
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 1

Design of 2D Time-Varying Vector Fields
Guoning Chen, Member, IEEE, Vivek Kwatra, Li-Yi Wei, Charles D. Hansen, Fellow, IEEE, and Eugene

Zhang, Senior Member, IEEE,

Abstract—Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications
in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a
framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports
the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several
design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into
an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained
optimizations at the sampled times. The key frame design and field deformation are also introduced to support other user design
scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the
desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to
a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance,
dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via
prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or
advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

Index Terms—time-varying vector fields, 2D vector fields, vector field design, dynamic effects for surfaces

F

1 INTRODUCTION

V ECTOR field design is a fundamental component for a
variety of graphics applications such as remeshing [1],

[33], texturing [20], [13], [23], [31], [41], [46], and non-
photorealistic rendering [16], [17]. The paramount importance
of vector fields in these applications has invoked a line of
comprehensive study on the techniques of vector field design
on surfaces [6], [8], [34], [51]. Nonetheless, prior research has
paid little attention to the more natural and general applications
of vector field design to modeling dynamic effects, such as
fluid animation [35], [36], crowds [4], [29], shape deforma-
tion [45], and video editing [18]. This is partly due to the fact
that such dynamic systems are usually time-varying (or time-
dependent), with the additional time dimension significantly
increasing the complexity of the possible dynamics in the
vector fields. In addition, there is no existing theory for the
characterization of time-varying vector fields, compared to
the well-defined feature characterization of static vector fields
upon which the design techniques are built. For the first
time, this paper systematically studies the design of time-
varying vector fields on two-dimensional manifolds, including
the applications and the taxonomy of the vector fields, the
requirements, and the appropriate techniques.

• Guoning Chen and Charles Hansen are with Scientific Computing and
Imaging Institute, University of Utah, Salt Lake City, UT 84112.
E-mail: {chengu,hansen}@sci.utah.edu

• Vivek Kwatra is with Google Inc., Mountain View, CA 94043.
E-mail: kwatra@gmail.com

• Li-Yi Wei is with Microsoft Research, Redmond, WA 98052-6399, and The
University of Hong Kong, Pokfulam, Hong Kong.

• Eugene Zhang is with Oregon State University, Corvallis, OR 97331.
E-mail: zhange@eecs.oregonstate.edu

1.1 Requirements

For most graphics applications involving dynamic effects,
there are a number of requirements for the underlying time-
varying vector fields and how they are modeled.

First, the obtained time-varying vector fields should preserve
temporal coherence to guarantee the smooth transition of the
dynamic effects that they are driving. This is a fundamental
requirement for achieving a visually pleasing animation.

Second, the obtained time-varying vector fields can be
physically plausible or implausible, incompressible or com-
pressible, in order to satisfy the requirements of different
applications. For instance, practitioners in fluid dynamics often
require incompressible flows, while animators may seek for
more flexible vector fields for the dynamic effects with volume
change such as crowd simulation. Any vector field system
needs to be able to handle general time-varying vector fields
with similarly diverse properties.

Third, the time-varying vector fields are designed to either
control the evolution of the instantaneous appearance of certain
graphical primitives (e.g. the sizes and orientations of the
texture and brush strokes) or advect certain objects (e.g. flow
parcels) over time, in order to control different aspects of the
dynamic effects. A vector field design system should facilitate
the creation of the vector fields for both types of use.

Fourth, the design system for the time-varying vector fields
should provide the user an intuitive and flexible interface to
support the modeling of various flow behaviors. In addition, a
number of different modeling approaches should be supported.
Specifically, there are a few possible situations during the
modeling of a time-varying vector field that a user may
encounter: 1) The user wishes to design the detailed local
behavior of the flow over time; 2) The user cares about the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 2

Fig. 1: This figure shows the pipeline of the presented design system for 2D time-varying vector fields. First, the user specifies the desired
flow behaviors in the forms of spatial-temporal constraints. The system then produces a time-varying vector field that matches the constraints.
The obtained field is then applied to computer graphics applications to create various dynamic effects. Here, we apply the obtained fields to
produce painterly animation from a single image. Note that we use the created time-varying vector field to orient and move the brush strokes
in the lower part of the image to achieve an artistic water wave effect: the vortex rotates, moves and changes its characteristics, then splits
into two vortices at the end. Please see the accompanying video for this animation. The inset plot shows the changes of the consecutive
instantaneous fields in terms of the total variance of the vector values in the space.

exact states of the flow at only certain times and would
like the system to generate the rest of the field; 3) The
user is given a static vector field, and tries to deform it to
make up a time-varying vector field as people do for mesh
deformation. A properly devised design system should be able
to accommodate these scenarios.

1.2 Our Method
In order to develop a design system that satisfies the afore-
mentioned requirements, we propose a design framework that
is built on the discretization of the time-varying vector fields
in the time dimension such that they can be considered as the
sequences of static vector fields with slow changes over time.
This philosophy is based on an observation that solutions to the
time-varying vector fields converge to families of solutions of
the instantaneous vector fields as the rate of temporal change
in the vector field goes to zero, which preserves temporal
coherence and helps achieve smooth transition of the dynamic
effects. This observation is also a fundamental assumption
when developing bifurcation theory for time-varying vector
fields [11]. With this temporal discretization, we are able to
adapt the previously developed tools for static vector field
design to time-varying vector fields with the desired instan-
taneous dynamics.

To enable the creation of various flows, we provide the user
with the ability of modeling the following flow properties:

1) a snapshot of the flow at a given time; 2) the path of
a particle in the domain; 3) the path of a singular feature;
and 4) the interaction of the features of interest. These
features in turn reflect important flow characteristics, such as
the solution of the dynamical system at a given time, the
trajectories of the flow parcels, and how the flow parcels
interact over time. These flow characteristics can be described
by streamlines, pathlines, singularity paths, and bifurcations,
respectively. They sufficiently describe the local flow behavior
in space and time, and thus can be used to create time-varying
vector fields for aligning or advecting graphical primitives as
required. We refer to vector fields that are used for orienting
graphical primitives as orientation fields and advecting objects
as advection fields. We provide the design metaphors for
the user to model these flow characteristics. Particularly, we
present the first technique that allows the user to prescribe
bifurcations, a unique type of phenomena not present in static
fields.

To support the required design scenarios, we introduce three
distinct field design approaches. Specifically, the modeling
of the local flow behaviors is supported by the time-varying
design elements extracted from the user-specified flow charac-
teristics. A basis field summation or a constrained optimization
is performed to generate the instantaneous vector field at
a given time, based on the instantaneous characteristics of
the elements. Key-frame design is employed to support the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 3

case when a user only provides the instantaneous fields at
the desired times. A spatial-temporal Laplacian relaxation is
proposed to generate the rest of the sequence. Time-varying
transformation is used when an initial static field is deformed
over time to produce a time-varying vector field.

The combination of the proposed design metaphors and
generation techniques has led to a design system which takes
the user input and generates a time-varying vector field using
one of the generation approaches according to the selected
design approach. The system also enables the user to further
modify the obtained vector field through local topological edit-
ing. The generated time-varying vector fields can be applied
to a number of important computer graphics applications to
achieve various dynamic effects including producing artistic
fluid effects over static images, steering 2D crowds, and
controlling various time-varying effects on surfaces.

2 RELATED WORK

Vector field design refers to the creation of a continuous
vector field on a manifold that respects user-specified or
application-dependent constraints. Most existing work focuses
on a static vector field. Depending on the goals, there are two
different classes of vector field design techniques: One is non-
topological-based; the other is topological-based.

