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Mesh-Driven Vector Field Clustering
and Visualization: An Image-Based Approach

Zhenmin Peng, Edward Grundy, Robert S. Laramee, Guoning Chen, and Nick Croft

Abstract—Vector field visualization techniques have evolved very rapidly over the last two decades, however, visualizing vector fields
on complex boundary surfaces from computational flow dynamics (CFD) still remains a challenging task. In part, this is due to the large,
unstructured, adaptive resolution characteristics of the meshes used in the modeling and simulation process. Out of the wide variety
of existing flow field visualization techniques, vector field clustering algorithms offer the advantage of capturing a detailed picture of
important areas of the domain while presenting a simplified view of areas of less importance. This paper presents a novel, robust,
automatic vector field clustering algorithm that produces intuitive and insightful images of vector fields on large, unstructured, adaptive
resolution boundary meshes from CFD. Our bottom-up, hierarchical approach is the first to combine the properties of the underlying
vector field and mesh into a unified error-driven representation. The motivation behind the approach is the fact that CFD engineers
may increase the resolution of model meshes according to importance. The algorithm has several advantages. Clusters are generated
automatically, no surface parameterization is required, and large meshes are processed efficiently. The most suggestive and important
information contained in the meshes and vector fields is preserved while less important areas are simplified in the visualization. Users
can interactively control the level of detail by adjusting a range of clustering distance measure parameters. We describe two data
structures to accelerate the clustering process. We also introduce novel visualizations of clusters inspired by statistical methods. We
apply our method to a series of synthetic and complex, real-world CFD meshes to demonstrate the clustering algorithm results.

Index Terms—Vector Field Visualization, Clustering, Feature-based, Surfaces.
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1 INTRODUCTION

O VER the last two decades, vector field visualization has
developed very rapidly. Its applications range from the

automotive industry to medicine. Vector field visualization
provides solutions that enable engineers to investigate and
analyze critical features and characteristics of the flow from
computational fluid dynamics (CFD). However, visualizing
and analyzing vector fields on complex boundary surfaces
from CFD still remains a challenging task due mainly to
the large, unstructured, adaptive resolution characteristics of
the meshes used in the modeling and simulation process (see
Figure 2). Unstructured meshes necessitate either computa-
tionally expensive neighbor searching or the explicit storage
of mesh topology, which, for large meshes, can cause non-
trivial memory overhead. Adaptive resolution meshes cause
problems with scale. Some portions of the mesh may be too
fine to visualize concurrently with coarse resolution regions.
Additionally, as the size of simulation datasets from CFD
increases, so does the demand for visualization methods that
quickly depict vector fields in a simplified and insightful
manner. Finding a good solution that handles both complex
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boundary surfaces from CFD and provides a suggestive picture
of vector fields is a challenge that we address.

Out of all the possible visualization techniques that can
be used to simplify and present simulation results, vector
field clustering algorithms are a desirable solution which offer
the advantage of presenting a detailed picture of important
or complex areas of the domain while depicting a simpli-
fied representation for areas of less importance. In general,
clustering algorithms are based on agglomerative hierarchical
grouping techniques which are widely used in the information
visualization domain [1]. However, vector field clustering al-
gorithms have received relatively little attention. In this paper,
we present a novel, automatic vector field clustering algorithm
that handles vector fields on complex boundary surfaces from
CFD. It produces simplified but insightful images based on an
error-driven distance measure.

One of the primary motivations behind our method stems
from the semantics of meshes from CFD. When constructing
a model, portions of the geometry which are more important
may be modeled with a very fine resolution in order to
obtain simulation results with higher accuracy. Constituents
of a model deemed less interesting to the engineer may be
represented with a coarser resolution mesh in order to speed up
the simulation process. The resolution of a region of the mesh
can reflect the importance of that region to the engineer; thus,
it is an encoding of the engineers knowledge of the problem.
More than 50% of the time spent on an industry grade CFD
process (meshing, simulation, and visualization) is devoted to
defining and generating the mesh [5]. The mesh resolution
can also depend on the size of the individual components
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Fig. 1. The visualization of flow at the stream surface of a gas engine simulation [2], [3]. (left) The stream surface mesh is
composed of unstructured, adaptive-resolution polygons. For stream surface generation, we use the algorithm of Garth et al. [4]
which handles unstructured, adaptive resolution meshes. (middle-left) Clusters rendered with by εεε = 15%. The comparison of glyph-
based hedgehog visualization (middle-right) and cluster-based streamlet visualization with semi-transparent clusters (right). Here
we can visualize vector field clusters on stream surfaces for the first time. The color of glyphs (middle-right) and streamlets (right)
is mapped to velocity magnitude.

found within the model itself. Very small constituents of the
geometry are treated with detailed, high resolution meshes.
Larger features are modeled with a coarser resolution. Our
clustering algorithm and resulting visualization takes both the
semantics of the underlying mesh and the characteristics of
the vector field into account.

The main benefits and contributions of this method are:
• A novel clustering algorithm which couples the properties

of the vector field and mesh model into a unified clus-
tering distance measure. The model and implementation
are general enough such that any arbitrary attribute of
the CFD simulation results may be incorporated into the
clustering distance measure.

• A cluster hierarchy is generated automatically accord-
ing to the importance of the underlying mesh and the
properties of the vector fields. More detailed areas are
emphasized while less important or simpler ones are
simplified in a single image.

• Large, adaptive resolution meshes are handled efficiently
because clusters are never generated for occluded or oth-
erwise invisible regions of vector fields on the surfaces.

