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Abstract— Marching Cubes is a popular choice for isosurface
extraction from regular grids due to its simplicity, robustness, and
efficiency. One of the key shortcomings of this approach is the
quality of the resulting meshes, which tend to have many poorly
shaped and degenerate triangles. This issue is often addressed
through post processing operations such as smoothing. As we
demonstrate in experiments with several datasets, while these
improve the mesh, they do not remove all degeneracies, and
incur an increased and unbounded error between the resulting
mesh and the original isosurface. Rather than modifying the
resulting mesh, we propose a method to modify the grid on which
Marching Cubes operates. This modification greatly increases the
quality of the extracted mesh. In our experiments, our method did
not create a single degenerate triangle, unlike any other method
we experimented with.

Our method incurs minimal computational overhead, requir-
ing at most twice the execution time of the original Marching
Cubes algorithm in our experiments. Most importantly, it can be
readily integrated in existing Marching Cubes implementations,
and is orthogonal to many Marching Cubes enhancements
(particularly, performance enhancements such as out-of-core and
acceleration structures).

Index Terms— Meshing, Marching Cubes.

I. INTRODUCTION

Isosurfaces are ubiquitous in visualization [14], where they are
often the main computational component of important processing
pipelines and are heavily used in practice. Some visualization
applications require the ability to render an isosurface, and this
can be done by first converting this implicit surface into a
triangle mesh and then rendering it. Other applications, however,
operate on the resulting mesh, such as finite element method
simulations, tetrahedral mesh generation and inverse problems.
These applications require meshes of good quality, which are
often dictated by the quality of its worst triangle [30], regardless
of any other triangle in the mesh.

The classic approach to compute isosurfaces is to apply the
Marching Cubes (MC) algorithm [22] or one of its variants,
such as [5], [11]. Although robust and simple to implement,
these generate surfaces that require additional processing steps to
improve triangle quality and mesh size. All of these algorithms
are cell-based: they work by iteratively examining each cell of
the grid on which the scalar function f is defined, and producing
a triangulation for each cell separately. These triangulations are
created in such a way that when they are connected together,
they produce a watertight manifold mesh [25]. The simplicity of
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these methods allows robust and efficient algorithms, which have
been expanded and extended in significant ways [2], [7], [20],
[36]. Among these techniques are optimization strategies that are
orders of magnitude faster than the original algorithm, and can
work on data of arbitrarily large sizes. However, they still produce
low quality triangles.

In this paper, we address the issue of improving the quality
of the worst triangle generated by MC. Figure 1 illustrates
a comparison of MC against several other strategies, showing
triangle quality, as well as the histogram of triangle qualities
and Hausdorff distances between the mesh generated by each
approach and the original MC mesh (as measured by Metro [8]).
The red line in the histograms show the quality of the worst
triangle. In essence, that is the measure we are interested in, since
it often dictates the quality of the simulations performed on the
mesh [30].

We show in this paper a novel method to improve the quality
of the triangle mesh generated by MC, by modifying the MC
sampling grid in a very simple and intuitive way. We call our
method Marching Cubes with Edge Transformations (Macet).
Macet generates a mesh with identical connectivity to the MC
mesh, which is very close to the MC mesh as measured by
Hausdorff distance. Most importantly, it consistently generates
meshes whose worst triangles are well above the current state-of-
the art techniques. Macet is simple to implement and very fast.
Although we have no lower bound proof for the triangle quality
in the general case, we provide extensive experimental evidence
and a fully open-source implementation.

MC often generates bad triangles because the regular sampling
structure of the grid leads to intersections being computed at
inconvenient locations on a subset of the active edges (often close
to one of the endpoints of the active edge). By allowing active
edges to be repositioned (i.e. moving their endpoints) to more
adequate locations, we improve the quality of the triangles which
use the intersections generated. Although the initial sampling
grid of the MC is modified, we provide conditions that preserve
the topology of the mesh. Our algorithm is easy to understand
and implement. It keeps most the MC structure intact, being
implemented as a new stage between the detection of active edges
and the intersection calculation. Given this, most of suggested MC
optimizations (like Span Space [29]) in the literature still apply.

The main contributions introduced in this paper are:
• A novel approach for understanding the triangle quality

distribution of meshes generated by Marching Cubes. This
work motivated the ideas behind the edge transformations
that are shown to eliminate the bad triangles generated by
Marching Cubes.