Non-topological-based methods: Non-topological-based
methods do not address vector field topology [15] explicitly.
The vector field design tools in the early graphics applications,
such as texture synthesis [41], [46], fluid simulation [35],
[36], and visualization [43], are examples of this category.
Other applications, such as non-photorealistic rendering [16],
[17], remeshing [1], and parameterization [33], also employ
vector field design, respectively. Most of these applications
require only the direction information of the input vector
fields, and hence a simple design functionality. However, the
user has little control of unwanted singularities in the field
that often lead to visual artifacts.

Topological-based methods: Topological-based approaches
allow the user to control the number and positions of singu-
larities [44], [51], [8] or the topological graph explicitly [37].
General N-way rotational symmetry field design has also been
studied by Palacios and Zhang [27], Ray et al. [34], and Lai et
al. [21]. Recently, Crane et al. [6] present a technique which
allows arbitrary prescription of singularities and constraints on
the fields.

Time-varying methods: Most of the above work concerns
only time-independent (i.e. static) vector fields. On the other
hand, many applications are driven by time-varying vector
fields, such as fluid simulation [35], crowd animation [39],
[29], shape deformation [45], hair modeling [10], and video
editing [50]. However, there is no interface that allows the user
to intervene the underlying time-varying vector fields. This has
restricted the achievable effects. Wejchert and Haumann [47]
introduce the idea of flow design to create controllable aero-
dynamics animation. The modeled field is steady and needs
to be combined with physically-based simulation to generate
aerodynamics animation. To achieve time-dependent control,

the user exerts external force to the system as demonstrated
by Stam [35], [36]. However, simulation is expensive and hard
to control. In addition, simulation is incapable of generating
physically impossible artistic fluid flow effects. Pighin et
al. [30] introduce an interactive pathline editing interface
and an advected radial basis function to model and edit
incompressible flows. Compared to their work, our techniques
enable the user to create 2D vector fields with more general
characteristics than incompressible flows. Kagaya et al. [18]
present a design interface to control time-varying tensor fields
for the temporarily coherent painterly rendering of videos. Xu
et al. [49] describe a technique for fast generation of static
vector fields to assist interactive design. Ma et al. [24] propose
a motion field synthesis technique that enables the user to
generate artistic flow effects. However, the method only gen-
erates detailed motion vectors and relies on a predetermined
low resolution dynamic vector field for synthesis. To that end,
we are not aware of any work on the design of time-varying
vector fields for the general purpose of graphics applications.

3 OVERVIEW
In this section, we provide a brief description of how our
framework assists the design of a time-varying vector field.
First, the user specifies the desired flow characteristics using
the following flow descriptors:

flow descriptors examples

Streamline, for the control
of the flow geometry at a
certain time frame and most
useful for the design of ori-
entation fields
Pathline, for the descrip-
tion of movements of spe-
cific particles across space
and time (appropriate for ad-
vection fields)
Singularity path, for the
representation of the trajec-
tory of the singular features
over space and time (useful
for orientation fields)
Bifurcation, for the descrip-
tion of the collisions or splits
of different singular features
over space and time (useful
for orientation fields)

These descriptors depict different flow behaviors that can
be observed in many applications. For instance, in texture
synthesis and painterly rendering, the user often wants the
texture patches and brush strokes to be oriented in a certain
way. An orientation field can be created to achieve that
with the desired instantaneous flow patterns prescribed by
the specified streamlines. In crowd simulation, the user would
like to steer a group of pedestrians to follow a certain route
(or path). An advection field generated from the specified
pathline can be applied to accomplish that (see Figure 15).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 4

In a meteorological animation, the user may create the effect
of two storm systems moving toward each other and eventually
colliding (see Figure 9). This can be done by controlling
the movement (i.e. singularity paths) and interaction (i.e.
bifurcation) of the two vortices in a time-varying vector field.

Note that for most graphics applications shown in this paper,
instantaneous appearance is often more important than the
exact path of a particle. For the rest of the paper, we will
assume the designed fields serve as orientation fields except
for the application of crowd simulation where the pathline
design is used to generate an advection field. Nonetheless, for
most examples the orientation fields are also used to advect the
graphical primitives over time to achieve the effect of motion.

The overall pipeline of our system is as follows (Figure 1).
First, according to the selected design scenario, the user
specifies a number of constraints. For key frame design and
field deformation, the focus is the creation of some instan-
taneous (static) fields. As such, specifying streamlines and
singularities is sufficient. A streamline can be specified using
the drawing tool of our system, which will compute the tangent
vectors at the sample positions along the streamline as the
constraints. For element-based design, pathlines, singularity
paths, and bifurcations can be designed. In particular, for a
pathline, besides computing the tangent vectors at the sampled
positions, the temporal value for each sample point is required
from the user (Section 5.1). The user is also responsible for
providing the type for a singularity path (source, sink, or
saddle) as a time-varying Jacobian. To specify a bifurcation,
the user can describe a template function (Section 5.1) that
will create the desired bifurcation. Note that in our system we
only handle saddle-node bifurcation where a node is either a
source or sink. Figure 2 provides some examples on how the
users can specify these flow descriptors with our system.

Once the constraints have been specified, our system gener-
ates a time-varying vector field by using the basis field sum-
mation (Section 5.2), constrained optimization (Sections 5.3
and 6.1), or time-varying transformation (Section 7) according
to the selected design method. The resulting field is analyzed
with singularities and bifurcations extracted. The user then has
the ability to specify additional constraints or perform local
topological editing in the form of singularity and bifurcation
movement or cancellation. This process continues until the
user is satisfied (Section 8).

In the next section, we will provide the mathematical
definitions for the aforementioned flow characteristics.

4 TIME-VARYING VECTOR FIELDS

In this section, we briefly review the important concepts of
time-varying vector fields, which will facilitate our later design
tasks.

Streamlines and Pathlines: We consider a 2-manifold M. A
time-varying vector field V is a map V : M×R→M, which
can be expressed as a differential equation dx

dt = V (x; t). The
solution of it given an initial state p0 = (x0; t0) is x(b) = p0 +∫ b

0 V (x(η); t0 +η)dη , which is referred to as a pathline. It is
the trajectory of the particle under V . The vector field V (x; tc)
is an instantaneous vector field of V at time tc, which is steady.

Fig. 2: Our user interface showing different design metaphors: (a)
streamline, (b) pathline, (c) singularity path, and (d) bifurcation. A
streamline is specified at a particular time as a 2D curve. A pathline
can be provided either in the 2D domain with the starting and ending
time information or directly in the spatial-temporal domain (see the
inset of b). Similarly, a singularity path can be designed in either
2D domain with the birth and death times or in the spatial-temporal
domain (see the inset of d). A bifurcation is prescribed as a point
in the spatial-temporal domain with the coordinate, scaling, and
orientation information.

The solution from pc = (xc; tc) constrained in V (x; tc) is a
streamline, and x(b) = pc +

∫ b
0 V (x(η); tc)dη .

Instantaneous Topology: The topology of V (x; tc) is referred
to as the instantaneous topology of V at tc. It consists of
singularities, periodic orbits, and their connectivity [3] and
describes the qualitative information of V (x; tc). This infor-
mation has been applied to guide the creation and control
of static vector fields [3], [8], [44], [51]. It has been shown
that analyzing and tracking instantaneous features can provide
more information for graphics applications than the space-time
topology based on pathlines that is typically featureless [38].
Therefore, in the rest of the paper, we will make use of
the notion of instantaneous topology to discuss the structural
evolution of a time-varying vector field. Also, we focus on
singularities only as they are relevant to the present graphics
applications.

