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and Cláudio T. Silva, Senior Member, IEEE∗†

Abstract

Most computational codes that use irregular grids de-
pend on the triangle quality of the single worst triangle in
the grid: skinny triangles can lead to bad performance and
numerical instabilities. Marching Cubes is the standard iso-
surface grid generation algorithm, and while most triangles
it generates are good, it almost always generates some bad
triangles. Here we show how simple changes to Marching
Cubes can lead to a drastically reduced number of degener-
ate triangles, making it a more practical choice for isosur-
face grid generation, reducing or eliminating the need and
costs of post-processing.

1. Introduction
Marching Cubes [9] is currently the most popular algo-

rithm for isosurface extraction. It is elegant, simple, fast,
and robust. While the output mesh Marching Cubes gen-
erates is adequate for visualization purposes, it is far from
being suitable for use in numerical simulations. This def-
ficiency arises from the degenerate triangles that MC typi-
cally generates, and that, for example, a single badly-shaped
triangle can lead to ill-conditioning of an entire finite ele-
ment simulation [12]. The current practice is to solve this
problem by post-processing [1, 14], but here we present a
simpler alternative. We first elucidate the causes of bad tri-
angles in Marching Cubes, and then mitigate the problem
with small specific changes.

Our discussion of Marching Cubes is based on the notion
of Edge Groups, recently introduced by Dietrich et al. [3].
Each MC case generates up to 5 triangles, which are di-
rectly encoded in a fixed table. More importantly, each tri-
angle is created using vertices placed along the edges of a
fixed cube, and so there’s only a limited number of ways a
triangle is generated. We then identify equivalent triples of
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edges under the cube’s symmetries, and arrive at 8 differ-
ent edge groups, illustrated in Figure 1.

Surprisingly, a single edge group is responsible for most
degenerate triangles in MC. Some cases in the Marching
Cubes table admit different triangulations, which use differ-
ent edge groups. By systematically analyzing each case in
the Marching Cubes table, we generate a table that leads to
improved triangle qualities, building on our previous work
[3, 4].

In the remainder of the paper, we focus on the practi-
cal aspects of improving MC to generate better-shaped tri-
angles. The new improved table is available at http://XXX,
together with supplemental material showing more exten-
sive comparisons and results.

2. Marching Cubes Tables

Given a node-centric volumetric array of data approxi-
mating a scalar field f(x, y, z) : R3 → R and a scalar value
k ∈ R, MC produces a triangular surface that approximates
the level set f(x, y, z) = k (called the isosurface). The im-
plementation of Marching Cubes follows a straightforward
pipeline of actions that are executed for each cell in a given
volume. It starts by computing the sign of each cell ver-

Figure 1. The eight Edge Groups in Marching
Cubes. Every triangle in every MC configura-
tion is created by one of these edge combi-
nations.



tex, determined by simply comparing a given vertex’s scalar
value with k. The signs of all vertices from a cube define an
eight-bit value that identifies a particular case in MC. There
are two pre-defined tables that are indexed by this value: an
active edge table, and a triangulation table (Figure 2).

Figure 2. Marching Cubes pipeline. The ac-
tive edges encoded in the edge table nec-
essarily cross the isosurface, and are illus-
trated in orange. The triangulation table de-
termines how to connect the vertices that lie
on the active edges, creating the triangles for
each patch. Creating the entries of the trian-
gulation table carefully improves the triangle
quality of MC.

The active edge table identifies, for each case, which
edges of the cell are crossed by the isosurface, and there-
fore which intersections must be computed. The triangula-
tion table correspondingly gives the set of triangles that will
be generated from the active edges. A single MC case can
generate up to 5 triangles. Most importantly, the encoding of
some cases is not unique, as illustrated in Figure 3. Consid-
eration of the triangulation tables is commonly given only
up to homeomorphism of the reconstruction. In other words,
any triangulation that has the same topology as the continu-
ous level set that it is approximating is seen as equally good.
As we will explain in the next section, the notion of Edge
Groups allows us to effectively choose triangulations that
generate systematically better triangles.