• A revised MC algorithm called Macet that combines edge
transformations to generate an output mesh with the same
connectivity and small error (as measured by Metro) to MC,
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Fig. 1. Improving mesh quality in Marching Cubes. Top-row: Visible Human dataset, mesh generated by the classic Marching Cubes (base mesh used in the
comparisons), and results obtained with a post-processing using Decimation to 90%, Dual Contouring, afront and our modified MArching Cubes using Edge
Transformations (Macet). Quality is color-coded on a per vertex basis, defined from the minimum radii-ratio of all incident triangles, and color coded from 0
(worst triangle quality, blue) to 1 (equilateral triangle, green). Intermediate row: Metro histogram with the forward distance between the mesh generated by
Marching Cubes and each alternative. Bottom row: triangle quality histograms and insets showing the quality of the worst mesh triangles (the red line shows
the quality of the worst triangle). Even though smoothing methods greatly improve the overall quality of the mesh, they still generate a considerable amount
of badly shaped triangles. Macet, on the other hand, did not produce a single degenerate triangle during our experiments.

and also with improved quality of its worst triangle.
• A detailed experimental study comparing the triangle quality

of existing techniques.
In Section II, we present a discussion on related techniques

proposed to solve several issues raised in this work. Then, in
Section III, we study the issues related to the mesh quality
generated by Marching Cubes. This leads us to revisit the inner
computation in those techniques, and to propose an alternative
scheme, described in Section IV. The latter part of the paper
presents our experimental results, discussion, and future work.

II. RELATED WORK

Isosurface polygonization methods are efficient tools for extrac-
tion and visualization of isosurfaces since the pioneering work in
the early 80s [1], [6], [15]. Methods based on surface tracking
place seed sampling points on the isosurface and perform an
iterative refinement search for optimal positions or generation of
new seeds. Examples include pseudo-physical algorithms [10],
[37] and advancing front algorithms [28]. Spatial decomposition
methods, described first by Herman and Udupa [15], rely on the
assumption that inside a smaller cell of a grid we could assume
that the underlying scalar function is locally linear [35], and thus
the isosurface can be represented by a plane. Using this simple as-
sumption, Lorensen and Cline [22] proposed the Marching Cubes
(MC) algorithm, that is arguably the most important isosurface
polygonization algorithms due to its simplicity, efficiency, and
robustness.

However, MC is also known for the poor quality of the resulting
triangle mesh. Several strategies for measuring triangle quality are
discussed in [26]. The metric most commonly used for measuring
a single triangle quality is the radii ratio: the ratio between the
triangle’s incircle and circumcircle. The radii ratio is a fair metric:

every degenerate triangle has radii ratio zero. It penalizes both
small and large angles, which makes it suitable as a “first-order”
metric: although some applications might not have problems with
small or large angles, a fair metric will favor meshes which
are suitable across many application domains. For measuring the
quality of meshes, Shewchuk [30] states that the quality of the
worst triangle gives a better estimate of mesh quality than other
aggregate metrics, such as average or median quality.

In order to overcome such shortcomings of MC, several ex-
tensions are discussed in the literature [3]–[5], [16], [21], [23],
[24], [33]–[35]. To obtain a high-quality triangle mesh from MC,
post-processing steps are typically applied directly to the triangle
mesh [10]. For instance, one might apply a standard smoothing
algorithm such as Laplacian Smoothing (LS) to improve the
triangle qualities, or a decimation procedure to remove degenerate
triangles. Observe in Figure 1 that although LS improves the
quality, it also moves the surface away from the original MC mesh
(as can be seen on the Hausdorff error histogram). QEM-based
decimation [12] is more faithful to the original mesh, but fails to
remove many degenerate triangles. Several other polygonization
methods have been proposed to generate better quality meshes
[9], [10], [13], [28]. These techniques often take a more global
approach that try to optimize vertex sampling over the complete
isosurface. For instance, the recently developed advancing-front
(afront) algorithm of Schreiner et al [28] works by first creating
an initial seed point on the isosurface, and iteratively growing
the triangulation over the entire isosurface, while guaranteeing a
global grading constraint over most triangles. It can produce very
high quality adaptive triangle meshes, albeit at a computational
cost that is much higher than MC. Additionally, the algorithm
itself is more involved, leading to a higher complexity of the
implementation, and still prone to generating a few degenerate
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Fig. 2. Several possible plane orientations colored by triangle quality.

