming that the fluid that leaves the domain is unin-
teresting, and behaves exactly as the neighborhood of the
boundary that is inside the domain. This gives us Neumann
conditions: the derivative of the velocity field is fixed across
the boundary (in our case, at zero). In the following, we first
explain the simpler case of domains without obstacles.

To solve the equations numerically, we approximate
the rectangular subset ofR2 with a regular grid, ie. the ve-
locity and pressure scalar fields are sampled at regular in-
tervals. We discretized the domain using astaggered grid,
which means that different variables are sampled in differ-
ent positions. This representation is used because of its bet-
ter numerical properties [5]. The grid layout for our simu-
lation is shown in Figure 2.

The boundary conditions in the grid are simulated by
adding aboundary strip. The boundary strip is a line sur-
rounding the grid cells that will be used to ensure that the
desired boundary condition holds. In Figure 3, we show
one corner of the boundary strip.

We can set the boundary strip appropriately to create
the boundary conditions. Consider for example the wall
boundary condition, where the velocity components must
vanish. The values that are sampled directly on the bound-
ary can simply be set to zero. For values that are not sam-
pled directly on the boundary, we assume a linear interpo-
lation of the fields, and set the boundary strip value so that
the average of the two values becomes zero. This can be
applied to all boundary conditions.

Figure 3: The thicker line is the boundary, and the shaded
cells are the boundary strip. The circles represent the sam-
pling positions. Notice that some points on the boundary
are not sampled, hence the need for a boundary strip.

3.3 Discretization of the Equations

The Navier-Stokes equation will be solved by time-stepping:
from known velocities at timet, we compute new values at
time t + ∆t. The values in the varying timesteps will be
calledu(0), u(1), To discretize the Navier-Stokes equa-
tions, we first introduce the following equations:

F = u
(n)

+ δt

[
1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
−

∂(u2)

∂x
−

∂(uv)

∂y
− gx

]
(6)

G = v
(n)

+ δt

[
1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
−

∂(uv)

∂x
−

∂(v2)

∂y
− gy

]
(7)

Rearranging 3 and 4, and discretizing the time variable
with forward differences, we have

u(n+1) = F − δt
∂p

∂x
, v(n+1) = G− δt

∂p

∂y
(8)

This gives us a way to find the values for the velocity
field in the next step.F andG, when discretized, will de-
pend only on known values ofu andv and can be computed
directly. We use central differences and a hybrid donor cell
scheme for the discretization of the quadratic terms, follow-
ing the reference CPU solution [5]. We are left to determine
the pressure values. To this end, we substitute the contin-
uous version of Equations (8) into Equation (5) to obtain a
Poisson equation:

∂2p(n+1)

∂x2
+

∂2p(n+1)

∂y2
=

1
∂t

(
∂F (n)

∂x
+

∂G(n)

∂y

)
(9)

When discretizing the pressure values, we notice that
we cannot compute them directly. We have to solve a sys-
tem of linear equations, with as many unknowns as there are
pressure samples in the grid. This can be solved with many

different methods, such as Jacobi relaxation, SOR, conju-
gate gradients, etc. With the pressure values, we can deter-
mine the velocity values for the next timestep, using Equa-
tions 8. We then repeat the process for the next timestep.

3.4 Stability Conditions

SMAC is an explicit method, and, as most such methods, is
not unconditionally stable. To guarantee stability, we have
to make sure that these inequalities hold:

2δt

Re
<

(
1

δx2
+

1
δy2

)−1

(10)

|umax|δt < δx (11)

|vmax|δt < δy (12)

Here,δt, δx andδy refer to the timestep sizes, and dis-
tance between horizontal and vertical grid lines, andumax

and vmax are the highest velocity components in the do-
main. During the course of the simulation,δx andδy are
fixed, so we must changeδt accordingly. In practice, one
wants to use a safety multiplier0 < s < 1 to scale down
δt.

4 The Implementation in a GPU

In this section we show the GPU implementation of the
SMAC method using NVIDIA’s NV35 and NV40 architec-
tures. First we show how the data structures are stored into
texture memory, followed by the presentation of all pro-
grams used to implement the algorithm.

4.1 Representation

We use a set of floating-point textures to store the values
of the velocity fields and intermediate variables. These tex-
tures are more precisely calledpbuffers, or pixel buffers,
because they can be also the target of a rendering primitive,
similar to writing to the frame buffer. We will have five
pbuffers:

• uv: This will store the velocity field. One channel will
store theu values, and the other will storev.