Singularities and Singularity Paths: A point p is called
a singularity of V (x; tc) if V (p; tc) = 0. We are interested
in the isolated singularities in the field, each of which can
be enclosed by a compact neighborhood containing no other
singularities. The type of each singularity is determined by the
flow characteristics within this neighborhood. The lineariza-
tion of V (x; tc) about p results in a 2× 2 matrix DV (p) =



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 5

Fig. 3: This figure shows an example of saddle-node bifurcation in
an orientation vector field. The creation of a pair of saddle and sink
causes the break of texture structure on the back of the bunny. Note
that we sample the two frames before (left column) and after (right)
the bifurcation point to reveal the discontinuity.

tj0-1 tj0 tj0+1

saddle source unstable singularity

(bifurcation point) �

instantaneous vector fields

Fig. 4: This example demonstrates a saddle-source cancellation
bifurcation. The directional curves illustrate the flow behavior. Two
singularities are shown in the left at t j0−1. They move towards each
other when t increases and collide at t j0 (middle). The two singular-
ities are canceled after they meet, which results in a singularity-free
vector field at t j0+1 (right).

(
∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

)
(called the Jacobian) which has two

(potentially complex) eigenvalues σ1 + iµ1 and σ2 + iµ2. If
σ1 6= 0 6= σ2, then p is called a hyperbolic singularity. Observe
that on a surface there are three types of hyperbolic singu-
larities: sinks σ1,σ2 < 0, saddles σ1 < 0 < σ2, and sources
0 < σ1,σ2. If σ1 = σ2 = 0, p is a center. Any arbitrarily small
perturbation will turn it to a hyperbolic singularity. Despite
that, centers can still be structurally stable in a divergence-
free field (e.g. an incompressible flow). Each singularity has
a life span [ts, te] (ts, te ∈R) where ts represents the time of its
birth and te is the time of its annihilation. The curve connecting
each position of the singularity during its life span is called
a singularity path. We assume the type of a singularity does
not change during its life span.

Bifurcations: The birth and annihilation of singularities imply
the change of the topological structure of the vector field.
We refer to this qualitative change as the bifurcation and the
places where these changes occur as the bifurcation points.
Bifurcation is an important event in time-varying vector fields.
In many graphics applications involving time-varying vector
fields, bifurcations can lead to structural changes of certain
geometry or properties, such as the splitting and merging of

vortices in fluid animation. In some cases, these structural
changes may cause visual artifacts. Figure 3 shows an ex-
ample where the break of texture structures induced by the
bifurcations of the underlying vector field causes a visual
discontinuity in the animation. Therefore, studying bifurca-
tions and developing effective techniques to control them
is necessary from the application perspective. The rigorous
definition of bifurcation is beyond the scope of this paper.
However, a necessary condition for a bifurcation to occur
is that at a bifurcation point pb, the Jacobian of the vector
field DV (pb) is singular, i.e., its determinant is zero. In the
meantime, ||V (pb)||= 0, || ∂V (pb)

∂ t || 6= 0, and D2V (pb) is non-
singular. The corresponding proofs and more comprehensive
introduction of the bifurcation theory can be found in [11].
Consistent with our focus on singularities, in this paper we
discuss only local bifurcations, such as saddle-node (fold)
bifurcation and its inverse bifurcation which refers to the
annihilation of sink/source and saddle pairs. Figure 4 illustrates
a saddle-source bifurcation where a source with Poincaré index
1 and a saddle with index -1 move towards and finally cancel
each other over time. This bifurcation can be formulated as
follows [11].

V ((x,y); t) =
(

t + x2

y

)
(1)

while a saddle and sink creation can be formulated as follows,

V ((x,y); t) =
(

t− x2

−y

)
(2)

The change of the type of a singularity corresponds to a tran-
scritical bifurcation, for instance, sink→center→source, and
vice versa. When this occurs, we consider a new singularity
is born while the old one is eliminated.

With these concepts, we next describe how we support the
three different design scenarios as introduced in Section 1. We
first describe the setting of our computation domain.

Computation Domain: We consider a sub-domain DX =
(X ; t) where DX ⊂ M × R is a spatial-temporal domain.
X is a triangulation of a 2D curved
surface embedded in 3D, and t ∈ [0,1]
is the time parameter. To represent and
store the field, we discretize t evenly.
We denote these discretely sampled values as {t j}. We then
compute and store the instantaneous fields at these discrete
times {t j} in order. In each instantaneous field, vector values
are sampled at the vertices of the triangulation X . The inset
figure shows such a configuration. For a planar domain, we
use a free-form boundary. Along t, we assume the time-varying
vector field in DX is a portion of the time-varying field with
t ∈ (−∞,∞). Other boundary conditions of t can be employed,
such as the periodic boundary conditions often used in fluid
simulation [35].

In order to enable a more flexible speed control of the final
animation sequences, the parameter t has a linear relation with
the physical time, that is, c · dt (c ∈ R+) will be the actual
time interval when applying the created field to the target
applications.

Interpolation scheme: We assume that the vector field is



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 6

defined on the vertices of the mesh domain. In space X ,
the vector values within a triangle are computed using the
parallel transport technique of Zhang et al. [51]. Along the
parameter t dimension, we employ a similar interpolation
technique proposed by Tricoche et al. [40] to guarantee the
linearity over t. In particular, the vector value of a sample
point p in-between two succeeding frames can be computed
using linear interpolation of the two values at p at the two
frames.

5 ELEMENT-BASED DESIGN
In this section, we describe how we support the design of local
spatial and temporal behaviors of the flow through a number of
design elements that can be extracted from the user-specified
flow characteristics. These design elements are later combined
to generate a time-varying vector field.

5.1 Design Elements
Our system supports the following design elements.

Singular Elements:
Modeling singular elements is an essential functionality

for vector field design. We extend the singular elements in
the static field design [51] to our spatial-temporal setting.
Specifically, we denote a singular element as S(J,P(t),M(t)),
where J is the Jacobian that determines the type of the singular
element, P(t) represents the path of the singular element
over time, and M(t) is the affine transformation matrix (i.e.
scaling and rotating) that is exerted on the element along P(t).

Bi(x;t)=0
�t0

(x0;t0)

y

x tj �tn
�

(xj;tj)
(xn;tn)

�0

�j
�n

...... ......

t

y

x

Fig. 5: Singularity path.

We assume J is fixed along
P(t). P(t) is derived from a
user-specified path (Figure 5).
In particular, after the user
sketches the path of a singu-
lar element, a Hermite spline
curve is fitted to it to form
a smooth path P(t). M(t) is
initialized as an identity ma-
trix and can vary along P(t).
Given a time tc, M(tc) =(

sx(tc) 0
0 sy(tc)

)
R(θ(tc)) where sx(tc) is an x scaling, sy(tc)

a y scaling, and R(θ(tc)) a rotation centered at P(tc). The
user specifies a number of M(ti) at the desired times ti. M(t)
can then be computed through linearly interpolating sx(ti)
and sx(ti+1), sy(ti) and sy(ti+1), and θ(ti) and θ(ti+1) where
ti < t < ti+1.

P(t) starts and ends at t = 0 and 1 by default. If it starts
or ends in between, a certain bifurcation is induced, which in
turn involves another singularity with an opposite Poincaré
index. In design, this can be achieved by intersecting the
two singularity paths (by definition in Section 4). At the
bifurcation point where the two paths intersect, the local
Jacobian is singular with eigenvalues of zero (Section 4), while
the Jacobian of the rest of the field is not. That said, if the
singular Jacobian is used to generate a global field as we create
a field with a singularity [51], the obtained field will not be
continuous. In addition, the Jacobian at the point pb where the

bifurcation occurs is not singular before and after bifurcation.
Therefore, using the varying Jacobian at pb to generate a
sequence of static fields will result in large variance in the
obtained fields, i.e., discontinuity of the flow patterns can
be observed before, at, and after bifurcation. To address this
issue, we introduce the bifurcation elements that describe the
globally smooth flow behavior over time under the presence
of the corresponding bifurcations.