triangles (Figure 1). Dual methods such as Dual Contouring [16]
modify the sampling grid and produce better meshes than MC
(as can be seen on Figure 1). The purpose of Dual Contouring,
however, is to generate adaptive meshes while preserving the
sharp features of the isosurface, instead of high-quality meshes.
Although the quality of the resultant mesh is visually impressive,
many degenerate triangles are still generated. The Dual Contour-
ing method was later improved by Schaefer et al. [27], which
propose an extension that constructs adaptive manifold surfaces.
Although a manifold mesh is better suited for subsequent mesh
smoothing methods, their extension produces meshes with the
same quality of Dual Contouring meshes.

Following recent work [3], [16], [34], we show that the triangle
quality can be significantly improved by modifying the grid before
the mesh generation. We start from the observation that MC
cells generate well-shaped triangles in many, but not all, of the
possible intersections with a planar isosurface. Modifying a cell to
produce good triangles would then result in a high-quality mesh
that accurately reproduces the isosurface, reducing the need of
post-processing steps.

Unlike our approach, the Warping Cubes approach of Tzeng
[34] allows topological changes in the mesh, but requires user
parameters to decide which triangles should be removed. Volume
Warping [3] also deforms the grid where isosurfaces are extracted,
but the goal there is to increase sampling in a specific user-
defined region, instead of improvements in mesh quality. Recently,
Labelle and Shewchuk have proposed a related algorithm to
generate tetrahedral meshes that warps a different lattice, the BCC
(body centered cubic) [18]. The approach used in that paper to
prove bounds in the dihedral angles might be fruitful to prove
bounds in our case.

III. STUDYING THE MESH QUALITY OF MARCHING CUBES

In this section, we show that Marching Cubes generates bad
triangles only in some particular configurations. This basic insight
leads to the transformations we propose later. Our analysis is cen-
tered on a simple scenario – computing all possible intersections
of a planar isosurface against a single grid cell centered at the
origin. Observe in Figure 2 some examples of such intersections,
with each intersection color-coded using the radii-ratio triangle
quality as done in Figure 1.

One way to analyze all plane orientations intersecting a cell
is to uniquely associate each of them with a single point p in
the embedding space. For each plane H, we associate it with the
point p on the plane that is closest to the origin of the grid cell.
We denote this association by H(p). Given H(p), we reconstruct
the function f at the cell vertices as the signed distance to H(p).
After defining the value of the function f at each vertex, we run

Fig. 3. A point p is associated with an isosurface orientation given by H(p)
that passes through p and has normal p/|p|. This plane is used to create the
function f by setting the value of f at the vertices of the cell to be the signed
distance from H(p). The marching method can then be run on the cell to
produce a set of triangles T (p).

Fig. 4. Two slices of the quality field. Worst quality is obtained when points
are closer to the center of edges.

MC on the cell to extract the set of triangles T (p) representing
the isosurface (Figure 3). Finally, we compute the average quality
of these triangles to create a single scalar quality value for the
isosurface parameterized by the point p.

We use this mapping from the point p, to the plane H(p), to
the set of triangles T (p), and finally to the quality to define a
scalar field Q(p) over Rn. This scalar field can then be visualized
to get an estimate on the triangle qualities generated by MC
(Figure 4 shows two slices of Q). A clear structure can be seen
in the visualization of the quality field Q. The best triangles are
created with points p near the corners of the cell, where the plane
cuts off the corner with a nearly equilateral triangle (Figure 2.a).
These high-quality triangles make up the majority of triangles
that are generated, as can be seen in Figure 4. We observe that
the worst quality triangles are generated with points p from the
center of the cell out toward the edge centers (Figure 2.b). These
points correspond to isosurfaces that are nearly parallel to some
of the edges of the cell. This pattern of poor quality triangles is
independent of cell shape, being observed with cubes, tetrahedra,
and octahedra. This is the key insight: cell edges nearly parallel
to the isosurface are correlated with poor triangles in Marching
Cubes. Our modification to Marching Cubes directly addresses
this issue.