• We introduce novel visualizations of cluster attributes
including θ -range and |v|-range glyphs. Our approach
enables various clustering and visualization resolutions,
optimized for either speed or accuracy.

The approach enables a range of user-controlled visualiza-
tion parameters such as automatic glyph and streamlet place-
ment options. Glyphs can be automatically placed at the center
points of clusters. Streamlets can be seeded and traced from
cluster center points to render an intuitive overview of vector
fields. The algorithm is robust because it handles meshes
with holes, discontinuities, and jagged edges. Furthermore, the
algorithm does not rely on a parameterization of the surface.
The key to the technique’s robustness and simplicity is its
image space approach. However, in order to achieve these
benefits several challenges, both technical and perceptual, must

be overcome.
The rest of the paper is organized as follows: Section 2

provides an overview of related research work. The algorithm
and user options are described in multiple stages in Section 3.
Section 3 also describes two important data structures used to
simplify and accelerate the process. Section 4 gives the perfor-
mance and visualization results. Conclusions and suggestions
for future work are presented in Section 5.

2 RELATED WORK

Xu and Wunsch II [1] present a comprehensive and system-
atic survey focused on scalar clustering algorithms rooted
in statistics, computer science, and machine learning. They
generalize the clustering analysis procedure using four steps:
feature selection or extraction, clustering algorithm design (or
selection), cluster validation, and result interpretation, they
detail clustering algorithms in terms of the nature of clusters.
To compare different clustering algorithms, applications to
some benchmark data sets are presented.

Clustering algorithms can be divided into two groups: either
based on constructing a hierarchical structure or based on
partitioning into a collection of disjoint sets. Hierarchical
clustering algorithms are mainly classified as agglomerative
methods and divisive. Since the agglomerative methods can
generate flexible clustering using binary trees and provide very
informative descriptions, they are employed to develop some
vector field clustering visualizations, such as Telea and Van
Wijk [6] and Heckel et al. [7]. The computational cost for
hierarchical clustering can be expensive (e.g. O(N2) where
N is the number of data samples.) so some of the early
hierarchical clustering methods are not capable of handling
large-scale data sets. To address this problem, some efficient
hierarchical clustering methods are introduced like BIRCH [8]
which utilizes the clustering feature tree to improve the
robustness and reduce the computational complexity to O(N).
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Fig. 2. The unstructured adaptive resolution boundary grid
of a cooling jacket from a CFD simulation. The upper image
is an overview of the boundary mesh, and the bottom is a
close-up. These images illustrate how complex a typical mesh
from CFD can be. The finest mesh resolution is used at the
gasket between the cylinder block (bottom) and the cylinder
head (upper component half). The gasket is modeled with the
finest resolution mesh because the gasket holes are very small
with high curvature. Polygons in this mesh differ in size by six
orders of magnitude.

There have been very few previous clustering methods
targeted at vector fields, especially when compared to the large
volume of flow visualization literature in general [9], [10],
[11].

Telea and Van Wijk [6] present a hierarchical clustering
method which automatically places a limited number of glyphs
in a suggestive manner to represent the vector field. It is
the first algorithm of its kind and produces both global
and local information in the same image. In terms of the
clustering algorithm, two candidate clusters are selected and
merged together in a bottom-up fashion. During this process, a
similarity measure is used to evaluate which clusters should be
merged. An error measure based on local vector magnitude and
direction is introduced to define how a new cluster is merged

from two existing ones.
Heckel et al. [7] present a method to visualize discrete

vector fields in a hierarchical fashion. This method uses a
clustering approach to segment the original vector field into a
series of disjoint clusters. The algorithm is applied in a top-
down fashion. Firstly, points from the original vector field data
are treated as a single cluster. Then a procedure of splitting
clusters is applied using a weighted best-fit plane which
partitions the space into convex regions (sub-clusters). Each
region has an error measure which calculates the differences
between the original discrete vector field and the simplified
vector field. With the use of the error measure approach,
the recursive procedure of splitting clusters can be terminated
when a user-defined threshold value is met. This method is free
of discretization introduced by a regular grid or sub-sampling
for multi-resolution analysis.

Garcke et al. [12] present a multiscale method for vector
field clustering in 2D and 3D space. This continuous cluster-
ing method is inspired from the well-known physical phase
separation clustering model - the Cahn-Hilliard model [13].
In order to classify and enhance the correlation in the cluster
sets effectively, this phase-separation-based continuous cluster-
ing method formulates the clustering problem as a diffusion
problem rather than a merging or a splitting problem. In
accordance with the underlying physical data and based on the
evolution function, segments of the flow field are extracted and
classified depending on their location and orientation. Then, a
skeletonization approach is applied to highlight the essential
features of the refined cluster sets. Finally, various geometric
representations are adopted to render the highlighted skeleton
in an intuitive way. All the results feature uniform resolution,
rectilinear grids.

Griebel et al. [14] present a vector field clustering method
based on algebraic multigrid [15]. Each sample in the flow
field is represented by a tensor stiffness matrix that encodes the
local properties of the flow field. The algebraic multigrid tech-
nique operates on these tensor matrices in order to construct a
vector field hierarchy which describes the flow structure. The
method is geometry-free and is demonstrated on 2D and 3D
vector fields.

Du and Wang [16] present a Centroidal Voronoi Tessellation
based method for the simplification and the visualization of
vector fields. In the method, the generators of the tesselation
are treated as centers of the surrounding Voronoi regions which
are deemed as the clusters. A distance function in both the
spatial and vector space is applied to measure the distances
between the center and surround clusters and thus determine
the set of generators with the smallest distances as the final
centers of the clusters. The proposed method is to minimize
the global error function. The algorithm is demonstrated on
rectilinear 2D and 3D vector fields.