Bifurcation Elements: Recall that we are concerned with
saddle-node bifurcations in this paper. Equations 1 and 2
are two normal forms that define a saddle-node bifurcation
at position (0,0;0) in domain X (i.e. a bifurcation element).
Specifically, Equation 1 induces a saddle-source cancellation
and Equation 2 defines a saddle-sink creation. During design,
the user prescribes the position, (x0,y0; t0), of a bifurcation
with the desired type in domain X . Thus, we replace x= x−x0,
y = y− y0, and t = t − t0 in Equations 1 or 2 to place the
bifurcation elements in the right position. Further, a user-
controlled transformation can be exerted to scale the range
of the bifurcation in both space and time and re-orient an
axis (a straight line in this case) to control where and how
the bifurcation occurs along the axis. Figure 6 provides an
example where the user inserts a number of bifurcations.

Fig. 6: A number of bifurcations are inserted using Equations 2 (red)
and 1 (green). The arrows show the bifurcation directions.

These bifurcation elements enable the user to insert bifur-
cations through certain templates (i.e. the bifurcation normal
forms) with guaranteed smooth transition in space and time.
However, it does not allow modification of the paths of the
involving singularities. A more intuitive and flexible design
interface for bifurcations is much desired and should be
studied in the future work.

Regular Elements:
In static field design, a regular element is useful in providing

the translation or advection direction for a particle located at
a point and is related to streamlines. In the design of time-
varying vector fields, this element is tightly linked to pathlines.

We define a regular element as R(V (t),P(t)) where P(t) is
a prescribed pathline and V (t) is the tangent direction at P(t)
in space and at a time t.

Fig. 7: Pathline example.

Consider a user-
specified pathline curve
which consists of the
positions of a particle
p from ts to te (te ≥ ts),
denoted by

⋃t
ts(p(s)).

Assume m sample
points, pi, along the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 7

curve are taken. A Catmull-Rom spline P(t) is computed
with {pi} as the control points. The spline curve is densely
sampled as the set of evenly spaced points {sp j}. Assume
K is the number of sample points on the spline curve and
N is the number of time samples. We set K > 4N for a
smooth representation such that V (ti) = (sp j− sp j−1), a good
approximation of the tangent direction, is placed at P(ti) where
ti ∈ [0,1] is the ith sampled time (see Figure 7). To reduce
user input, a uniform sampling, ti = ts + i× (te− ts)/(N− 1)
can be used. However, this is not required. sp j and sp j−1 are
the points that enclose P(ti) on P(t).

5.2 Basis Fields Summation
In order to generate a time-varying vector field from the user-
specified elements described above, a basis field summation
can be used which has been applied to static field design [47],
[44], [51]. We extend this basis field summation to take into
account the design elements with time-varying characteristics
introduced in the previous section. Specifically, the basis field
generated by a singular element at time t has the form:

Vi(x; t) = e−d‖x−pi(t)‖2MT
i (t)JiMi(t)

(
x− xpi(t)
y− ypi(t)

)
(3)

where pi(t) = (xpi(t),ypi(t)) is the position of the singular
element at time t along the path Pi(t), and Mi(t) is the
transformation acting on Ji. The basis field for a regular
element given time t has the form

Vi(x; t) = e−d‖x−pi(t)‖2Vi(t) (4)

A bifurcation element generates the following basis field

Vi(x; t) = e−d‖x−pi(t)‖2Vbi(Mi

(
x− xpi(t)
y− ypi(t)

)
; t− ti) (5)

where (pi(ti); ti) is the position at which the ith bifurcation
occurs and Mi is a transformation matrix specified by the user
to orient the moving direction of the two singularities. Vbi is
one of the bifurcation normal forms (e.g. Equations 1 and 2).

Accordingly, the obtained global time-varying vector field
is the sum of these individual basis fields.

V (x; t) = ∑
i

Vi(x; t) (6)

Figure 8 provides a time-varying vector field generated
using the element-based design and the basis field summation.
Note that we extended the design elements to the space-time
domain from their static counterparts. Each design element
at a given time acts as a static one except for a bifurcation
element that is defined by its normal form over time. To
that end, the basis field summation is largely the same as its
static counterpart. Consequently, the issue of the cancellation
of an element by the influence of its nearby elements can
arise. To relieve that, we can use a sharper fall-off function
with a larger d value or require the design elements to be
placed sufficiently far apart to reduce their mutual influence.
Another possible solution is to extend the work of Turk
and O’Brien [42] for surface modeling (i.e. scalar function
modeling) to basis field summation. One could determine

Fig. 8: A time-varying vector field generated using a number of
design elements. The instantaneous fields are ordered from left to
right and top to the bottom. The singularity paths of the singular
elements are highlighted as the colored curves (green for source, blue
for saddle, and magenta for center). Two saddle-node bifurcations
are also inserted. The obtained field has smooth change over time
as shown in the plot of the lower right. In addition to the desired
singularities and bifurcations, there are also unexpected singularities
and bifurcations as shown in the analysis, due to the nature of the
basis field summation approach.

the weight for each basis field at a vertex and compute
a weighted sum of the basis fields instead of a uniform
sum. It is hoped this would preserve the prescribed features.
However, it is unclear whether
such an extension is easy to
devise and how well it will
work for vector data. In this
work, we resort to constrained
optimization, a popular vector
field generation technique for
static field design [6], [8], [34],
[49]. In particular, the constraints are set at the boundaries of a
number of small and compact regions that enclose the design
elements (see the inset). Note that the regions that contain the
prescribed elements need to be isolating (i.e. not overlapping
with each other) in order to preserve the desired features, due
to our discrete setting and elected linear interpolation scheme.

5.3 Constrained Optimization
In static field design, constrained optimization solves for a
harmonic vector field which satisfies the Laplacian system
∆~V =~0 where ∆ = ∇2 is the discrete Laplace operator and ~V
is the unsolved vector field [51]. Specifically, given a region N
of a triangular mesh where the vector values at the boundary
vertices of N are the constraints, the constrained optimization
has the form of:

V (vi) = ∑
j∈J

ωi jV (v j) (7)

where vi is an interior vertex, v j’s are its adjacent vertices in
N. V (v) represents the average vector value at vertex v. ωi j
is the weight between vertex vi and v j. Note that we consider
the boundary condition of Dirichlet type. Equation 7 is a



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 8

sparse linear system in the form of A~x =~b. For fast solution,
one can use a uniform weighting scheme or mean curvature
weighting [49] which guarantees A to be a symmetric positive
definite (s.p.d.) matrix such that the state-of-the-art Cholesky
factorization solver can be applied to solve it efficiently [48],
[49]. In this case, we assume the vector values at vertices
are expressed under the 3D global coordinate system. The
solution of this setting will result in vector fields that do
not always reside in the tangent space for a curved surface.
Although we can project these vector fields to their tangent
space, the projected fields usually contain many unexpected
singularities. In order to produce a tangential vector field
with better quality (i.e. fewer unexpected singularities), we
recommend the technique of parallel transport used in [27] to
construct the Laplacian system in tangent space directly.

V (vi) = ∑
j∈J

ωi jTi jV (v j)

where Ti j is the transformation matrix for parallel transport
along an edge (vi,v j). This will give rise to a non- s.p.d. ma-
trix. To solve it, we use a bi-conjugate gradient approach [32].
This also provides the foundation for our later extension to
solve for the spatial-temporal problem.

Given the constrained optimization, the time-varying vector
field can be generated by solving a sequence of Laplacian
systems with the boundary constraints set according to the
instantaneous characteristics of the prescribed elements at the
sampled times.