IV. MARCHING CUBES USING EDGE TRANSFORMATIONS

From now on, we focus our discussion only on Marching
Cubes, since extensions to other cell types are straightforward.
Marching Cubes is conceptually a simple algorithm designed to
process an implicit function, defined over a three-dimensional
grid, and given by its samples f (i, j,k). It operates by marching
over the cubes implicitly defined by the 3-D sampling grid,
looking at each cell of eight vertices independently, and com-
puting small patches of the overall isosurface by considering the
intersection of the function f with a cell.

One way to see how Marching Cubes operates on a given 3-D
grid cell is to consider its eight vertices v1,v2, . . . ,v8, and how
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their scalar values f (v1), f (v2), . . . , f (v8) compare to the desired
isovalue λ . For simplicity of presentation, it is convenient to work
with the function f ∗(x) = f (x)−λ . Clearly, if all f ∗(vi) share the
same sign, the isosurface does not intersect the cell (using trilinear
reconstruction). Not taking into account symmetries, there are 28

possible configurations. A lookup table of template topologies
for these configurations can be created in such a way that the
triangles from each cell are joined into a conforming mesh.

For each configuration, the set of active edges, i.e., edges where
the function f ∗ has different signs at the endpoints, independently
determines both the geometry and topology of the mesh. The
topology is determined by the configuration of active edges for
each cell. The geometry is determined by the location of the
isovalue along each active edge. This independence leaves room
to change the geometry of the mesh while keeping the topology
intact.

Our modification to Marching Cubes explores this indepen-
dence. Some edge transformations do not change the underlying
topology: they only change the geometry of the isosurface. In
particular, consider an active edge (v,w) of the regular sampling
grid illustrated in left of Figure 5. If we move each of its endpoints
continuously, with the constraint that f ∗(v) and f ∗(w) do not
change signs, this edge will remain active (two different strategies
are shown on Figure 5). For each active edge, then, we create
a “detached” edge (v′,w′), which allows shared endpoints to
move independently. We will move the detached edges to improve
their intersection points with the isosurface. To guarantee that the
geometry of the isosurface stays valid (i.e., the mesh remains
oriented, does not self-intersect, and is consistent with the initial
topology), we need two conditions on the transformations:
• An active edge must keep only one intersection with the

isosurface throughout the motion of its endpoints. Since each
active edge is shared by several cells, we must enforce that
each intersection computation, which is done independently
by MC, generates the same intersection point. This is trivially
done in MC since this computation is performed only once
for each active edge.

• The intersection induced by the detached edge (v′,w′) with
the isosurface must not result in triangle flips.

Now, with these conditions in place, we can return to our goal
of improving triangle shape. In Section III we traced the poor
triangle quality to those triangles created when the active edges
of a cell are nearly parallel to the isosurface. Here, we will use
this observation, together with the necessary conditions discussed
above to transform detached versions of the active edges of a
cell to make them orthogonal to the isosurface. Below, we show
two possible methods for achieving this followed by an algorithm
proposal that combines both approaches.

A. Gradient Transformation

The intuition behind our first method is based on moving
the vertices of the cell along the direction ∇ f away from the
isosurface. Since ∇ f is orthogonal to the isosurface at points
near the isosurface, this will increase the distance between the
endpoints, but will not significantly move them tangentially. This
results in edges that are more perpendicular to the isosurface, and
thus produce higher quality triangles.

Given an active edge (v,w), we first generate a detached
edge (v′,w′). Each vertex of the detached edge will be moved

Fig. 5. Standard Marching Cubes is depicted on the left. We propose two
methods for improving the shapes of the elements by transforming the active
edges. In the middle, we move the edge endpoints along ∇ f , and on the right
we move the endpoints parallel to the isosurface. The intersection between the
edge and the isosurface is recomputed after the edge transformation, which
guarantees that the resulting mesh adheres to the isosurface defined by the
interpolant. Both methods improve the quality of the resulting mesh.

Fig. 6. Edge track computation. A track for a vertex is defined by the
projection of the edge to be orthogonal to ∇ f . The displacement added to
the vertex is half of the track, and the intersection with the isosurface is
recomputed.

independently. Each vertex is moved away from the surface in the
direction of the gradient, until one of the two previously described
conditions is violated. To avoid long computations, we limit the
displacement to half of the original edge length. In other words,
we choose a vertex p′ that maximizes α in

p′ = p+α∇̃ f (p)

where ∇̃ f denotes the direction of the gradient, but pointing away
from the isosurface.

