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Abstract In this paper, we present two combinatorial methods to process 3-D steady
vector fields, which both use graph algorithms to extract features from the underly-
ing vector field. Combinatorial approaches are known to be less sensitive to noise
than extracting individual trajectories. Both of the methods are a straightforward
extension of an existing 2-D technique to 3-D fields. We observed that the first tech-
nique can generate overly coarse results and therefore we present a second method
that works using the same concepts but produces more detailed results. We evalu-
ate our method on a CFD-simulation of a gas furnace chamber. Finally, we discuss
several possibilities for categorizing the invariant sets respective to the flow.

1 Introduction

Topology-based methods are of increasing importance in the analysis and visualiza-
tion of datasets from a wide variety of scientific domains such as biology, physics,
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engineering, and medicine. Especially in the context of vector fields great research
efforts have been undertaken to segment the domains of the available data into mean-
ingful regions. In particular, steady vector field topology tries to find regions in
which streamlines exhibit similar behavior. These regions can be used for further
processing and analysis of the vector field itself or to simplify the visualization. The
latter is usually achieved by drawing only the region’s borders, the so called sepa-
ratrices. This produces less geometry and thus less visual clutter than illustrating all
particulars of the field. Both of these advantages are relevant for two-dimensional
vector fields, but become critical for three-dimensional vector fields where possible
occlusion appears as additional problem.

Different methods for vector field topology in two as well as in three dimensions
have been proposed in the past. The most recent advances come from the sub-field
of combinatorial vector field topology. Unfortunately, up to now only techniques
for two-dimensional fields have been presented in this context so far. In this paper
we try to fill the gap of missing combinatorial vector field topology methods for
three dimensions. We present two methods to process three-dimensional fluid flows,
which both use graph algorithms to extract features from the underlying vector field.
We will apply the methods to several synthetic data sets and one of them to a CFD-
simulation of a gas furnace chamber. In the end, we provide several options for
categorizing the invariant sets respective to the flow.

2 Related Work

In the history of flow visualization – a survey can be found in [27] and [28] – topo-
logical methods make their steady appearance. Helman and Hesselink [11] intro-
duced them to the visualization community starting with extracting and classifying
singularities also known as critical points. Many other topological structures beyond
singularities have been used in visualization. Periodic orbits have been subject to vi-
sualizations by Theisel et al. [15] and Wischgoll and Scheuermann [17]. Peikert and
Sadlo [13] improved the display of invariant manifolds for saddle points and peri-
odic orbits. Displaying all such invariant manifolds at once leads to an occlusion
problem. A solution is to only display their intersection curves, the so-called sad-
dle connectors [16]. Tricoche et al. [18] proposed vector field simplification based
on topological methods. In the recent past Morse theory has gained interest in the
analysis of vecter field data. Zhang et al. [31] and Chen et al. [1] introduced Morse
decomposition and Conley index theory to the visualization comunity. Edelsbrunner
et al. [19] and Guylassy et al. [20] use Morse-Smale complexes to process the gra-
dient field obtained from scalar data. Reininghaus and Hotz [21] process 2-D vector
fields with a method based on Forman’s work [25]. Unlike our method, it transforms
the cells and simplices of lower dimension, i.e. edges and vertices, directly into a
graph. In contrast, our work is the extension of Morse decompositions of flows on
2-dimensional manifolds, which has been subject of the work of Chen et al. [1, 2],
to 3 dimensions. An example visualization obtained with [1] is given in Fig. 1.
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3 Vector Fields, Flows, and Morse Decompositions

Let X ′ = F(X) be a differential equation defined on R3, then the associated flow is
a continuous function Φ : R×R3→ R3, satisfying

Φ(0,x) = x, (1)

Φ(t1,Φ(t2,x)) = Φ(t1 + t2,x). (2)

It holds
d
dt

Φ(t,x)|x0 = F(x0). (3)

S ⊂ R3 is an invariant set if Φ(t,S) = S for all t ∈ R. For example, the trajectory
of any point x ∈ R3 is an invariant set.

(a) A vector field visualized with a Line Integral Convolution.
Extracted Morse sets are displayed as green (source), red (sad-
dle), or blue (sink).

(b) The resulting Morse connection graph. The nodes have the same color as the repre-
sented fixed points in the field above.

Fig. 1 A Morse decomposition of a planar field computed with the algorithm by Chen et al. [1].
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A compact set N ⊂R3 is called isolating neighborhood if the maximal invariant
set S, that is contained in N, lies in the interior of N. A set S is an isolated invariant
set, if there exists an isolating neighborhood N so that S is the maximal invariant set
contained in N.