McKenzie et al. [17] present a global vector field clustering
method as an extension to Du and Wang’s previous work [16].
By taking the direction, gradient, curl and divergence into
account to drive the clustering process, this method can
provide a meaningful segmentation of the input vector field. It
is one of the few methods that is demonstrated on tetrahedral
meshes. The semantics of the uniform resolution data are not
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Fig. 3. An overview chart of our mesh-driven vector field
clustering algorithm for surfaces.

considered.

There are several recent texture-based algorithms that visu-
alize flow at the boundary surfaces of simulation data [18],
[19], [20] including streamsurfaces [2]. However, texture-
based methods are different class of visualization techniques
from vector field clustering with different characteristics.
Firstly, texture-based methods treat the flow uniformly. The
resolution of the textures is generally constant. The one
exception is that of Telea and Strzodka[21]. Secondly, texture-
based methods fail to depict the downstream direction of the
flow in a still image. Users must rely on animations of the flow
for visualizing the downstream direction. Thirdly texture-based
methods do not reflect the semantics of the underlying mesh
in the resulting visualization. For a survey of texture-based
methods see Laramee et al. [9].

Another class of flow visualization techniques focuses on
the topology of the vector field [22], [23], [24]. Topological
methods do not depict the downstream direction of the flow
in a still image. They generally rely on another visualization
method to do so. Furthermore, topological methods present
challenges with respect to interpretation. Only specialists will
fully understand the information conveyed by a topological
skeleton of the flow. This class of methods also ignores
the semantics of the underlying mesh. Visualization of the
topological skeleton of the flow is not the goal of the work
presented here. If a user would like to visualize the topological
skeleton of a vector field, we recommend an algorithm tailored
specifically to do so [25], [26]. The method here, on the other
hand, generates both detailed and summary information in
the same visualization. See Laramee et al. for a overview of
topology-based approaches [22].

To our knowledge the algorithm we present is the first vector
field clustering method that takes the properties of the under-
lying mesh into account in addition to the underlying vector
field. This is also the first of its kind to target surfaces from
CFD and to handle large, unstructured, adaptive resolution
meshes efficiently. In general, previous work deals with data
on structured grids.

Fig. 4. Here are 5 constituent images, plus a 6th final image,
used for the visualization of surface flow on a gas engine:
(top, left) the initial adaptive resolution mesh, (top, right) a
velocity magnitude color mapped image, (middle,left) the at-
tribute image corresponding to the vector field and underlying
mesh resolution, (middle, right) a color mapped image which
shows the different resulting clusters, (bottom, left) an image
overlay, (bottom, right) the final visualization using glyphs, and
the image overlay. Color is mapped to velocity magnitude. The
tumble motion depicted in the lower-right image is consistent
with previous visualization of the same data [3].

3 MESH-DRIVEN VECTOR FIELD CLUSTER-
ING FOR SURFACES
In this section, we present details of the our algorithm includ-
ing both the model and its implementation.

3.1 Method Overview
Figure 3 shows an overview of our method. The input includes
a generic triangular mesh as a geometric representation for
boundary meshes. Each vertex i has a position ri =(rix,riy,riz),
a normal vector ni = (nix,niy,niz), a velocity vector vi =
(vix,viy,viz) and the neighboring topology. For simplicity we
assume that the velocity is confined to the surface (possibly
by projection), i.e. vi ·ni = 0. Note that any CFD simulation
attribute can be stored at the vertices such as temperature,
pressure, kinetic energy etc. This is also true of derived
attributes like gradients and mesh resolution as described in
Section 3.2.
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Fig. 5. A composition of 6 triangles which share a common
vertex i represents a 1-Ring neighborhood of the underlying
mesh from which a local resolution measure is derived.

A mesh resolution measure, m, is computed at each vertex
in a pre-processing phase. Step two is to construct an attribute
image. The attribute image is a data structure which holds a
simplified view of the model’s data attributes including the
vector field and the quantified mesh resolution. In order to
generate a simplified representation of vector fields for sur-
faces, a bottom-up hierarchical clustering is applied to the data
using a distance measure which includes a local description of
the mesh. Then glyphs or streamlets are placed automatically
based on the user-defined error measure along with the original
surface geometry. Additionally, various enhancements and
user options, like distance measure weighting coefficients,
can be used to customize the clustering process and thus
the final visualization result. An overview of this process
is depicted in Figures 3 and 4. It’s also worth mentioning
that if the viewpoint is changed after the final visualization
rendering, the next pass will start from the attribute image
construction. Starting with the hierarchical clustering if the
clustering distance measure parameters are changed, only a
subset of the algorithm is required. Details are given in the
sub-sections that follow.

One consequence of storing the clusters in a list is the
implicit ordering of hierarchy construction. In clustering ter-
minology, the choice of seed clusters affects the result. The
fact that the choice of seeds changes the result is a property
inherent to many clustering algorithms [1], not just the one
presented here. In our algorithm, seeds are always processed
in the same order, from the top-left to the bottom-right in a
rasterized fashion.

3.2 Mesh Resolution Derivation
Meshes from CFD data sets are adaptive resolution meshes
generated according to the importance of constituents in the
model. Components of the geometry requiring more accurate
simulation results, such as the gaskets of Figure 2 and the
intake port of Figure 4, are modeled with a dense resolution
mesh. Some features are considered less important, like the
cylinder block (Figure 4), and are modeled with a coarse
resolution mesh for fast computation. The semantics of the
underlying mesh are an important characteristic and can be
incorporated into the clustering algorithm along with charac-
teristics of the vector field.