The weighting factor 〈∇ f (p′),∇ f (p)〉 is used to limit dis-
placement, and to guarantee that edge endpoints will not cross
the isosurface. As the vertices move, we need to update the
induced intersection points. Figure 7 shows three steps while
applying a gradient transform on a spherical isosurface. Even for
small displacements, the triangle quality is significantly better.
Complete results are shown in Section V.

B. Tangential Transformation

The other way to make the active edges more perpendicular
to the isosurface is to move the endpoints orthogonally to ∇ f .
This method for transforming edges works by moving the edge
endpoints parallel to the isosurface. This tangential transform
allows tracking of complex isosurface behavior by moving the
vertices of active edges in such way that they become nearly-
perpendicular to the isosurface.

The main step of this transform consists in calculating, for each
edge vertex, a vertex track, tangent to the isosurface and aligned
to the edge. We will optimize the vertex positions along the tracks
so that the active edges become more orthogonal to the isosurface.

More formally, a vertex track is defined as the projection of
the active edge on the isosurface, displaced to start at each edge
vertex. If the isosurface is planar, the track is a line segment
whose direction is given by

d(v) = (I− ∇̂ f (p)∇̂ f (p)T )(v−w)
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Fig. 7. Three steps of the gradient transform on active edges (blue lines).
The procedure iteratively moves endpoints along gradient vectors (dotted red
lines), improving the underlying mesh.

Fig. 8. Three steps of the tangential transform applied to the active edges
(blue lines). The procedure iteratively moves the active edges endpoints
tangentially to the isosurface (dotted red lines), effectively improving the
underlying triangle mesh (gray lines).

d(w) = (I− ∇̂ f (p)∇̂ f (p)T )(w− v)

where v and w are the active edge vertices, and I− vvT is the
matrix which projects a vector onto the orthogonal complement
of v. In our implementation, we simplify the track by using a set
of line segments that approximate the track. The vertex positions
are, then, the one which maximizes 〈∇ f (t),v′−w′〉, where

v′ = v+αd(v)

w′ = w+αd(w)

and t is the intersection of the edge (v′,w′) and the isosurface. If
the gradients were all constant, it is easy to show that the optimal
vertex position would be with α = 0.5. In practice, the gradients
are not constant, so this might not be true. For the curved case,
then, we find the mid-point of a piecewise linear approximation
of the track. Figure 6 illustrates the transformation, while Figure
8 shows three steps while applying a tangential transform on a
spherical isosurface.

C. Combining Edge Transformations

Although gradient and tangential transforms are based on
different approaches to make edges nearly-perpendicular to the
isosurface, they generate the same transformed edge iff the con-
ditions we impose for the transformations to operate (discussed
in the beginning of this section) are satisfied. However, due to
practical difficulties in moving points inside the scalar field, we
have found that conditions are not simultaneously satisfied for
both transformations, and therefore each transformation tends to
improve the overall triangle quality in different situations. That
is, in areas where the gradient transform does not significantly
change the triangle quality, the tangential transform may exhibit
a large improvement, and vice versa. This observation suggested

Fig. 9. Visualization of two slices of the Macet quality field. Notice the
reduction (or extinction) of cases where bad-shaped triangles are generated
inside the cell. Compare the inset to Figure 4.

to us that combining the transformations would further improve
the overall triangle quality when compared to Marching Cubes.

We use an iterative approach for combining edge transfor-
mations. Since both transformations only alter vertex positions,
while keeping intact the mesh topology, we can choose which
of the two positions produces a better average quality for the
triangles connected to that vertex. Since the choice for a particular
vertex might affect its neighbors, this process might require
several iterations. For all of our tests, we proceed with this
iterative selection without explicitly building the mesh until the
overall mesh quality stabilizes (often less than 4 steps in all our
experiments). The results we obtain show that the output mesh has
improved quality over each individual mesh produced by using a
single edge transformation.

D. Implementation Details

The implementation of edge transformations requires only
minor changes to Marching Cubes. The transformations are per-
formed after finding active edges, as an intermediate stage before
the intersection calculation. However, there are important issues
related to each transform parameters and the way the interpolator
is used. MC assumes a linear interpolation along sampling edges
of the grid. Even though this is a hard constraint that might
lead to topological inconsistencies in the polygonization, it is
also a reasonable assumption for fine sampling granularities. This
assumption is no longer valid when we move edge endpoints
freely inside the volume, because small movements of a grid
vertex will result in non-linear variations of the scalar field along
its incident grid edges (even if we prevent active edges from
changing their state upon vertex movements). Therefore, we need
a more robust intersection calculation procedure to track the
intersection of the edge against the isosurface. We use standard
bisection-based root finding procedures, which do not assume
linearity along the edge.