3. Edge Groups of Marching Cubes Cells

Our approach to improve MC is to use the quality infor-
mation given by the edge groups involved in any particular

Figure 3. Two possible triangulations for the
same MC case. In some situations, different
triangulations will cause markedly different
triangle qualities.

triangulation, and pick the one that maximizes some crite-
ria. Here, we mainly use the ratio of incircle to circumcircle
normalized to lie between zero and one; an equilateral tri-
angle has maximum quality one [15]. However, the same
idea directly applies to other measures such as min-angle
and max-angle, as we show in Figure 4.

Our first analysis of the impact of different edge groups
comes from plotting the probability density function of tri-
angle quality for randomly selected triangles from each of
the edge groups. In this initial model, the triangle distribu-
tion is given by assuming a uniform distribution of triangle
vertices along edges, and assuming that the vertex choices
are independent across edges. This gives a PDF for each
edge group, illustrated in Figure 4. It is clearly apparent that
edge group 2 has a qualitatively different behavior than the
others: a substantial fraction of the triangles it creates are
degenerate.

To test the robustness of the distribution assumptions for
each edge group, Dietrich et al. collected edge group statis-
tics on a collection of 30 volume datasets [3]. First, they
collected edge group frequency data over isosurfaces ex-
tracted from each of the 30 volumes. These are summa-
rized in Figure 5. As would be expected, edge groups are
not equally probable. The second set of statistics presents
a much clearer picture. By counting the edge groups of the
1000 worst triangles in each of the 30 extracted isosurfaces
(presented in Figure 6), it becomes clear that edge group 2
is responsible for, typically, over 60% of the worst 1000 tri-
angles in any given dataset, and in some cases this num-
ber is closer to 95%. Our strategy, then, is to systematically
change the Marching Cubes tables to remove occurrences
of edge group 2.

4. Improving Marching Cubes

Edge groups motivate a simple criterion for improving
the MC table. Dietrich et al [3] propose a re-triangulation
in certain table entries to prevent edge group 2 from oc-
curring. Their proposal focuses on only a few MC cases,
namely case 5, 12, 11, and the complement of case 6 [8].



Figure 4. Edge Groups and their corresponding triangle quality.

Figure 5. Edge groups occurrence in 30
datasets.

These changes update 96 entries of the MC table (120 en-
tries if the table is constructed with the complement of case
6 [8]), but still leaves 56 entries with occurences of edge
group 2. Figure 7 shows examples where edge case 2 is re-
moved. For some MC cases, however, it is not possible to
remove edge group 2 by simply retriangulating the case: ev-

Figure 6. Edge groups occurrence in the 1000
worst triangles of 30 datasets.

ery triangulation of these cases include an instance of edge
group 2 (see the left column of Figure 8).

Figure 7. Reconnecting intersection vertices
to remove the Edge Group 2. As described
by Dietrich et al. [3], we can remove the Edge
Group 2 from MC cases 5 (top), 11 (middle),
and the complement of case 6 (bottom). Re-
moving edge group 2, in its turn, results in
an improvement of the generated mesh qual-
ity. The right column shows the retriangula-
tion results.

4.1. Inserting a New Vertex in the Cell

As we have shown, retriangulating the intersection ver-
tices cannot remove instances of edge group 2 for some MC
cases. In these situations, we turn to an alternative approach.



By adding an additional vertex in the cell’s center and con-
necting it to the intersection vertices of active edges, we
remove edge groups entirely from the Marching Cubes ta-
ble. The resulting triangulations are illustrated in Figure 8.
A similar approach is used in contexts as diverse as dual
MC meshes [11] and MC mesh simplification [10], but here
we emphasize its impact in connection to MC mesh qual-
ity. Additionally, the implementation of this change is quite
straightforward and requires only small changes to the MC
code.