Hyperbolic fixed points and periodic orbits are examples of isolated invariant
sets, but also the space of their connecting trajectories. Let ε > 0 be small, we define
the exit set of an isolating neighborhood as

L = {x ∈ ∂N | Φ((0,ε),x)∩N = /0} (4)

The so called index pair (N,L) will be of further interest in Sec. 6, when we classify
isolated invariant sets.

The alpha- and omega limit sets of x ∈ R3 are

α(x) =
⋂
t<0

cl(Φ((−∞, t),x)), ω(x) =
⋂
t>0

cl(Φ((t,∞),x)) (5)

where cl denotes the closure of a set.
A Morse decomposition M of X ⊂R3 is a finite collection of isolated invariant

subsets of X , called Morse sets M:

M (X) = {M(p) | p ∈P}, (6)

such that if x ∈ X , then there exists p,q ∈P such that α(x) ⊂ M(q) and ω(x) ⊂
M(p). In addition, there exist a partial order > on P satisfying q > p if there is an
x ∈ X such that α(x)⊂M(q) and ω(x)⊂M(p).

4 Geometry-Based Flow Combinatorialization

In this section we present an algorithm that computes regions with source, saddle,
and sink-like behavior and the Morse connection graph between these regions, for a
vector field defined on a simplicial 3-D mesh T =

⋃
Ti.

We start by defining an equivalence relation between tetrahedra: Ti ∼ Tj if and
only if there exists a sequence of connected tetrahedra Ti, . . . ,Tj where all interme-
diate faces are non-transversal, i.e. flow through the face is not uni-directional. Each
face can be easily checked by testing whether the flow vector at each of its 3 vertices
produces the same sign when the inner product with the face normal is computed.
For this procedure we use linear interpolation on the tetrahedral mesh. The resulting
equivalence relation partitions the domain into polyhedral regions R =

⋃
Ri, with

all faces being transversal.
Then we construct a flow graph, which encodes a combinatorial description of

the flow in the field. In this graph, each equivalence class of cells Ri is represented
by a node ui. If there exists a common face between two elements Ri and R j of R
and the flow points from Ri to R j, we add an arc (ui,u j) in the graph.
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Fig. 2 A drawing of strongly connected components. Different colors describe the pairwise disjoint
sets of nodes in this graph, in each existing a path from an arbitrarily chosen node to all others of
the same component.

We then compute the flow graph’s strongly connected components using the pop-
ular algorithm by Tarjan [9]. A strongly connected component of a graph is a max-
imal subgraph in which for each pair of vertices ui,u j there exists a directed path
from ui to u j. An example is given in Fig. 2. Strongly connected components de-
scribe regions of recurrent flow. As the strongly connected components induce an
equivalence relation between graph nodes, we compute the quotient graph by adding
one node vi for each strongly connected component ci and an arc from nodes vi to
v j if there is an arc from any node of ci to any node of c j. It is trivial to show that
the quotient graph on the strongly connected components of a graph is an acyclic
directed graph.

From the quotient graph we then remove all nodes that neither are sources or
sinks nor contain a critical point with respect to vector field topology. The removed
nodes represent trivial flow behavior, e.g. all entries in the Conley index are zero.
The Conley index is a topological invariant discussed in Sec. 6. To preserve connec-
tivity, we add an arc for each combination of the removed node’s successors with its
predecessors. The resulting graph’s nodes represent regions which contain isolated
invariant sets. A proof that the resulting graph, which we henceforth call Morse
connection graph (MCG), encodes a Morse decomposition of the phase space was
given in [4]. We classify each node, which represents a Morse set, according to
Sec. 6. We then show the graph in an additional window using the algorithm by
Gansner et al. [30] for graph layout. We restrict all sources and all sinks to be on
one layer, respectively. Furthermore we remove all transitive arcs, i.e. arcs (vi,v j)
for which there exists a path from vi to v j not using (vi,v j), as they complicate graph
layout but do not improve perception ([29], Chapter 1).

This algorithm works well with regions in vector fields with gradient-like flow
behavior (Fig. 3). For highly rotational fields, the purely geometry-based method
can separate only few regions. Theoretically, one could try to find a new tetrahedral-
ization of the trajectory space, where all cells have transverse faces, i.e. unidirec-
tional flow everywhere. This is a complicated task and instead we turn our attention
to a streamline-based approach.
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(a) Morse sets in a vector field (b) Morse con-
nection graph

Fig. 3 A decomposition with the geometry-based algorithm of 3-D data containing two sinks
(blue), a source (green), and two saddles (red).

5 Streamline-Based Flow Combinatorialization

An improvement of the geometry-based Morse decomposition was explained in [2]:
For each cell a set of streamlines is seeded uniformly across the cell’s volume and
integrated for a short time or length and the cells in which the streamlines end are
recorded. A mathematical foundation, that this is leading to Morse decomposition
of the phase space, is given in [5].