Although the constrained optimization can better preserve
the specified features at single time steps as long as an isolating
region can be found for each feature, it is still challenging
to preserve them over time. This is because the features
are moving and changing over time, and if two features are
getting too close to each other, it is difficult to compute the
isolating regions that enclose them. Another limitation for the
constrained optimization is, when bifurcations occur, simply
specifying the vector values at the boundaries of the neighbor-
hoods that contain the bifurcation points is not sufficient due
to the degeneracy previously mentioned. Because of this issue,
the basis field summation is still used in the present system
for bifurcation design.

In the next two sections, we will describe two different
design scenarios that complement the element-based design.

6 KEY-FRAME DESIGN

Given our discrete setting of time-varying vector fields, it is
natural to prescribe the flow behavior in certain time steps
and ask the system to create a time-varying vector field that
smoothly transitions from one state to the next. This leads to
the key-frame design. This design scenario is useful when a
number of critical time steps need to be designed to achieve the
desired behaviors while the others are not so important. It is a
widely used technique in the computer animation community
to efficiently generate animation sequences.

The key-frame vector fields can be designed using any
existing static vector field design techniques [6], [8], [34],
[51]. In order to generate the rest of the time-varying

vector field from the given key-frame fields, some vec-
tor or angle-based interpolation can be employed. However,
using interpolation can create degenerate in-
stantaneous fields (using vector-based linear in-
terpolation) or discontinuities due to angle am-
biguity (using angle-based interpolation). To
address that, we introduce a spatial-temporal
constrained optimization, an extension of the
approach in Section 5.3.

6.1 Spatial-Temporal Constrained Optimization
Similar to the static case, we define an extended spatial-
temporal Laplacian system by taking into account the ad-
ditional parameter t. Note that discrete Laplacian system
is constructed by considering the relation between spatially
connected vertices. This can be extended to higher dimensions.

vivi vi

tjtj-1 tj+1

Based on this observation, we treat t as the
additional dimension in space and assume
a direct connection between two neigh-
boring vertices that are the two copies
of the same vertex of triangulation X at
two succeeding times. The image to the
right shows such a configuration. Given
a vertex (vi; t j) of X , consider a sten-
cil shown in the figure to the right. We assume there are
(virtual) edges connecting (vi; t j) and (vi; t j−1), (vi; t j) and
(vi; t j+1), respectively. We solve a spatial-temporal Laplacian
∇∑ j ω jV =~0 where ∑ j ω jV represents the weighting sum
of the time-varying vector field over t. This is equivalent to
solving the following linear system:

ωV (vi; t j) = ∑k∈N(i) ωikTikV (vk; t j)+ω j, j−1V (vi; t j−1)

+ω j, j+1V (vi; t j+1) (8)

where N(i) denotes the one-ring neighbors of (vi; t j), V (vi; t j)
represents the average vector value at position (vi; t j). ω j, j−1
and ω j, j+1 are positive weights determining how fast the
relaxation is along t. In our implementation ω j, j−1=ω j, j+1 =
b∑k ωik. ω =∑k∈N(i) ωik+ω j, j−1+ω j, j−1 is the normalization
coefficient. b controls the speed of relaxation along t. We use
b = 30 for all examples. We point out that this formula can be
further extended by considering more sampled steps along the
t axis to achieve smoother results as bi-Laplace smoothing
does in static case [8]. For better quality, we use parallel
transport to solve for tangential vector fields with mean value
weights [9].

With the spatial-temporal constrained optimization, a bifur-
cation can be implicitly created by specifying the instanta-
neous fields before and after bifurcations, e.g. the left and
right fields in Figure 4. However, the user is not able to specify
the exact paths for both singularities, which can be achieved
by the element-based design. Figure 9 shows a time-varying
vector field generated using key-frame design. It demonstrates
that two vortices move toward each other, finally collide, and
merge into one.

7 TIME-VARYING FIELD DEFORMATION
In some design cases, the user is only given or has to
start with an existing static field to generate a sequence of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 9

Fig. 9: This image shows a number of frames from a texture
animation on sphere which simulates the collision of two storm
systems. The animation is driven by an orientation field and an
advection field. Both are designed using the techniques introduced
in this paper. Frames 1 (not shown), 50, and 100 (not shown) are the
key-frames.

continuously changing fields over time. One way to achieve
that is to gradually deform the initial field. This deformation
process can be performed through physically-based simulation
as one uses in fluid simulation. To incorporate the initial field
in the simulator, it has to be considered as some external
force field to start the simulation. The initial field has only
indirect influence to the obtained sequence. This is not always
desirable if the user prefers a time-varying vector field that is

Fig. 10: A transcritical bifurca-
tion at the belly of the Buddha
using field deformation.

neither incompressible nor
physically plausible. There-
fore, other more intuitive and
flexible approaches need to
be explored. In this section,
we propose a simple way to
deform the initial field by
using a global time-varying
transformation, i.e. a matrix
whose entries are functions
of time. We refer to this ap-
proach as the matrix-based
design.

Our system assists such
design by exerting a time-
dependent transformation
matrix on the initial field, V (t) = M(t)V (t0). M(t) is an affine

transformation of the form
(

M11(t) M12(t)
M21(t) M22(t)

)
, where

Mi j(t) are some functions of t. M(t) can be designed through
the graphics interface by specifying the x scaling, y scaling,
and rotation similar to what has been described in Section 5.1.
Our system also provides a text editor interface to allow
the user to directly provide the numeric values for the four
entries. The transformation matrix at ti is then computed
through linearly interpolating the identity matrix and the
user-specified one. However, such random specification of
transformation can easily lead to degenerate (e.g. zero or
discontinuous) fields. Matrix-based design has its own value
where the transcritical bifurcations can be achieved easily
by rotating the Jacobian of the singularities over time. For
instance, a transcritical bifurcation (i.e. source → center →
sink) is induced at the belly of the Buddha (Figure 10).

In addition to transforming the whole field, our system also
allows the user to select one or more representative streamlines
computed from the initial field and continuously transform

them over time. The deformed representative streamlines are
then used to generate new instantaneous fields at each sampled
time using the static field generation techniques mentioned
earlier. The inset figure shows an example of a represen-
tative streamline (shown in magenta) deformed over time.
A surface connecting the new po-
sition of this streamline with the
preceding one is shown. The in-
tersection of this surface with the
t = ti plane is a smooth curve
representing the streamline at ti,
which is used to generate an in-
stantaneous field. However, more
elegant and sophisticated tech-
niques should be devised to refine the deformation process
and achieve more flexible and controllable results, which we
will leave for the future work.

8 LOCAL TOPOLOGICAL EDITING

Editing functionality is required for a design system because
of the appearance of undesired features such as singularities
and bifurcations in the generation phase. Our system provides
the user with a number of options to edit a given time-
varying vector field. First, the user can edit the instantaneous
fields to modify the time-varying vector field at specific times.
Second, the bifurcations can be canceled or moved under
certain conditions.

Instantaneous field topological editing: Given the instan-
taneous field at a particular time t, the user can remove two
unwanted singularities using the simplification techniques of
Chen et al. [3]. This instantaneous field is then considered as
a key frame for the regeneration of the field.

8.1 Bifurcation Editing
We have demonstrated the relations between saddle-node bi-
furcations and the structural changes in texture animations. We
now describe techniques to control them. To do so, the system
first extracts bifurcations from the designed fields using the
techniques proposed by Tricoche et al. [40], and then provides
two editing operations for the user.