Figure 8. Placing a new vertex in the mid-
dle of the cell to remove the Edge Group 2.
The retriangulation of the intersection ver-
tices with help of an additional vertex allows
the removing of the Edge Group 2 in MC
cases 9 (up row) and the complement of the
case 3 (bottom row).

To get an idea for the quality improvement created by
adding an extra vertex, we note that the new configuration
using the cell center can be seen as an additional edge group
with only two edges. This single group generates all trian-
gles shown in the right column of Figure 8. More impor-
tantly, its quality histogram is comparable to the best edge
groups of the cubic cell.

The position of the new vertex in the cell is dependent
on the MC case. The center of the cell can be a good choice
for MC case 9, illustrated in the first row of Figure 8. In this
case, a new triangulation with a vertex in the center of the
cell will be close to the original MC triangulation. On the
other hand, a new triangulation with a vertex in the center
of the cell can result in artifacts in the complement of MC
case 3. The artifacts are visible in situations where all in-
tersection vertices are close to the negative vertices of the
cell (blue vertices in Figure 8), in which the distance of the
new vertex to the isosurface is maximum. To alleviate this
problem, the new vertex is placed along one of the edges of
the original MC triangulation, that is, in the middle of the
longest edge of the triangulation. This guarantees that the

new triangulation is close to the original triangulation gen-
erated by MC.

These changes in the edge table improve the triangula-
tion quality. However, most of the value comes from the
synergy the new table has with the change to MC we will
describe in the next section. Together, these two changes are
such that the triangles generated by the MC suggested com-
pare favorably to the state of the art.

Figure 9. (Left) The Edge Group resultant
from the retriangulation of cases 9 and the
complement of case 3, which generates all
triangles of Figure 8. (Right) The quality his-
togram of the triangles generated by the new
Edge Group.

4.2. Transforming active edges

The second change to MC consists of perturbing the
active edges on which intersection vertices are computed.
The two edge endpoints are moved (by a small amount) in-
side the volume, and then the computation of the edge ver-
tex proceeds as normal. Dietrich et al’s Macet (“Marching
Cubes with Edge Transformations) [4] adds two new inter-
mediate steps to the MC pipeline, as described in Figure 10.
The edge transformation step alters the positions of each
edge extreme along the gradient or tangent directions (Fig-
ure 11). The second step, when necessary, displaces the in-
tersection points away from edge extrema. Together, these
steps tend to create active edges that are locally perpen-
dicular to the isosurface, which leads to improved triangle
quality. In order to enforce valid placement of edge end-
points (i.e. not crossing the isosurface), edge transforma-
tions are performed in several steps with smaller displace-
ments along the proposed direction (in our experiments, we
use eight steps).

As described, the drawback of the Macet proposal is that
they do not have a criteria to choose which edge transfor-
mation to use. Instead, they perform both transformations,
and do a neighborhood analysis that chooses the transfor-
mation that leads to local improved triangle quality. While



Figure 10. Macet pipeline adds two new
stages to the MC pipeline: edge transforma-
tions and vertex displacement.

Figure 11. MC original grid, and after gradient
and tangential transformations.

the local analysis is fast, the cost of using both transforma-
tions still leaves room for improvement.

In [3] they gave a different interpretation for the edge
transformations that serves as room for the unification of
edge transformations. They formulate the edge transforma-
tion as a projection operation of the edge midpoint onto the
plane tangent to the isosurface. The same result can be ac-
complished using a new approach with unified edge trans-
formations.

The idea is as follows. First we identify the edge extrema
closest to the isosurface. This one will be subject to inter-
leaved edge transformations using gradient and tangential
transformations (8 in total, 4 for each type). The use of al-
ternate transformations in sequence combines the proper-
ties of each transformation without requiring a second edge
transformation step or subsequent neighborhood analysis.
For the other extrema, it is moved to the edge midpoint,
which under ideal circumstances is what the projection op-
eration advocates.