• FG: Thispbufferwill be used to store the intermediate
F and G values, each on one channel.

• p: Thispbufferwill store the pressure values.

• ink : This pbufferwill store ink values, not used in the
simulation but used for the visualization of the velocity
field.

• r : This auxiliary buffer will be used inreductionoper-
ations described later.

We will have an additional status texture that will sig-
nal whether a cell is an obstacle or a fluid cell. For now, the
only obstacles are the wall boundary conditions. It is im-
portant to mention that the NV35 and the NV40 do not al-
low simultaneous reads and writes to the same same surface
[11], which are needed by some iterative algorithms. To
circumvent this problem, we use a standard GPU technique
calledping-pong rendering, which alternates between writ-
ing to texturea while reading from textureb and vice-versa.
Therefore, ther , uv andp pbuffershave two surfaces, and
take twice the amount of memory.

4.2 Setting the Boundary Conditions

The first step in the algorithm is to enforce the boundary
conditions. A fragment program that reads the velocity
values and the status texture gets the necessary texture off-
sets and determines the correct velocity components for the
boundaries. We need to use the right offsets because bound-
aries in different directions are determined from different
neighbors. All of our boundary conditions can be calcu-
lated with one fragment program when we notice that they
share a common structure: for each component (in the 2D
case, onlyu andv), we only need to sample a direct neigh-
bor. Then, the boundary conditions are of the following
form:

uij = αuij + βuneighbor

We store the appropriateα, β values, along with the
offsets to determine the neighbor, in the status texture. If
the cell happens not to be a boundary cell, we only set
α = 1, β = 0. This fragment program is used to render
a domain-sized quadrilateral.

4.3 Computing FG

The velocity field with enforced boundary conditions is used
to compute theFG buffer. TheFG pbufferis computed sim-
ply by rendering another domain-sized quad, using theuv
pbufferas input, and a fragment program that represents the
discretization of Equations (6) and (7).

4.4 Determining Pressure Values

With the FG values, we can now determine the pressure
value. As mentioned above, we must solve the equation
system generated by the Poisson equation discretization.
In CPUs, SOR is the classical method used to solve these
systems, because of the low memory requirements and the
good convergence properties. The main idea of SOR is to
use, in iterationit, not only the values of the pressure in
the iterationit − 1, but the values init that have just been
calculated. In a GPU, unfortunately, we cannot do that effi-
ciently: it would require reading and writing the same tex-
ture simultaneously.

Figure 4: Combining all elements in a SIMD architecture
through reductions.

The solution we adopted is to implement Jacobi relax-
ation as a fragment program. To check for convergence,
we must see if the norm of the residual has gone below a
user-specified threshold. The norm is a computation that
combines all of the values in a texture, differently from ev-
ery other fragment program described so far. The GPU is
used to dealing with streams of independent data, so we
must find a special way of doing the calculation.

What we implement is called areduction. In each re-
duction pass, we combine values of a local neighborhood
into a single cell, and recursively do this until we have but
one cell. This cell will hold the result of the combination of
all original cells. Figure 4 illustrates the process. Not only
this computation is significantly more expensive than the
relaxation step, there is a measurable overhead in switching
between fragment programs andpbuffers. We use a more
clever scheme to reduce the number of switches: instead
of computing the residual at each relaxation step, we adap-
tively determine whether a residual calculation is necessary,
based on previous results using an exponential backoff al-
gorithm. That is, we calculate the residual for theith time
only after2i relaxation steps. After the first pressure solu-
tion is determined, we use the number of relaxation steps
that were necessary in the previous timestep as an estimate
for the current one. This results in significantly better per-
formance.

4.5 Computing thet(n+1) Velocity Field

After computing the pressure values, we can determine the
velocity field for the next timestep using Equation (8). This
is done by another fragment program that takes the appro-
priate textures and renders, again, a domain-sized quad.
The final step is ensuring that the stability conditions (10),
(11) and (12) hold.

The first condition is easy to determine, since it is con-
stant for all timesteps and can be pre-calculated. The other
ones, though, require the computation of the maximum ve-
locity components. This is an operation that requires a
combination of all the grid values, and again a reduction
is needed. This time, though, we use the maximum of the
neighbors instead of the sum as the reduction operation.