Bifurcation Removal: Certain bifurcations can be removed.
First, the user can remove the isolated bifurcations. According
to our setting (Section 4) and the Poincaré theorem, these
isolated bifurcations can only involve singularities that start or
end at the boundary of our computation domain DX. Other iso-
lated bifurcations involve singularities whose paths form loops.
The top row of the inset shows
the removable isolated bifur-
cations. To remove them, we
simply cancel the pairs of the
involving singularities [3]. Sec-
ond, consider three singulari-
ties pi (i = 1,2,3) with inter-
vals of existence (0,β ), (α,β ),
(α,1), respectively. Assume a
saddle-node bifurcation between p1, p2 at β , and a saddle



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 10

node bifurcation between p2 and p3 at α . We then can remove
both bifurcations and retain only one singularity. The bottom
row of the inset shows such an example. The two bifurcations
that are connected by the blue curve (the path of a saddle)
can be collapsed. Figure 11 shows an example of saddle-node
bifurcation removal. More complex control of non-isolated
(i.e. connected) bifurcations is possible, which is beyond the
scope of this paper.

Fig. 11: Example of bifurcation editing.

Bifurcation Movement: Similar to singularities, a bifurcation
can be moved using our system. This can be achieved by
moving the involving singularities over space at particular time
t. The edited instantaneous field is then set as a key frame.
The spatial-temporal constrained optimization will smooth
the rest of the field. Note that the movement of these two
singularities should obey the topological constraints proposed
by Zhang et al. [51]. This guarantees that no other topological
features are affected during the movement. This functionality
is particularly useful when the bifurcation is not isolated and
causes visual discontinuity (e.g. Figure 3). The bifurcation
movement could move it to a non-visible part of the object.

General global smoothing over the spatial-temporal domain
is also available, similar to the smoothing scheme of [18] for
fining the edge fields, i.e. some tensor fields, in the application
of painterly rendering of videos.

9 APPLICATIONS AND DISCUSSION

In this section, we present a number of graphics applications
that can benefit from the time-varying vector fields generated
using the proposed techniques.

Texture Synthesis and Animation
We have applied the designed time-varying fields to create

a number of synthetic texture animations (Figures 3 and 9).
Flow-guided texture synthesis and advection has been intro-
duced to the visualization community for dense flow visu-
alization by van Wijk [44], [43], Laramee et al. [22], and
Neyret [26]. Kwatra et al. [20] present an optimization-based
plane texture synthesis which can be used for flow-guided
texture animation. Lefebvre and Hoppe [23] introduce an
appearance-space texture synthesis technique that can handle
texture advection over static surfaces. Han et al. [13] extend
the work of [20] to 3D mesh surfaces. Later, Kwatra et
al. [19] and Bargteil et al. [2] extend the texture advection
techniques to the problem of fluid texturing on surfaces.
Recently, Ma et al. [24] introduce a texture synthesis technique
for flow patterns to create a more detailed synthetic texture and

animation. In this paper, we employ the technique of Kwatra
et al. [19]. To apply the created time-varying vector fields, we
make use of the instantaneous snapshots of the time-varying
vector fields to orient and move the texture patches on surfaces.

Creation of Dynamic Scenes
Our system can be used to create fluid effects on surfaces

through proper design and setting of the boundary condi-
tions. Figure 12 shows an incompressible flow on the sphere
generated using our system. In addition, the present system
allows the creation of more complex dynamic effects such as
wind writing on a meadow (Figure 13), and the advection of
leaves in the fluid flow with self-spinning effect (Figure 14).
In Figure 13, instead of adding physically realistic winds,
we design a time-varying vector field that mimics writing on
the grass. To achieve that, the user first specifies the flow to
represent the writing of the letters. The system automatically
records the vector fields as key-frames during the sketching
of these letters. The spatial-temporal constrained optimization
is then used to solve for a time-varying vector field. Each
strand of the grass is represented as a rigid body skeleton.
The bottom of the skeleton is fixed on the ground while the
top node is manipulated by a force field which is the created
time-varying vector field. The movement of this skeleton is
computed by an inverse kinematic solver [28]. The grass is
rendered using the technique of illuminated lines [25]. The
field used to drive the movement of the leaves (Figure 14)
was created through element-based design. The spinning effect
is achieved by maintaining a constant angle between the up
direction of a particle and the advection direction at the given
position.

Fig. 12: A time-varying incompressible flow on the sphere.

Steerable 2D Crowd Animation
Crowd simulation is an important technique in games,

movies, and urban planning. There are two groups of crowd
simulation techniques: agent-based and force-based. While



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 11

Fig. 13: An animation of writing on grass. The dynamics of the grass
is driven by a created time-varying vector field. The grass consists
of over 32,000 strands, each of which has the structure shown in the
top left corner.

Fig. 14: An animation of fallen leaves advected by a time-varying
flow. The leaves are self-spinning according to the advection flow and
their orientation direction. This scene contains 1000 particles. Please
see the accompanying video for the spinning effect.

agent-based methods can provide more detailed and realistic
simulation, it is still prohibitively expensive to simulate a
large number of pedestrians with a complex environment. In
contrast, the force-based technique considers the pedestrians
in the crowd as particles. Their movement is determined by
computing the gradient of a potential field by taking into
account the environment and neighboring people. This method
is fast at the expense of losing the detailed behavior of the
individual pedestrians. Both approaches support the control
of initial states yet lack of the continuous steering of the
crowds over time. Recently, Patil et al. [29] propose the use
of a navigation field (essentially a vector field) to control the
traveling paths of groups of pedestrians, which has achieved

Fig. 15: This example demonstrates a crowd simulation driven by the
combination of a social force G with a designed time-varying vector
field F . The top shows the results of the combination 0.4G+0.6F ,
and the bottom is 0.53G+0.47F . The cyan curves are the reference
pathlines based on the initial positions of the pedestrians and the
underlying time-varying flow. The brown curves are the actual paths
that the pedestrians have taken.

better control of crowds. We further observe that the paths
of the individual pedestrians can be considered as pathlines,
thus can be designed and controlled using our system. In our
steerable crowd simulation, the crowds are driven by both a
gradient field G derived from the cost function introduced
in the continuum crowd technique [39] and a designed time-
varying field F . The final direction that each pedestrian will
take is the weighted sum of these two fields ωGG + ωF F .
Different combinations of weights will determine how closely
the crowd follows the specified paths. In the example shown in
Figure 15, we compare the results of different combinations:
ωG = 0.4,ωF = 0.6 (top) and ωG = 0.53,ωF = 0.47 (bottom).
The swirling pattern of the paths was created to show the dif-
ference between pathlines and streamlines. Streamlines cannot
achieve such self-intersecting patterns.

Artistic Painterly Animation
In painterly rendering, the brush stroke orientations are typ-

ically guided by a vector field [16], [14], [51]. A time-varying
vector field can also be applied to a static image to achieve
animating effect in certain regions, such as background, to
make the static photo seem alive [5]. Figure 1 provides such an
example. The effect of the evolution of one vortex is inserted
to the lower part of the painting to provide water animation.
The input time-varying vector field is used to orient the brush
strokes as well as advecting them along the flow directions.
Figure 16 shows another example where several vortices are
inserted to provide a burning effect to the original steady
image. These vortices interact with each other and eventually
collapse into a large vortex in the center. Both fields of these
two examples were created using key-frame design, although
they could also be generated using element-based design.

Performance
For all the examples shown in this paper, the initialization

of a planar time-varying field with 100 frames defined on a



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 12

Fig. 16: The effect of a burning sun.

65× 65 regular grid typically takes less than 5 seconds on
a 3 GHz PC with 4GB RAM. For the design on surfaces
(up to 20,000 vertices), it can take up to 3.5 minutes to
generate the field with 100 frames without optimization and
with an error threshold of 1.e− 10 and maximum iteration
number of 400 for the bi-Conjugate Gradient solver. Note
that a direct solver could be applied, such as the Cholesky
decomposition. However, when a time-varying vector field
with a long sequence is created on a large mesh, the memory
usage may not be efficient for such a direct decomposition
method.