Figure 12. Unified Macet: one endpoint is
subject to alternate tangential and gradient
transformations, while the other is fixed to
the original edge midpoint.

5. Results

The impact of the new MC table and Unified Macet
were evaluated with experiments using a collection of 23
datasets. We summarize the results in Table 11. We com-
pare results using two methods: the original MC and the
Unified Macet with the extended edge table. For each case,
we report minimum and maximal angles (θ0 and θ∞) and
radii ratio (ρ).

Results clearly demonstrate that the Unified Macet ap-
proach using the new MC table generates consistently im-
proved triangle quality in all datasets (worst radii ratio is
0.43). An intuition of the impact of the changes of the Uni-
fied Macet, we show in Figure fig:retriangulation-snapshot
a zoomed version of a part of the Bonsai dataset.

Name MC with old table Macet with new table
θ0 θ∞ ρ θ0 θ∞ ρ

Chest CT 0.08 179.0 0.0 17.9 118.6 0.46
Bonsai 0.38 178.7 0.0 17.6 119 0.45
Shockwave 1.26 175.7 0.0 20.7 110.7 0.52
Silicium 0.66 177.4 0.0 18.7 117.3 0.47

Table 1. Triangle quality for MC and sug-
gested variants. Results are typical of all
datasets tested (full set of results with all 30
datasets available online).

Table 1 also shows that the removal of the edge group
2 from MC table results in an improvement of the maxi-
mum internal angle (θ∞) quality measure varying from 25◦

1 Full results are available online at http://XXX



Figure 13. The MC mesh (left) shows many
bad-shaped triangles generated from Edge
Group 2, as the one highlighted in the
zoomed image, while the new MC table us-
ing the Unified Macet algorithm results in an
optimal mesh.

Figure 14. Flatttened triangles (triangles with
an internal angle close to 180◦) which can be
only generated by Edge Group 2.

in Cross dataset to 47◦ in Neghip dataset, even in the origi-
nal MC algorithm. Edge group 2 is the only group that can
generate arbitrarily obtuse triangles, as illustrated in Fig-
ure 14. With this case removed, the largest angle in MC is
bounded above by 118.6 in all cases we tested.

6. Related Work

Our proposal for improving the quality of the triangula-
tions of MC is simple and effective, and it is one of many
proposals in the area. Gibson [5] (with improvements by
Bruin et al. [2]) propose a method based on MC that places
sampling points at the center of each active cell (a cell

crossed by the isosurface), and connects them to sampling
points in adjacent cells. These generate meshes that are in
a sense dual to the traditional MC triangulation. Nielson
specifically proposed the Dual MC algorithm [11]. Our in-
sertion of an extra vertex in MC cases where edge group 2
cannot be completely removed can be seen as an applica-
tion of these dual techniques.

Our proposal for an improved MC involves directly
changing the polygonization process. A similar idea also
motivated Tzeng [16], and Labelle and Shewchuk [7] not
only improve tetrahedral mesh quality by warping the grid
in which the boundary extraction happens, but they also use
a BCC lattice instead of the traditional cubic.

Finally, Raman and Wenger [13] propose a slightly dif-
ferent approach: instead of warping the computational grid,
they directly perturb the scalar field, and explicitly treat
the cases where the isosurface touches vertices of the grid.
The modified MC table is much larger (38 entries before
coalescing symmetric cases, instead of 28 in the regular
MC algorithm), and the authors recommend a computer-
based table construction. In addition, their method tends to
change the topology of the resulting mesh, and generates
non-manifold surface meshes. Still, the method is concep-
tually very simple and amenable to parallelization.

Ju [6] discusses ways to modify the triangulation en-
coded in the MC tables. Instead of a static table, the pro-
posed algorithm uses decision trees to identify the trian-
gulation to choose in a such way that forms convex con-
tours. Such an approach might be usable for choosing the
best possible triangulation based on the actual configura-
tion of a particular cell.
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