The vertex track used in the edge transformations also demands
the continuity of the gradient field (C1 continuity). Since the
trilinear interpolation often used with MC is not differentiable
at the cell boundaries, there may be unpredictable results. In
this work, we use a cubic spline interpolation to reconstruct the
derivatives of the scalar field. We also use the corresponding cubic
spline to reconstruct the scalar field itself at the sampling grid
vertices.This means there might be more than one root in active
edges. However, since the topology has already been determined
by the lookup into the Marching Cubes tables and the intersection
calculation returns only one vertex, this presents no practical
problems.
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Dataset Method radii ratio Metro
min avg frac of bb diagonal

Engine MC 0.000448 0.701 -
256x256x128 LS 0.000546 0.868 0.00168
isovalue 49.5 Dec 9.50e-7 0.723 4.20e-5

DC 0.00528 0.829 0.00246
afront 0.000995 0.938 0.00832
Macet 0.236 0.775 0.00129

Lobster MC 0.000970 0.673 -
301x324x56 LS 0.0314 0.865 0.00245
isovalue 30.5 Dec 6.80e-7 0.700 8.10e-5

DC 0.00226 0.833 0.00204
afront 0.000396 0.939 0.00915
Macet 0.0757 0.763 0.00163

Bonsai MC 0.000192 0.680 -
256x256x256 LS 0.000792 0.862 0.00182
isovalue 49.5 Dec 7.53e-7 0.709 7.50e-5

DC 4.52e-5 0.818 0.00265
afront 1.49e-5 0.935 0.0824
Macet 0.100 0.767 0.00140

Silicium MC 0.00298 0.666 -
98x34x34 LS 0.0847 0.872 0.00685

isovalue 140.5 Dec 8.96e-5 0.697 0.000370
DC 0.000336 0.832 0.00758

afront 0.0283 0.936 0.0321
Macet 0.0885 0.764 0.00561

TABLE I
RESULTS COMPARING SEVERAL ISOSURFACE EXTRACTION METHODS:

MARCHING CUBES (MC), MC FOLLOWED BY LAPLACIAN SMOOTHING

(LS), MC FOLLOWED BY DECIMATION, DUAL COUNTOURING (DC), THE

ADVANCING FRONT METHOD OF SCHREINER ET AL. [28] (AFRONT), AND

OUR METHOD (MACET). HIGHER RADII-RATIOS INDICATE HIGHER

QUALITY MESHES. THE METRO RESULTS SHOW THE HAUSDORFF

DISTANCE OF EACH MESH TO THE MESH GENERATED BY ORIGINAL MC.

The combination of edge transforms is implemented by keeping
two buffers with vertex locations, one for the gradient transforms
and another for the tangential transforms. After the transforma-
tions have been performed, we use a greedy algorithm to pick
which of the two vertices should be used in the final improved
version. The vertex pairs are processed one at a time, and
the previously computed vertices are used as soon as they are
available, in an iterative fashion. We stop the iterative procedure
when the mesh quality (the quality of the worst triangle) is
no longer improved (maximized), or the number of iterations is
greater than the maximum number of iterations allowed. In our
experiments, this final pass has small overhead when compared
to the full surface extraction.

V. RESULTS

The techniques described in Section IV have been implemented
in C++. Table I and II show a summary of our experimental
results. All the timings reported were obtained on a Pentium 4
3.0GHz PC with 2GB RAM. The edge transforms require addi-
tional accesses to the scalar field, in order to determine the vertex
displacement. As the dataset complexity increases (high curvature
or sharp features), the constraints force the vertex movement
to happen in smaller steps, which increase the processing time.
Notice, however, that the overhead for Macet decreases as the
dataset size increases, and that for bigger datasets this overhead
is at most a factor of two.

Figure 11 shows the forward Hausdorff distance results pro-
duced by Metro, which measures the accuracy of the mesh in

Dataset MC Macet Overhead(%)
Engine 44.4s 81.5s 183
Lobster 27.4s 46.5s 169
Bonsai 86.9s 125.1s 143

Silicium 0.77s 2.6s 341

TABLE II
PERFORMANCE RESULTS OF MC COMPARED TO MACET. NOTICE HOW

THE OVERHEAD DECREASES AS THE DATASET SIZE INCREASES.