Evaluation and Discussion: To evaluate the generated
time-varying vector fields, we display a plot showing the
change of the instantaneous field over time for each example
field used in the paper (Figure 17). This plot allows us to
visualize the temporal coherence of a time-varying vector
field. The X axis of each plot is the frame index and the
Y axis is the total change of the vector field computed as
y(xi)=∑k ||V (vk; ti+1)−V (vk; ti)|| where V (vk; ti) is the vector
value at vertex k at time ti. According to our smoothness
assumption in the introduction, the smaller the y(xi), the slower
and smoother the change is. From the plots, we can see that the
fields generated using the key-frame design combined with the
spatial-temporal Laplacian are typically smooth because of its
energy minimization nature. The element-based method could
generate fields with larger fluctuation due to the occurrence of
unexpected features or insufficient sampling along an integral
curve (e.g. the pathline design shown in Figure 15). Field
deformation also generates fields with large variations over
time. This is because of the large change of the transforma-
tion matrix or the reference streamline in succeeding times.
However, this issue is not fundamental and can be resolved
by simply increasing the time sampling to capture the smooth
transition of the features that are manipulated. In terms of
which design scenario should be used for a given situation, it

Fig. 17: Coherence plots of the time-varying vector fields used in
the papers.

is application dependent. It is determined by what and how
the graphics properties need to be controlled in the specific
applications, as demonstrated through various applications in
this section. For instance, if the path of certain local graphics
primitives (e.g. a vortex in Figure 5 and the path of a group
of pedestrian in Figure 15) need to be controlled exactly, the
element-based design can be employed. If the exact states at
some desired times have to be met (e.g. the writing on the
grass in Figure 13), the key-frame design is more suitable.
In addition, element-based design and the field deformation
approach may provide full control of the local behaviors of the
flow at and near the prescribed elements and the representative
streamline, but could be labor-intensive if the number of local
patterns that need to be controlled is large. Key-frame design
is effective if instantaneous appearance is the main goal and
only a few instantaneous fields at the desired times are required
to meet, but it lacks the control of the rest of the field. An
ideal solution would be the combination of these different
approaches to devise a more flexible and thorough design
framework. We plan to investigate this in the future work.

10 CONCLUSION AND FUTURE WORK

This paper addresses the problem of the design of time-varying
vector fields on 2D domains. We have identified a set of design
requirements for different applications as well as two different
uses of time-varying vector fields, i.e., for orienting graphical
primitives or advecting objects. A number of design scenarios
and the corresponding design metaphors are then discussed
based on these requirements for different purposes in computer
graphics. Efficient algorithms are introduced to generate time-
varying vector fields from the user-specified design metaphors.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 13

A number of editing operations with certain topological guar-
antees are introduced to enable the fine adjustment of the
obtained fields. We have incorporated the present techniques
into a design system for the modeling of various time-varying
vector fields. To our knowledge, the presented design system is
the first of its kind for general time-varying vector field design
with bifurcation control. This work opens a new direction in
the area of field design which can be extended to the more
complex time-varying field design problems. For instance, the
same framework can be easily modified to handle the design
of time-varying tensor fields by extending the time-varying
singular elements to the elements for degenerate points in
the element-based design or solving a tensor-based spatial-
temporal Laplacian in the key frame design.

There are a number of future research directions. First, the
present generation techniques do not guarantee the desired
topology over time, especially for key frame design. Only the
topology at the key frame fields are defined. More comprehen-
sive control of topology in between key frame fields is needed.
Second, the bifurcation design is an important component in
time-varying vector field design as shown in the paper. More
flexible and sophisticated design techniques for bifurcations
are much desired. We also wish to extend our system to handle
a variety of bifurcations that may involve more sophisticated
features such as periodic orbits and separation and attach-
ment lines. Third, we plan to explore other flow descriptors
including streaklines, timelines [7], and Lagrangian coherent
structures [12]. Fourth, more comprehensive combinations
of different design functionality and generation techniques,
such as combining the presented design with physically-based
simulation, should be studied to support more complex design
tasks in the future. Finally, extending the design techniques for
2D fields to 3D ones will be more challenging yet important
for computer graphics.

ACKNOWLEDGMENTS

We would like to thank Dr. Konstantin Mischaikow for the
valuable discussion on the topology and dynamics of vector
fields, which initiated this work. We also thank Dr. Mark
van Langeveld for the valuable discussion on potential ap-
plications. We appreciate the help by Timothy O’Keefe on
proofreading the paper. This work was supported by NSF
IIS-0546881, IIS-0917308, OCI-0906379, and CCF-0830808
award. Guoning Chen was partially supported by King Abdul-
lah University of Science and Technology (KAUST) Award
No. KUS-C1-016-04 and DOE VACET.

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun.
Anisotropic polygonal remeshing. ACM Transactions on Graphics
(SIGGRAPH 03), 22(3):485–493, 2003.

[2] A. W. Bargteil, F. Sin, J. E. Michaels, T. G. Goktekin, and J. F. O’Brien.
A texture synthesis method for liquid animations. In SCA’06: Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 345–351, September 2006.

[3] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang.
Vector field editing and periodic orbit extraction using Morse decom-
position. IEEE Transactions on Visualization and Computer Graphics,
13(4):769–785, 2007.

[4] S. Chenney. Flow tiles. In SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages
233–242. Eurographics Association, 2004.

[5] Y.-Y. Chuang, D. B. Goldman, K. C. Zheng, B. Curless, D. H. Salesin,
and R. Szeliski. Animating pictures with stochastic motion textures.
ACM Transactions on Graphics, 24(3):853–860, 2005.

[6] K. Crane, M. Desbrun, and P. Schröder. Trivial connections on discrete
surfaces. Computer Graphics Forum (SGP), 29(5):1525–1533, 2010.

[7] T. Faber. Fluid Dynamics for Physicists. Cambridge University Press,
1995.

[8] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe. Design of tangent
vector fields. ACM Transactions on Graphics, 26(3):56:1–56:9, 2007.

[9] M. S. Floater. Mean value coordinates. Computer Aided Geometric
Design, 20(1):19–27, 2003.

[10] H. Fu, Y. Wei, C.-L. Tai, and L. Quan. Sketching hairstyles. In SBIM
’07: Proceedings of the 4th Eurographics workshop on Sketch-based
interfaces and modeling, pages 31–36. ACM, 2007.

[11] J. Hale and H. Kocak. Dynamics and Bifurcations. New York: Springer-
Verlag, 1991.

[12] G. Haller. Finding finite-time invariant manifolds in two-dimensional
velocity fields. Chaos, 10(1):99–108, 2000.

[13] J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo.
Fast example-based surface texture synthesis via discrete optimization.
The Visual Computer, 22(9):918–925, 2006.

[14] J. Hays and I. Essa. Image and video based painterly animation. In
NPAR ’04: Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering, pages 113–120, New York, NY,
USA, 2004. ACM.

[15] J. L. Helman and L. Hesselink. Representation and display of vector
field topology in fluid flow data sets. IEEE Computer, 22(8):27–36,
1989.

[16] A. Hertzmann. Painterly rendering with curved brush strokes of multiple
sizes. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’98, pages 453–460,
New York, NY, USA, 1998. ACM.

[17] A. Hertzmann and K. Perlin. Painterly rendering for video and inter-
action. In NPAR ’00: Proceedings of the 1st international symposium
on Non-photorealistic animation and rendering, pages 7–12, New York,
NY, USA, 2000. ACM.

[18] M. Kagaya, W. Brendel, Q. Deng, T. Kesterson, S. Todorovic, P. J. Neill,
and E. Zhang. Video painting with space-time-varying style parameters.
IEEE Transactions on Visualization and Computer Graphics, 17(1):74–
87, 2011.