We define the resolution of the mesh around a vertex, v,
as the density of triangles composed of v and two other
vertices. The higher the resolution of the mesh, the smaller
the corresponding polygons and thus the shorter the polygonal
edge lengths. To derive a resolution measure, we use the length
of edges in a 1-Ring neighborhood. We use a vertex-centered

edge mean function as a preprocessing stage of our clustering
algorithm. Each vertex, i, in the mesh has a given set of
edges, en, in a 1-Ring neighborhood as depicted in Figure 5.
The mean length is computed from this set of edges. The
resulting mean length eavg represents the resolution of the local
neighborhood around i and is stored as a derived attribute at
each vertex in the data set.

eavg =
1

n+1

i=n

∑
i=0

ei (1)

The resolution in this local region of the mesh is approximated

by m =
1

eavg
. Note that this is not the only way to calculate

a resolution measure for the underlying mesh and that this
is only an approximation. There are other options, such as an
area-based mean function or computing the density of vertices
per unit area.

3.3 Attribute Image Construction

The mesh resolution mi is stored at each vertex, i, of the
polygonal CFD mesh along with vi. A key step is to project
these attributes defined at the boundary surface to the image
plane. We encode the object-space vector field, (vix, viy, viz),
and the object-space mesh resolution, (m), of each vertex into
the R, G, B, and α components of a high precision texture.
The formula to encode the components is:

Ci =
vi−min(vi)

max(vi)−min(vi)
where Ci = (CR,CG,CB) (2)

The formula for encoding the object-space mesh resolution is:

mi =
emin · (emax− eavg(i))
eavg(i) · (emax− emin)

(3)

Where emax > emin. Encoding mesh attributes in this way yields
the following benefits:

• Occluded or otherwise hidden portions of the geometry
are automatically filtered out and eliminated from any
further processing.

• The input to the clustering algorithm is projected from
an unstructured mesh to a uniform, rectilinear grid.

• Interpolation of vector components and the mesh resolu-
tion is performed automatically by the graphics hardware.

• No more computation time is spent on polygons whose
size is less than one pixel, the occurrence of which is
high for CFD meshes (see Figure 2).

• The complexity of vector field clustering in object space
is reduced to a much simpler problem in image space.

After the encoding of the vector field and mesh resolu-
tion, an attribute image is rendered. Note that high-precision
(RGBA 32F ARB) textures can be used to limit quantization
and prevent clamping. The attribute image is used as the input
to the clustering procedure (not for visualization purposes). A
sample attribute image is shown in Figure 4 (middle, left).
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Fig. 7. An example illustrates the clustering method. It starts with a given cluster, A, and a cluster list L(ψ) which stores the initial
leaf clusters for the hierarchical clustering process. After the search process is finished, a new cluster, cluster G, is formed from
two child clusters, A and D, which have the shortest distance εεε(ψA−ψN). G is added to the back of L(ψ). The corresponding binary
tree is updated to store the new parent cluster and its children.

3.4 Projection and Decoding

Following the construction of the attribute image, the projec-
tion of the attributes defined at the surface is done by the
graphics hardware during the rasterization stage. Since the
vector components vi and mesh resolution mi are stored in
the framebuffer, projected values can be decoded from the
framebuffer with:

vi = Ci · (max(vi)−min(vi))+min(vi) (4)

eavg(i) =
emin · emax

emax ·mi− emin ·mi + emin
(5)

Where emin > 0.0. These decoded values are used to recon-
struct the required field attributes as input to our clustering
algorithm. Interpolation of the attribute image is necessary for
reconstruction. By using hardware-assisted interpolation, we
can decode mesh attributes within the original boundary mesh
polygons in addition to the information stored at the vertices.
See Figure 4 for an example.

3.5 Hierarchical Clustering

For a simplified representation of vector fields at surfaces,
a bottom-up hierarchical clustering method is applied to the
attribute image using a unified clustering distance measure that
includes a local description of the mesh.

3.5.1 A Mesh-Driven Vector Field Clustering Measure
To quantify the similarity (or difference) of the characteristics
of different clusters, a clustering distance measure is needed.
In our clustering algorithm, a clustering error measure is
applied to quantify the local characteristics of the vector field
and the local description of the mesh. A cluster, ψ , is defined
as a five-tuple: ψ(r,v,α,m,ε) where r is the center-point of
the cluster, v is the mean velocity magnitude, α is the mean
velocity direction, m is the mean mesh resolution, and ε is
the local clustering error. We formulate the distance between
clusters with the following measure:

εεε(ψ) = cd ·
d

dmax
+ cv ·

v
vmax

+ cα ·
α

αmax
+ cm ·

m
mmax

(6)

where cd + cv + cα + cm = 1.0. The components of the error
measure are:
• Euclidean Distance (d): this constituent measures distance

between two cluster centers, ψA, ψB using d = |ψr
A−ψr

B|.
This component encourages the clustering algorithm to
group clusters whose centers are in close proximity. See
Figure 6 (upper-middle, left). The Euclidean distance
between two points in 3D space can be computed using
a combination of (x,y) image space coordinates and
information from the depth buffer for the (z) component
(see Section 3.5.3). The maximum distance, dmax, is the
length of a diagonal for the geometry’s bounding box. It
groups clusters visually.

• Velocity Magnitude (v): this constituent measures the
difference between the mean velocity magnitude of two
clusters, ψA, ψB using v =

∣∣ψv
A−ψv

B

∣∣. This component
encourages the clustering algorithm to group the clusters
which have similar magnitude. See Figure 6 (upper-
middle, right). The maximum velocity, vmax, is the largest
magnitude of the given data set.