Figure 5: An ambiguous obstacle: should the boundary
strip use the north or the south cell?

4.6 Obstacles

To implement obstacles, we simply extend the idea used in
the wall boundary condition to general places inside the do-
main. The status texture will hold a special value to denote
a wall for visualization purposes, but there is no need to
change the boundary fragment program. The original for-
mulation handles the walls seamlessly.

One must take into account, however, that not all do-
main configurations are valid. The main problem are thin
lines, in which the boundary condition is underspecified, as
can be seen in Figure 5. This can be easily fixed with a
finer subdivision or with a thicker boundary, so it is not a
real issue.

4.7 Visualization

Usually, the simulation of Navier-Stokes is not fast enough
to allow interactivity, and so the results are simply stored in
a file to be interpreted later. We instead take advantage of
the fact that the simulation runs at interactive rates, and that
the data is already in the graphics memory to implement
interactive visualization tools.

We could visualize the velocity field directly as inten-
sities in textures, but most interesting features would be
missed in this way. We developed a visualization tool in-
spired on the use of colored smoke in real-life airflow vi-
sualization. We store, in addition to the velocity fields, an
ink field, which is a passive field that does not affect the ve-
locity in any way. The ink field is advected by the velocity
field, and the motion of the ink is used to visualize features
such as vortices.Ink emittersof different colors can be ar-
bitrarily placed and moved around in the domain, allowing
to investigate areas of flow mixture or separation.

The advection step occurs right after the boundary con-
ditions are enforced. A first shot in an algorithm for the
advection would be to get the current velocity at the cen-
ter of the cell, and, using the timestep value, determine the
position for this parcel of fluid. This has two issues: the
first one is that we would have to write to different cells,
because the timestep never takes an ink particle more than
a grid width or height (consider the stability conditions for
the discretization). Aside from that, there’s a more serious
problem: we don’t know, prior to running the fragment pro-

Figure 6: Stepping backward in time to avoid a scatter op-
eration.

gram, what are the cells in which to write our results. This is
known as ascatteroperation [1], and is one that is missing
from GPUs: the rasterization issues a fixed output place for
each fragment. We need to change the scatter operation by
agatherone: an operation in which we don’t know, prior to
running the program, what are the cells we willread. This
is implemented in GPUs through the use ofdependent tex-
turing [8]. We can switch the scatter operation for a gather
operation using the idea illustrated in Figure 6. Instead of
determining the position that the ink in the present position
will be, we will determine what portion of ink was in a past
position. To do this, we assume that the velocity field is suf-
ficiently smooth, and we use a step backward in time using
the present velocity. We have to ensure that the velocity is
sampled in the center of the grid cell, because that’s where
the ink is sampled. This requires an appropriate interpola-
tion of the velocities.

This is certainly not the only way of implementing vi-
sualizations of vector fields; see, for instance, [2] and [16].

5 Results

To judge the performance of the GPU implementation, we
compared our solution to a CPU reference code provided
by Griebel et al [5]. We used a classical CFD verification
problem, thelid-driven cavity. The problem begins with the
fluid in a stationary state, and the velocity of the fluid is cre-
ated by the drag of a rotating lid. This is asteadyproblem,
no matter what are the conditions such as Reynolds number
and lid velocity: whent increases, the velocity field tends
to stabilize. Knowing this, we run the simulations until the
changes in the velocity field are negligible.

We conducted our tests using two different Reynolds
numbers and three different grid sizes. The results can be
seen in Table 1. Figure 7 shows the ratio of improvement
of the GPU solution. The CPU is a Pentium IV running at
2 GHz, and the GPUs are a GeForce FX 5900(NV35) and
GeForce 6800 Ultra(NV40). Both programs were compiled
with all optimization options enabled, using Microsoft Vi-
sual Studio .NET 2003.

CPU 32× 32 64× 64 128× 128
Re = 100 1.73s 35.71s 428.05s
Re = 1000 5.52s 122.47s 903.63s

NV35 32× 32 64× 64 128× 128
Re = 100 3.36s 13.34s 60.29s
Re = 1000 6.14s 28.60s 110.36s

NV40 32× 32 64× 64 128× 128
Re = 100 1.54s 5.29s 30.79s
Re = 1000 2.11s 9.15s 42.89s

Table 1: Timings for CPU, NV35 and NV40 solutions, re-
spectively.