Having a tetrahedron T1 in a mesh T, then there exists a union of tetrahedra Ti,
so that the image of T1 under streamline integration lies completely in

⋃
Ti. We will

refer to it as an outer approximation (Fig. 4). The resulting combinatorial multi-
valued map F :T→T is then encoded into the flow graph. We then proceed in the
same way as geometry-based method, computing strongly connected components,
quotient graph, and removing cells with trivial flow behavior.

Once the graph is created, we cannot influence the outcome anymore, so let
us discuss the modalities of the integration. We used DoPri5 [24] and decided to
integrate all tetrahedra by a fixed arc-length. The reason is simple, some cells in
slowly moving regions will not have moved at all, while others may have reached
the boundary. Furthermore, there are two possibilities to reconstruct the integration
image, both using a sampling of the cell, so dense, that eventually no image cell will
slip through the net. Using FTLE [23] or a similar predictor that just integrates the
vertices to compute the stretching of the cell is not rigorous. Though, we could get
adequate results with that. A more rigorous, but computationally costly method is to
integrate the uniformly distributed seeding points stepwise for small times and adap-
tively place new streamlines between them like in Hultquist’s algorithm for stream
surfaces [12]. Placing seeding points just on the boundary of the cell is an option,
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but does not spare much of the computation time, since the whole volume must be
reconstructed after the integration.

After computing the images of all seeding points, we collect their cell indices.
Taking all of the neighbors of all computed image cells into the outer approximation
is possible, but will lead to coarse results. More rigorous enclosing techniques are
discussed in [7].

6 Identification of Morse Sets

Finally, this algorithm is sensitive to the parameter of the integration length. Inte-
grating for a too small arc-length will lead to many so called false positives, where
highly spiraling flow does not differ from closed streamlines. In Fig. 5 we applied
the algorithm to a segment of a gas furnace chamber. We were able to find one closed
streamline which was close together with a fixed point in the same Morse set. This
reveals a weakness of our combinatorial algorithm: If the closed streamline is very
small, then its outer approximation will topologically be a ball, not a torus. On the
other hand, the questions arises, whether a refinement is really necessary in all cases.
The grade of simplification can be controlled by the arc-length-parameter and topo-
logical invariants are able to categorize a Morse set that consist of multiple fixed
points and periodic orbits.

(a) A union of cells (red) that encloses the image of the
green cell under streamline integration.

(b) The multi-valued map is encoded
into a graph.

Fig. 4 Outer approximation.
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6.1 Classical Methods

For fixed points of first order, a commonly used method is the evaluation of the
eigenvalues of the Jacobi matrix at the corresponding position. For a hyperbolic
closed streamline, a Poincaré section plane can be used ([10]). As we have no guar-
antee that these structures are always isolated from each other in our obtained Morse
sets, we are not going to apply them.

6.2 Graph Analysis

A very simple, but coarse way to identify a Morse set is to enumerate the connected
arcs before the node cancellation in the Morse connection graph. If all of the arcs

(a) blue: spheres indicating saddle points, red: extracted Morse sets

(b) As we expected, there are only saddle-like Morse sets in divergence free
CFD-simulations, so we aligned the graph layout, that they are not displayed on
a single line like in Fig. 1.

Fig. 5 A segment of a gas furnace chamber processed with the streamline-based Morse decom-
position. The geometry-based algorithm was only able to extract one(!) Morse set in this highly
turbulent flow.
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are outgoing, it is a source. Analogous, if all arcs are incoming, it is a sink. If arcs
of mixed types exist, it is a saddle-like Morse set. Eventually no more conclusions
of the nature about the Morse set are possible.

6.3 Poincaré Index

The Poincaré index is a topological invariant as well. It is strongly related to the
Conley index, but does not contain as much information. However, it has been suc-
cessfully used to simplify vector field topology in 2 and 3 dimensions. It also can
deal with fixed points of higher order [18].

6.4 Conley Index

A far more accurate topological invariant is the Conley index, which was introduced
to the visualization community by Chen et al. [1], based on the comprehensive theo-
retical work by Mischaikow [3]. In [1] and [2], Morse decompositions and a method
of computing the Conley index in two dimensions are explained and a number of
important indices were illustrated, i.e. those of hyperbolic fixed points and closed
streamlines.

Let N be an isolating neighborhood and L its exit set as they were defined in
Sec. 3.

Definition 1. The (homological) Conley index is defined as

CH∗(N) = H∗(N/L),

where H∗(N,L) is the relative homology of the index pair (N,L).