• Direction (α): this constituent compares the velocity
direction of two clusters, ψA, ψB using α =

∣∣ψα
A −ψα

B

∣∣. It
drives the clustering algorithm to group the clusters which
have similar direction. See Figure 6 (lower-middle, left).
The maximum direction value, αmax, is 180°.

• Mesh Resolution (m): this component differs from the
other three. Rather than comparing the vector field fea-
tures, it sums the resolution of the local mesh from two
clusters, ψA, ψB using m = ψm

A +ψm
B . The effect of this

measure is to accumulate error proportional to the local
density and thus present the user with a more detailed
representation in regions with a denser mesh. In other
words, multiple, shorter edges accumulate more error than
a single long straight edge, thus for a given ε , clusters
in high resolution mesh regions are generally smaller.
See Figure 6 (lower-middle, right). The maximum mesh
resolution, mmax, is the largest value of m derived in
Section 3.2.

• Local Error(ε): this is not used as part as the distance
clustering measure but is simply the result stored from
the previous pairing of two clusters and represents the
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Fig. 6. Constituent images from the result of clustering pro-
cess driven by the error measure, used for the visualization
of surface flow on a gas engine: (top, left) the initial adaptive
resolution mesh, (top, right) a velocity magnitude color mapped
image, (upper-middle, left) the result of clustering process by
setting cd = 100%, (upper-middle, right) the result from setting
cv = 100%, (lower-middle, left) the result of cα = 100%, (lower-
middle, right) the result of cm = 100%, (bottom, left) the result
by setting cd = cv = cα = cm = 25%, (bottom, right) streamlets
are used to illustrate the vector field based on the attribute field
clusters. Color is mapped to velocity magnitude.

combined local cluster error.

Each component of the distance measure, including ε , is
stored in the normalized range [0, · · · ,1] in order to unify
the various measures. Note ε is a measure of how well a
centroid describes a region of data. Optional user-defined
weighting coefficients, cd , cv, cα , cm are introduced to adjust
the contribution of the first four components to the final

clustering distance measure. The fully automatic version of
the algorithm essentially ignores the weighting coefficients -
thus minimizing the need for interaction. These components
may be treated independent from one another. By changing
the weighting coefficients different distance measures can be
tailored to address the user’s needs. The effect of varying these
coefficients is shown in Figure 6. We note that adjusting cd ,
cv, cα , and cm is optional. Their values are set to 25% by
default throughout this paper unless noted otherwise. Modify-
ing coefficients is user-dependent. The distance measure is the
key that drives the algorithm and produces a suggestive and
simplified depiction of the vector field on surfaces. See the
combined clustering result in Figure 6 (lower, left) and also
the final visualization (lower, right). The larger glyphs indicate
areas of more uniform flow. The same saddle point and vortex
visualized in the lower-right of Figure 6 is consistent with
previous work [27]. The cluster geometry is stored as a list
of pixels and their edges. The center of a cluster is simply
the average position of each pixel center. If the user would
like more control over the shape of the clusters in order to
avoid U-shaped clusters for example, then cd in equation
(6) may be increased. The effect of increasing cd is shown
in Figure 6. Users interested in regions of similar velocity
magnitude increase cv. Users interested in seeing features
such as sources, sinks, and saddle points increase cα . Users
who would like more detail in areas of high mesh resolution
increase cm.

3.5.2 Generating the Cluster Hierarchy
Our algorithm is an agglomerative, average-linking clustering
process. As the basic component of the cluster hierarchy each
cluster is stored as a node containing r, v, α , m, ε . Given a
cluster, ψA(r,v,α,m,ε), the bottom-up, hierarchical algorithm
is conceptually a search process. ψA tests its neighbors looking
for a merge candidate. Neighbors share a common cluster
edge. The candidate with the minimum clustering distance,
|ψA−ψB|, is chosen and a new parent cluster ψAB is formed.
Initially, the smallest clusters are the individual pixels of
the attribute image with zero error. The clustering and tree
generating process starts in the top-left corner and seeds in
rasterized fashion. This process is repeated for each cluster
until only one root cluster remains.

Although this method is easy to apply, the computational
cost becomes a problem since each cluster ψB which can be
merged with a given cluster ψA needs to be tested using the
distance measure. In order to accelerate the hierarchical pro-
cess, we introduce another structure to speed up the candidate
cluster searching process. This structure consists of a lookup
table ψLUT and a neighbor list ψ l for each cluster. The lookup
table accelerates the search process essentially by a trade-
off between storage space and processing time. Instead of
performing a traversal of the entire hierarchy for neighbors, the
location of child nodes and parent nodes is stored and updated
after each search process. ψLUT is the same resolution as the
leaf clusters and stores the address of each leaf cluster’s top-
most parent cluster. ψ l stores the address of each adjacent leaf
cluster. With this additional information, the candidate cluster
ψB which may be grouped with the current cluster ψA to form
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a new cluster can be located quickly. We illustrate the process
using the example in Figure 7.

In order to represent initial leaf clusters of the vector field
in image space, a rectilinear grid, the resolution of which
is defined by the user, is placed in image space. Cluster
attributes are then retrieved at each grid cell using the decoding
procedure described in Section 3.4. Each leaf cluster contains
a neighbor list ψ l and is added onto a central cluster list L(ψ)
which stores nodes for the bottom-up hierarchical clustering
process. The clustering process starts from the head of the list
L(ψ).