As we can see, the only case where the GPU was out-
performed by the CPU was in very small grids with the
NV35. This is a situation where convergence is very quick,
and the overhead due topbufferswitches [1] probably over-
shadowed the parallel work of the GPU. Also, the ratio
between GPU computation and CPU-GPU communication
was smallest in this case. In all the other situations, the
GPU implementation was significantly faster, with the NV40
achieving an impressive speedup factor of 21 in large grids
with large Reynolds numbers. In fact, all of the figures of
this paper were generated by taking screenshots of the ap-
plication running interactively.

5.1 Quality

To judge the quality of the GPU implementation when com-
pared to the reference CPU implementation, we ran both
programs with exactly the same problem specifications, and
compared the velocity fields at each timestep. In our exper-
iments, the difference between velocity components com-
puted in the two programs was always less than10−2, and
most of the time less than10−3. The problems had veloc-
ity ranges between0 and1. The largest differences were
found in high pressure areas, probably due to the difference
between the Jacobi and the SOR algorithms.

The reference CPU implementation didn’t allow for
general domains, so for that part of the implementation, we
had to rely on qualitative measurements. For example, we
expect vortices around corners with high speed fluid, and
we can see this in Figure 10. Some well-known phenomena,
such as theKárman vortex street[5], were also experienced
in our software, in accordance to experimental results. See
Figure 13.

6 Analysis

The GPU achieves top performance when doing simple cal-
culations on massive amounts of data, and this is the case
in our algorithm. Most of the computation is done on the

Figure 7: Ratio between GPU and CPU timings

GPU. The CPU is only used to orchestrate the different
fragment programs and buffers, to adjust the timestep ap-
propriately and to determine the convergence of the Poisson
equation.

Measuring the amount of time taken in each part of our
algorithm, we noticed that more than 95% percent of the
time was spent solving the Poisson equation. This was the
main motivation for the exponential backoff residual calcu-
lation step. This change doubled the overall performance.
We could have implemented a multigrid solver for the Pois-
son equation, such as the one developed by Goodnight et al.
[4]. This would have meant a very significant performance
increase. We chose not to do so because we did not have
a suitable CPU multigrid code to compare to, and we did
not want to skew the results in either way. For a real-life
application, a multigrid solver would probably have meant
another order-of-magnitude performance increase.

In the simulation depicted in Figure 1, we have a1024×
128 grid, and the simulation runs at approximately 20 fra-
mes per second, allowing real-time visualization and inter-
action.

7 Future Work and Conclusion

The Navier-Stokes GPU solver shown here can be easily
extended to three dimensions. Theuv and FG pbuffers
would have to hold an additional channel. Additionally,
we can’t use 3D textures aspbuffers, so the texture layout
would probably follow [7]. The fragment programs would
not fundamentally change, and the overall algorithm struc-
ture would stay the same.

A more ambitious change is to incorporate free bound-
ary value problems to our solver. In this class of problems,
we not only have to determine the velocity field for the
fluid, but we have to determine also the interface between
the fluid and the exterior (for sloshing fluid simulations, for

example). The approach that is proposed in the SMAC al-
gorithm is to, starting with a known fluid domain, place
particles throughout the domain and then displace them ac-
cording to the velocity field. At the next timestep, the al-
gorithm checks whether any particles arrived in cells that
had no fluid. These cells are then appropriately marked,
and the simulation continues. We can’t do that directly on
the GPU, because that would require a scatter operation. A
possible solution is to use thevolume-of-fluidmethod [5].
The volume-of-fluid method keeps track of the fraction of
the fluid that leave the cells through the edges. This way,
all cells that are partially filled are marked as border cells,
the ones completely filled are marked as fluid cells, and the
ones without any fluid are marked as empty cells. Such a
scheme could be implemented using GPUs, since the cal-
culation of fluid transfer between cells can be done for each
cell individually, without having to write to arbitrary loca-
tions. However, this remains to be implemented.

Nevertheless, we have shown that the GPU is a viable
computing engine for the complete solution of the Navier-
Stokes via a explicit solver, suitable for engineering con-
texts. Our solution takes advantage of the streaming nature
of the GPU and minimizes the CPU/GPU interaction, re-
sulting in the high performances reported. We hope that the
fact that GPU performance growth is largely out-pacing the
CPU will serve as an additional motivation for the imple-
mentation of other similar applications.