Dataset Method Time Steiner Output
Points Points Faces Tets

Silicium MC 152.9s 169K 192K 1.45M 646K
Macet 62.6s 66.8K 87.4K 598K 257K

Lobster MC 3130.5s 1.72M 1.98M 16.0M 7.27M
Macet 767.9s 693K 912K 6.72M 2.97M

Engine Macet 1362.97s 1.27M 1.69M 10.7M 4.57M

TABLE III
COMPARISON OF THE TETRAHEDRAL MESHES THAT TETGEN CREATES

WHEN GIVEN BOTH MC AND MACET SURFACE MESHES AS INPUT.
TETGEN WAS NOT ABLE TO CREATE A MESH WHEN USING THE MC INPUT

FOR THE ENGINE DATASET.

relation to the original MC mesh. Although QEM-based dec-
imation produces a mesh very close to MC, it creates more
degenerate triangles, as can be seen in Table I. Figure 12 shows
visual comparisons and triangle quality histograms for the same
data. In particular, we highlight a zoomed version the complete
histogram to allow a better evaluation on the distribution of
degenerate triangles. Since Figure 4 provided the motivation for
the development of edge transformations, it is important to check
the quality of our triangulations under that metric. Figure 9 shows
two slices of the quality field after applying Macet, with a clear
reduction of degenerate triangles. Similar improvement is also
present in real datasets, as can be seen in Table I.

VI. APPLICATION: CDT FOR MESH GENERATION

One way to illustrate the importance of removing degenerate
triangles is given below. tetgen is a suite of geometric algorithms
that allows computing a Constrained Delaunay Tetrahedralization
(CDT) from a piecewise linear complex [31], [32]. Further
processing of CDTs often require quality bounds for the generated
mesh. tetgen allows imposing quality constraints to the CDT
construction, such as a minimum radius-edge ratio, and such
constraints are enforced by adding Steiner points to the CDT.
This process is prone to numerical problems and very sensitive
to the triangle quality of the input mesh.

Table III shows tetgen results setting minimum radius-edge
ratio to be 4 (Silicium and Lobster) and 6 (Engine). tetgen
crashes using the MC mesh for the engine dataset, but works for
Macet. Note that to compensate for bad quality triangles, tetgen
generates many more Steiner points for MC, which increases all
output elements generated, as well as processing time. Figure 10
compares the tetgen CDT generated for MC and Macet meshes.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have presented edge transforms as a simple and
effective way to generate higher quality meshes. We incorporated
them into an existing marching cubes implementation, which we
called Macet, that has a relatively modest performance penalty
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Fig. 11. Metro Results: histogram shows the forward distance between mesh generated by each approach and original MC mesh. The error histograms for
afront show worse results than expected because afront triangulates a cubic spline surface, while MC uses trilinear interpolation.

Fig. 10. Boundary of the CDT generated by tetgen for the MC (left) and
Macet (right) meshes. Note several degenerate tetrahedra in the MC mesh.

(especially when compared to non-marching algorithms). Since
we are able to produce better results, there is much less of a
dependence on post-processing operations to improve the quality
of the triangles. Through detailed analysis and comparison against
competing strategies, we show how Macet generates meshes that
improve the quality of degenerate triangles, and are faithful to
the isosurface generated by MC (as measured by Metro). We
show how this improvement on quality generated by our method
is crucial for further mesh processing, such as the generation of
CDTs using tetgen.

For future work we plan to extend this approach for working
with other variants of Marching Cubes, in particular, variants that
provide topological guarantees, are able to keep sharp corners, and
adaptive versions of Marching Cubes [17], [19]. Also, we want
to investigate the effect of warping the cells and active edges on

the reconstructed surface on a theoretical level, and, in particular,
try to provide formal theoretical bounds on the quality of the
triangles.

Reproducibility

We have made the techniques presented in this paper publicly
available, so that the reader can accurately assess the validity
of the experiments and algorithms. Every result generated for
this paper can be reproduced with open-source software and
publicly available datasets. Here is a link to the source code with
instructions:

http://www.vistrails.org/index.php/ImprovingMeshQualityOfMarchingCubes
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