Our clustering algorithm begins by traversing ψ l
A for the

given cluster ψA. For example in Figure 7, the given cluster
A searches its adjacent clusters ψ l

A. The ψLUT stores top-
most parent clusters for these adjacent leaf clusters and also
indicates the leaf clusters which have the same top-most parent
cluster in the neighbor list. A refined neighbor list which
contains only the unique cluster candidates can be obtained
for cluster A.

εεε is computed for each candidate cluster. The cluster re-
sulting in the smallest error is chosen. In Figure 7, D is the
candidate selected.

Once a candidate in ψ l
A is selected, a new cluster, G, can be

formed by grouping A and D. Meanwhile, ψLUT
G is updated.

The new cluster is stored in the form of a parent node whose
two child nodes are A and D. G is added to L(ψ) to be
processed. When L(ψ) contains only one node, the bottom-up
hierarchical clustering is completed.

3.5.3 Edge and Discontinuity Detection
During the clustering process, cluster ψB chosen to be grouped
with ψA is found by applying the distance measure to ψ l

A.
However, a complication can arise with this approach due
to discontinuities and sharp edges on the surface. If we do
not take discontinuity in the geometry into account then we
may end up grouping clusters that do not belong together.
To address this problem, we compare ψ

depth
A with ψ

depth
B . If

εdepth < |ψdepth
A −ψ

depth
B | then ψB is not grouped with ψA. This

approach separates the image into local regions with bound-
aries. In practice, we have found a value of εdepth ≈ 0.3% to
be a good threshold.

3.6 Image Overlay
An image overlay is used for the resulting visualization of
the clustering on surfaces by applying color, shading, or any
attribute mapped to color. In the implementation, we generate
the image overlay following the construction of the attribute
image once for each static scene. Once the view-point is
changed, the image overlay is regenerated. By exploiting the
glDrawPixels() function from OpengGL, rendering an image
is much faster than rendering the complex 3D triangulated
object each time a user parameter is changed.

3.7 General Attribute-based Clustering
Our clustering method can be extended to incorporate any
general attribute of CFD simulations in the distance measure.
Not only can the properties of the vector field and the

Fig. 8. The result of the clustering driven by an error measure
(εεε = 12%) which uses the depth as a distance measure con-
stituent. Notice how the overall density is much higher towards
the rear.

resolution of the underlying mesh be coupled into a unified
distance measure, but also any other CFD simulation attribute
can also be used to drive the clustering process such as
temperature, pressure, kinetic energy and derived data such as
gradients. By encoding these values into the attribute image
using the method in Section 3.3 and building up the hierarchy
following the scheme in Section 3.5.1, we can obtain arbitrary
attribute-based clusters for different user needs. Figure 8
demonstrates the effect of using ψdepth. For demonstration,
we have simply substituted mesh resolution, m, with another
attribute, ψdepth = ψ

depth
A + ψ

depth
B in equation (6). In this

example, regions further away from this viewer (higher depth
value) are denser in the visualization.

3.8 Visualization Options
Using the binary tree, clusters can be traversed in a depth first
search fashion driven by a user-defined error value. In this
searching process, the (deepest) clusters where ψε ≤ εεε are
rendered for visualization. Several user options are available
for the visualization of the selected clusters.

3.8.1 Color Coding and Mean Vector Glyphs
A selection of colors can be blended to depict different
clusters. This is shown in Figures 6, 1 (middle-left), 8, and 15.

Visualization using vector glyphs is one of the most straight-
forward methods to visualize the flow field. In our algorithm,
a mean 3D vector glyph is placed at the center of each cluster.
Glyph size may be mapped to the size of the corresponding
cluster while the color can be mapped to the mean velocity
magnitude. See Figure 8 and 13. The user may zoom in to
areas with dense glyphs for more detail. This is one way to
resolve occlusion. Other ways include mapping color to mean
velocity magnitude or using streamlets.

3.8.2 Streamlets
Cluster-center-based streamlet seeding is another visualization
option. This automatically traces a 3D streamlet tube from
each cluster center until it hits the cluster boundary. The
streamlet curves are traced according to the original vector
field. In Figures 1 (right) and 15, a cluster-based stream-
let technique (bottom) gives insightful imagery by applying
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Fig. 9. |v|-range glyphs: (Top) a close-up look at a |v|-
range glyph whose inner radius represents the minimum velocity
magnitude while outer is mapped to the maximum. (Bottom) the
result image with |v|-range glyphs applied to depict the variation
in magnitude within each cluster .The result of the clustering
driven by an error measure (εεε = 15%). Glyph color is mapped to
velocity magnitude.

streamlet depiction in the more important areas while yielding
a sparse depiction in areas of less importance. Arrow heads
can be added to the streamlets to indicate the downstream
direction of the flow. Using arrow heads in the visualization
can introduce occlusion. To eliminate this the user can disable
the arrow heads leaving only streamlet curves. Color coding
cluster according to velocity magnitude is also occlusion free.
This is one way to resolve occlusion. Other ways include
mapping color to mean velocity magnitude or using streamlets.

3.8.3 |v|-Range Glyphs

Automatically providing more detail in areas of high vector
field variance and mesh resolution is deemed helpful to
engineers. |v|-range glyphs are used to visualize the variation
in vector field magnitude within each cluster. We use a ring-
like glyph as in Figure 9 (top) where |vmin| is mapped to the
inner ring and |vmax| is mapped to the outer ring. The |v|-range
glyphs are placed at the center of each cluster. Regions with
relatively large variation in |v| become obvious. Range glyphs
(as opposed to deviation glyphs) have the advantage that they
include outliers in the visualization.