8 Acknowledgments

The authors would like to thank NVIDIA for providing the
graphics hardware used in this paper, specially the NV40
reference board and drivers. The authors would like to spe-
cially thank Nick Triantos for a most informative talk at the
University of Utah about the NVIDIA architectural issues.

References

[1] J. Bolz, I. Farmer, E. Grinspun, P. Schröder.Sparse
Matrix Solvers on the GPU: Conjugate Gradients and
Multigrid. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH 2003), 2003.

[2] B. Cabral, L. Leedom.Imaging vector fields using
line integral convolution. Proceedings of SIGGRAPH
1993.

[3] J. Comba, C. Dietrich, C. Pagot, C. Scheideg-
ger. Computation on GPUs: From A Programmable
Pipeline to an Efficient Stream Processor. Revista de
Informática Téorica e Aplicada, Volume X, Ńumero
2, 2003.

[4] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, G.
Humphreys.A Multigrid Solver for Boundary-Value

Problems Using Programmable Graphics Hardware.
Proceedings of the Eurographics/SIGGRAPH Graph-
ics Hardware Workshop, 2003.

[5] M. Griebel, T. Dornseifer, T. Neunhoffer,Numerical
Simulation in Fluid Dynamics. SIAM, 1998.

[6] N. Govindaraju, S. Redon, M. Lin, D. Manocha.
CULLIDE: Interactive Collision Detection Between
Complex Models in Large Environments using
Graphics Hardware. Proceedings of the Eurograph-
ics/SIGGRAPH Graphics Hardware Workshop, 2003.

[7] M. Harris, W. Baxter III, T. Scheuermann, A. Las-
tra.Simulation of Cloud Dynamics on Graphics Hard-
ware. proceedings of the Eurographics/SIGGRAPH
Graphics Hardware Workshop, 2003.

[8] M. Harris, G. Coombe, T. Scheuermann, A.
Lastra. Physically-Based Visual Simulation on
Graphics Hardware. Proceedings of the Eurograph-
ics/SIGGRAPH Graphics Hardware Workshop,
2002.

[9] G. Kedem, Y. Ishihara.Brute Force Attack on UNIX
passwords with SIMD Computer. Proceedings of the
8th USENIX Security Symposium, 1999.

[10] J. Krüger, R. Westermann.Linear Algebra Operators
for GPU Implementation of Numerical Algorithms.
ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2003), 2003.

[11] NVIDIA Corporation. OpenGL Extension
Specifications. Web site last visited on May
17th, 2004. http://developer.nvidia.com/

object/nvidia opengl specs.html

[12] E. Larsen, D. McCallister.Fast Matrix Multiplies us-
ing Graphics Hardware. Supercomputing 2001.

[13] T. Purcell, I. Buck, W. Mark, P. Hanrahan.Ray
Tracing on Programmable Graphics Hardware. ACM
Transactions on Graphics (Proceedings of SIG-
GRAPH 2002), 2002.

[14] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fata-
halian, M. Houston, P. Hanrahan.Brook for GPUs:
Stream Computing on Graphics Hardware. To appear
in ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2004), 2004.

[15] J. Stam.Stable Fluids. ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH 1999), 1999.

[16] J. van Wijk. Image-based Flow Visualization. ACM
Transaction on Graphics (Proceedings of SIGGRAPH
2002), 2002.

Figure 8: Lid-driven cavity,256 × 256 grid, Re = 10000.
Note the counter-eddies in the corners: these are experi-
mentally confirmed for large Reynolds numbers.

Figure 9: Using regular patterns to visualize the flow.
1024 × 256 grid, Re = 1000, small inflow in the west
boundary, outflow throughout the east boundary

Figure 10: Domain with obstacles.128 × 128 grid, Re =
1000, Inflow in the lower west boundary, outflow on the
other exits.

Figure 11: Smoke simulation with large reynolds numbers.
128 × 1024 grid, Re = 10000, small inflow in the south
boundary, outflow throughout the north boundary

Figure 12: Wind tunnel mock-up.256×64 grid,Re = 100,
inflow throughout the west boundary, outflow throughout
the east boundary.

Figure 13: TheKárman vortex street. 256 × 64 grid,
Re = 1000, inflow in the west boundary, outflow in the
east boundary.