[19] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carlson, and
M. Lin. Texturing fluids. IEEE Transactions on Visualization and
Computer Graphics, 13(5):939–952, 2007.

[20] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for
example-based synthesis. ACM Transactions on Graphics (SIGGRAPH
05), 24:795–802, August 2005.

[21] Y.-K. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-M. Hu,
and X. Gu. Metric-driven rosy field design and remeshing. IEEE
Transactions on Visualization and Computer Graphics, 16(1):95–108,
2010.

[22] R. S. Laramee, B. Jobard, and H. Hauser. Image space based visualiza-
tion of unsteady flow on surfaces. In Proceedings IEEE Visualization
’03, pages 131–138. IEEE Computer Society, October 2003.

[23] S. Lefebvre and H. Hoppe. Appearance-space texture synthesis. ACM
Transactions on Graphics (SIGGRAPH 06), 25(3):541–548, 2006.

[24] C. Ma, L.-Y. Wei, B. Guo, and K. Zhou. Motion field texture synthesis.
ACM Transactions on Graphics, (SIGGRAPH Asia 2009), 28(5):110:1–
110:8, 2009.

[25] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo. Illuminated lines revisited.
In Proceeding of IEEE Visualization 2005, pages 19–26, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

[26] F. Neyret. Advected textures. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’03, pages 147–153, Aire-la-Ville, Switzerland, Switzerland, 2003.
Eurographics Association.

[27] J. Palacios and E. Zhang. Rotational symmetry field design on surfaces.
ACM Transactions on Graphics (SIGGRAPH 07), 26(3):56:1–56:10,
2007.

[28] R. Parent. Computer Animation, Second Edition: Algorithms and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2007.

[29] S. Patil, J. van den Berg, S. Curtis, M. C. Lin, and D. Manocha.
Directing crowd simulations using navigation fields. IEEE Transactions
on Visualization and Computer Graphics, 17(2):244–254, 2011.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, ? 2011 14

[30] F. Pighin, J. M. Cohen, and M. Shah. Modeling and editing flows using
advected radial basis functions. In SCA ’04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 223–232. Eurographics Association, 2004.

[31] E. Praun, F. Adam, and H. Hugues. Lapped textures. In Proceedings
of the 27th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’00, pages 465–470, 2000.

[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. New York,
NY, USA: Cambridge University Press, 1992.

[33] N. Ray, W. C. Li, B. Lvy, and A. S. an d Pierre Alliez. Periodic global
parameterization. ACM Transactions on Graphics, 25(4):1460–1485,
2006.

[34] N. Ray, B. Vallet, W.-C. Li, and B. Levy. N-symmetry direction field
design. ACM Transactions on Graphics, 27(2):10:1–10:13, 2008.

[35] J. Stam. Stable fluids. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’99, pages
121–128. ACM Press/Addison-Wesley Publishing Co., 1999.

[36] J. Stam. Flows on surfaces of arbitrary topology. ACM Transactions on
Graphics (SIGGRAPH 03), 22(3):724–731, July 2003.

[37] H. Theisel. Designing 2D vector fields of arbitrary topology. Computer
Graphics Forum (Eurographics 2002), 21(3):595–604, July 2002.

[38] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological
methods for 2D time-dependent vector fields based on stream lines and
path lines. IEEE Transactions on Visualization and Computer Graphics,
11(4):383–394, 2005.

[39] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. ACM
Transactions on Graphics (SIGGRAPH 06), 25(3):1160–1168, 2006.

[40] X. Tricoche, G. Scheuermann, and H. Hagen. Topology-based visu-
alization of time-dependent 2D vector fields. In Data Visualization
2001 (Joint Eurographics-IEEE TCVG Symposium on Visualization
Proceedings), pages 117–126, 2001.

[41] G. Turk. Texture synthesis on surfaces. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’01, pages 347–354, 2001.

[42] G. Turk and J. F. O’brien. Modelling with implicit surfaces that
interpolate. ACM Transactions on Graphics, 21(4):855–873, 2002.

[43] J. van Wijk. Image based flow visualization for curved surfaces. In
Proceedings IEEE Visualization ’03, pages 123–130. IEEE Computer
Society, 2003.

[44] J. J. van Wijk. Image based flow visualization. ACM Transactions on
Graphics (Siggraph 02), 21(3):745–754, July 2002.

[45] W. von Funck, H. Theisel, and H.-P. Seidel. Vector field based shape
deformations. ACM Transactions on Graphics, 25(3):1118–1125, 2006.

[46] L. Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold
surfaces. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’01, pages 355–360,
2001.

[47] J. Wejchert and D. Haumann. Animation aerodynamics. In Proceedings
of the 18th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’91, pages 19–22. ACM, 1991.

[48] K. Xu, D. Cohne-Or, T. Ju, L. Liu, H. Zhang, S. Zhou, and Y. Xiong.
Feature-aligned shape texturing. ACM Transactions on Graphics (SIG-
GRAPH Asia 2009), 28(5):108:1–108:7, 2009.

[49] K. Xu, H. Zhang, D. Cohen-Or, and Y. Xiong. Dynamic harmonic
fields for surface processing. Computers and Graphics (Shape Modeling
International), 33(3):391–398, 2009.

[50] L. Xu, J. Chen, and J. Jia. A segmentation based variational model
for accurate optical flow estimation. In ECCV ’08: Proceedings of the
10th European Conference on Computer Vision: Part I, pages 671–684.
Springer-Verlag, 2008.

[51] E. Zhang, K. Mischaikow, and G. Turk. Vector field design on surfaces.
ACM Transactions on Graphics, 25(4):1294–1326, 2006.

Guoning Chen received a bachelors degree in
1999 from Xi’an Jiaotong University, China and a
masters degree in 2002 from Guangxi University,
China. In 2009, he received a PhD degree in
computer science from Oregon State University.
His research interests include scientific visual-
ization, computational topology, and computer
graphics. Currently, he is a post-doctoral re-
search associate in Scientific Computing and
Imaging (SCI) Institute at the University of Utah.
He is a member of the IEEE.

Vivek Kwatra Vivek Kwatra received the BTech
degree in computer science and engineering
from the Indian Institute of Technology (IIT)
Delhi, India, in 1999 and the MS and PhD de-
grees in computer science from the Georgia In-
stitute of Technology in 2004 and 2005, respec-
tively. He was a postdoctoral researcher in the
Computer Science Department at the University
of North Carolina, Chapel Hill, from 2005 to
2007. He is currently working at Google as a
research scientist.

Li-Yi Wei is an associate professor at The Uni-
versity of Hong Kong. Before that he has been
with Microsoft Research from 2005 to 2011 and
NVIDIA from 2001 to 2005. He obtained Ph.D.
from Stanford in 2001.

Charles D. Hansen received a BS in computer
science from Memphis State University in 1981
and a PhD in computer science from the Univer-
sity of Utah in 1987. He is a professor of com-
puter science at the University of Utah an asso-
ciate director of the SCI Institute. From 1989 to
1997, he was a Technical Staff Member in the
Advanced Computing Laboratory (ACL) located
at Los Alamos National Laboratory, where he
formed and directed the visualization efforts in
the ACL. He was a Bourse de Chateaubriand

PostDoc Fellow at INRIA, Rocquencourt France, in 1987 and 1988.
His research interests include large-scale scientific visualization and
computer graphics.

Eugene Zhang received the PhD degree in
computer science in 2004 from Georgia Insti-
tute of Technology. He is currently an associate
professor at Oregon State University, where he
is a member of the School of Electrical Engi-
neering and Computer Science. His research
interests include computer graphics, scientific
visualization, geometric modeling, and computa-
tional topology. He received an National Science
Foundation (NSF) CAREER award in 2006. He
is a senior member of the IEEE and a senior

member of ACM.