3.8.4 θ -Range Glyphs:

θ -range glyphs depict the variance in vector field direction
within each cluster. A semi-transparent cone-like glyph, as in
Figure 10, whose radius represents the maximum range of
θ from θ to θmax is used. Clusters with a large variance in
direction are shown with this type of visualization.

Fig. 10. (Top) the θ -range glyph whose radius represents the
maximum range of vector field direction is illustrated. The result
image with θ -range glyphs is shown in (Bottom). The result of
the clustering is driven by an error measure (εεε = 18%). Glyph
color is mapped to the velocity magnitude.

3.8.5 Hybrid Visualizations
Various visualization options can be combined to provide
more details simultaneously, like θ -range glyphs with |v|-
range glyphs, glyphs with θ -range glyphs, θ -range glyphs with
streamlet tubes (Figure 11).

3.8.6 Multiple, Coordinated Views
In order to provide more details of the vector samples within
each cluster, a histogram visualization is incorporated in an
information visualization window to depict the vector magni-
tude distribution of each cluster. The user can interactively
click on a cluster in the scientific visualization window,
then the histogram will automatically display the magnitude
distribution of its leaf clusters in the information visualization
window. An example is shown in Figure 12.

3.9 Image vs. Object Space Clustering and Accu-
racy
Before discussing accuracy, it is important to note that this
is an error-driven visualization method. The user chooses
the maximum level of error εεε represented in the individual
clusters and the binary-tree data structure is then traversed. The
largest clusters, ψ , where ψε ≤ εεε are rendered. In addition,
error in any visualization can stem from factors such as
discrete numerical simulation, discrete data sampling, linear
interpolation, and numerical integration schemes. For a more
detailed discussion of accuracy in vector field visualization,
see Chen et al. [25].
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Fig. 11. (Top) the combination of |v|-range glyphs and stream-
let tubes is applied to provide both detailed (the range glyph) and
summary (the streamlet) information of the vector field direction.
(Bottom) the detail of the magnitude distribution within each
cluster can be obtained by using the |v|-range glyph while the
mean glyph is applied to provide the information of the mean
magnitude and direction each cluster.

However, we can compare the accuracy of our approach
which uses a hardware accelerated attribute image with that of
a pure CPU object-space approach. This comparison is done
based on synthetic flow data sets. In some of our synthetic
data sets, we have doubled the resolution of the domain in
the top-left quadrant in order to vary the mesh resolution. See
Figures 17 and 18. The leaf clusters of object-based clustering
algorithm are based on the highest-resolution, object space
data samples while the image-based method retrieves each
leaf node cluster from the attribute image data structure. Apart
from this, they use the same clustering scheme. In Figures 17
and 18, we can observe the image-based clustering method
(Figures 17 and 18, right) produces the same simplified
presentation of vector fields as an object-spaced approach
(Figures 17 and 18, left). One advantage of the object space
approach is that the clustering can be performed once for the

Fig. 12. The detail of the magnitude distribution within the focus
cluster (in dark green) in the scientific visualization window(top)
is simultaneously visualized by a histogram in a sub-window
(bottom). For example, the fifth bar in the histogram indicates
that there are 5174 leaf clusters, 48.42% of the total leaf clusters
of the focus cluster, whose velocity magnitude is ranging from
40% to 50% of the maximum velocity magnitude.

whole geometry. However, this also produces clusters from
hidden surfaces which are occluded or outside the view-point.
Also the object space result is in general slower and more
memory intensive than the image space approach. Although
the object-based clustering algorithm is very accurate, the
high computational cost of the distance checking and neighbor
finding slows down the clustering process especially if the
algorithm is applied to large, unstructured data sets from CFD.
Whereas our image-based approach depicts the flow just as
well as the object-based method. This makes the image-based
clustering algorithm very suitable for visualization purposes.
We observe that if an engineer is interested in exact velocity
values, they simply click on the mesh at the point of interest
to retrieve it as in Figure 12 (rather than using clustering).

4 PERFORMANCE AND RESULTS

As our vector field clustering algorithm targets large, unstruc-
tured, adaptive resolution boundary meshes from CFD, we
tested our algorithm on a range of simulation datasets with
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these characteristics. Color is mapped to velocity magnitude
in our examples.

Figure 14 shows a comparison of the hedgehog flow visu-
alization and our mesh-driven clustering method applied to a
surface of an intake port mesh composed of 221k unstructured,
adaptive resolution polygons. As we can see from the left,
most glyphs overlap or are occluded. Using the hedgehog
approach 221k glyphs are rendered while our method renders
only about one hundred glyphs. Most importantly, the distri-
bution of glyphs in the hedgehog visualization is completely
driven by the underlying mesh without considering the flow
field itself resulting in severe artifacts. Using texture-based or
topological methods to visualize the flow does not depict the
downstream direction of the flow. Moreover, texture properties
are of uniform resolution. However, our method combines
the properties of the underlying vector field and mesh into a
unified clustering distance measure which drives the clustering
process, and then places glyphs or traces streamlines based
on the cluster centers in a simplified and insightful fashion.
This enables engineers to get a fast and clear overview of the
flow on the surface. The characteristics of the swirl motion
depicted here are consistent with previous results [3]. See Fig-
ure 14 (right). Despite the high level of geometric complexity
(Figure 2), our clustering method can also efficiently visualize
the vector field on a complex cooling jacket boundary mesh
(Figure 15). Because of the processing efficiency this cluster-
ing method allows users to translate, rotate and zoom in the
object interactively to get better insight of the CFD data sets.
We encourage the reader to view the supplementary video for
more results. Figure 13 illustrates the effect of zooming (top)
and rotation (bottom). The image-space approach produces
consistent results when the user zooms in on a portion of the
geometry or rotates the geometry. Zooming and rotation are
also demonstrated in the supplementary video.