Since all CHi(N) can be arbitrary finite generated Abelian groups, a complete clas-
sification of all possible Conley indices is impossible. Important ones are

Conley index flow is equivalent to
CH∗(x) = (Z, {0}, {0}, {0}) attracting fixed point
CH∗(x) = ({0}, Z, {0}, {0}) fixed point with one-dimensional unstable manifold
CH∗(x) = ({0}, {0}, Z, {0}) fixed point with two-dimensional unstable manifold
CH∗(x) = ({0}, {0}, {0}, Z) repelling fixed point
CH∗(Γ ) = (Z, Z, {0}, {0}) attracting closed streamline
CH∗(Γ ) = ({0}, Z, Z, {0}) saddle-like closed streamline
CH∗(Γ ) = ({0}, Z2, Z2, {0}) twisted saddle-like closed streamline
CH∗(Γ ) = ({0}, {0}, Z, Z) repelling closed streamline
CH∗( /0) = ({0}, {0},{0}, {0}) empty set
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The rank of CHi(N) is called the i-th Betti number. In particular the Poincaré index
is the alternating sum of the Betti numbers:

index(N) = |(CH0(N))|− |(CH1(N))|+ |(CH2(N))|− |(CH3(N))| (7)

It should be noted, that a non-trivial Conley index does not guarantee the pres-
ence of the corresponding isolated invariant set, but it indicates, that flow inside the
isolating neighborhood is equivalent to it. Similarly, a trivial Conley index, which
means that all groups are identical {0}, could just mean, that the included invariant
sets are cancelling each other out.

A nontrivial Conley index always implicates the existence of at least one isolated
invariant set inside the isolating neighborhood. This statement is also known as the
Wazewski property.

Readers who would like to know more about the computation of homology are
referred to [3] and [6]. Readers who are not familiar with homology may also have
a look at [26]. Efficient implementations of homology algorithms already exist [8],
so we do not need to concern about these issues.

Recent publications ([13] an [14]) have particulary shown interest in visualizing
closed streamlines of saddle-like behavior. Fig. 6 shows, that our algorithm is able
to extract an artificially generated one. Peikert et al. were able to find a twisted
saddle-like closed streamline from a CFD simulation of a Pelton turbine.

To the best of our knowledge, not much is explored about the extraction of com-
pact invariant 2-manifolds from fluid flows, e.g. on an invariant torus (subject of
publication [22]) almost every case from gradient-like flow to chaotic behavior may
exist. We cannot describe chaos with a topological invariant.

Fig. 6 A saddle-like closed streamline extracted by the streamline-based Morse decomposition.
Such a feature cannot be found be arbitrarily placed individual streamlines [17]. The stream surface
(grey) indicates a divergent behavior. But inside the stable manifold, which is a plane, where the
blue trajectories are placed, it is also connected with a fixed point that is a source. So the extracted
Morse set of red tetrahedra must act as a saddle.
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7 Results

We applied both techniques from Sec. 4 and Sec. 5 to several artificially generated
data and CFD-simulation datasets, Fig. 3,Fig. 5 and Fig. 6 are just a selection.

Where the results of the geometry-based Morse decomposition become more
coarse when the curl of the field increases, the streamline-based version can com-
pensate this problem partially by raising the maximum arclength of integration. This
will lead to a higher computation time, of course. It seems like that there exists a
ideal integration range for each field, because the extracted structures cannot be-
come thinner than the diameter of a cell.

A gas furnace chamber (Fig. 5) poses a real challenge due to highly turbulent
flow and is recorded by the following table. All computations were done by a single
core cpu with 2.4 GHz:

cells arclength of
integration

time to process Morse Sets number of
arcs in the
MCG

31881 5 490s 31 104
31881 10 1136s 36 107
31881 15 1767s 38 87

8 Conclusions and Future Work

We have shown 2 approaches to a Morse decomposition in 3 dimensions and dif-
ferent possibilities to classify the obtained Morse sets. We found out in our experi-
ments, that for a large fixed integration length, there are still Morse sets remaining,
that cannot be further decomposed, so there is plenty of potential in improving the
streamline-based algorithm, i.e. repeatedly applying it to the remaining sets with
increasing arc-length parameter. In addition, a parallelization must be considered as
a must in future work. The main difference to classical topology is, that the equiv-
alence classes of streamlines are not induced by having the same ω- and α- limit
set by integration, but being in the same strongly connected component. Though
the complex shape of Morse sets has theoretically a higher variation in 3 dimen-
sions, practically fixed points of saddle character will dominate in data obtained
from CFD-Simulations. The clusters of cells do not always give an immediate in-
sight into the behaviour of the field, but it still can be used as a preprocessing algo-
rithm for finer techniques. An interesting challenge in the future is to make general
conclusions in how exactly the size of the grid and the length of integration will
inflict the results.
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