We can apply clustering to stream surfaces for the first
time. In Figure 1, the left most image shows the complexity
of the underlying stream surface mesh with jagged edges.
The next image shows resulting vector field clusters on the
stream surface. The remaining two images compare hedgehog
visualization with our clustering method applied to the stream
surface.

In order to report the time taken to build up the vector
field hierarchy, we test our clustering method on a PC with
an Nvidia Geforce 8600GT graphics card, a 2.66 GHz dual-
processor and 4 GB of RAM. The timings in Table 1 were

Data Set Total number of clusters
131071 32767 8191 2047

Ring (10k) 10.07s 1.06s 0.085s 10.17ms
Combustion Chamber (79k) 10.06s 1.07s 0.087s 10.06ms

Intake Port (221k) 10.13s 1.07s 0.088s 10.65ms
Cooling Jacket (228k) 10.20s 1.09s 0.09s 10.96ms

TABLE 1
Cluster hierarchy generation timing figures for total cluster

quantities. An image resolution of 5122 is used with about 75%
image space area covered. The total numbers of clusters

include the leaf and parent node clusters.

Fig. 14. A comparison of the hedgehog flow visualization
(left) and our vector field clustering visualization with normalized
glyph representation with εεε = 25% (upper-right) and streamlet
with εεε = 35% (bottom-right) applied to flow fields at the surface of
a intake port mesh - a composite of 221k unstructured, adaptive-
resolution polygons. Color is mapped to velocity magnitude.

obtained from a 5122 resolution image with 75% coverage.
From Table 1, the performance time reveals that the algorithm
depends mostly on the total number of clusters including
parent node clusters rather than the number of polygons in
the original surface mesh. Furthermore, Table 1 indicates that
the smaller the size of the initial cluster, the lower the perfor-
mance, (although the more accurate the result). For interaction,
users then can choose fewer initial cluster quantities for faster
speed. Our algorithm supports interactive frame rates for up
to 25000 leaf clusters. The user can increase the number of
clusters for higher accuracy.

We observe that the performance of our algorithm compares
closely to the performance times of previous vector field clus-
tering algorithms where reported [6], [7], [14] that operate on
uniform rectilinear grids. Furthermore, the method presented
here handles a much larger number of clusters (one-two orders
of magnitude) more than previous algorithms. We have tested
our algorithm on data sets with over one-half million clusters
without problems.

The clustering could be performed in object space with gen-
erally slower performance with a pre-processing step. However
as a pre-processing step, object-space methods do not allow in-
teractive changes to visualization parameters. User parameters
can be explored and then be saved by experts. Those settings
can then be loaded by non-experts. For non-expert users, we
have default values for the components of the error measure:
cd = cv = cα = cm = 25%, these values are based on our
experience of testing real-world engine simulation datasets.
Plus, rendering large numbers of occluded glyphs in object
space becomes a burden on performance. Object-space flow
visualization methods have not demonstrated themselves to be
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Fig. 13. Glyph visualization applied to depict vector field clusters on the top surface of the diesel engine during zooming in and
rotation. This set of images illustrate that the clustering method produces consistent results when the user zooms in on a portion
of the geometry (top) or rotates the geometry (bottom). Color is mapped to velocity magnitude.

a viable option for this kind of (unstructured, adaptive resolu-
tion) mesh data. Stalling [28], Forssell and Cohen [29] have
all tried to parameterize the surface for visualization. However
not all surfaces are easily parameterized, e.g. the cooling
jacket (Figure 2) or isosurfaces. Secondly, parameterization
introduces a distortion by the mapping between parameter
and physical space. Stalling [28] and Carr and Hart [30]
have tried packing the surface triangles into texture space.
However, these algorithms are only developed for uniform
resolution meshes composed of isosceles triangles. Plus, much
computation time is spent on hidden polygons or polygons
smaller than one pixel. Spencer et al. [31] have tried flow
visualization using evenly-spaced streamlines in both image
and object space. However, the object space version runs 3-4
orders of magnitude slower than the image space version of
the same algorithm.

We have implemented the vector field clustering method of
Telea and Van Wijk [6] and compared it with ours. Figure 16
shows the result. Note that both methods produce similar
results with the exception of the region with a high-resolution
mesh. Our method generates smaller clusters in that region.

There are some cases where a projection to image space
could cause performance to slow down. For example, in a
case where the average polygon covers several pixels, very
few polygons fall outside the view frustum, and there are no
occluded portions of the surface. Our image space approach
could be slower than an object space approach. However, in
the majority of cases, the image-space approach accelerates
performance.

5 DOMAIN EXPERT REVIEW

The use of glyphs in the visualization of directional quantities,
for example velocity or magnetic fields, would at first seem ob-
vious. The ability to display direction, magnitude and usually
other information in a single entity has an apparent advantage
over any other approaches. Glyphs require a number of pixels
to convey the multitude of information associated with them.
When a model consists of millions of solution points, which
are often concentrated in areas of interest, it is often nearly
impossible to understand the information in a plot using
glyphs. Overlap of the glyphs, the ability to associate a glyph
with its position and the ability to identify features associated
with the slower speeds all lead to problems. One solution to
these problems is to plot a subset of the glyphs. This approach
certainly offers a possibility to display less information and
so the detail of the plot can be seen. The question associated
with this approach is how does one coarsen the data without
compromising the information being conveyed? Any approach
will lose information and understanding what has been lost
is important in understanding whether the coarsened plot is
representative of the data. Any experimental measurement or
computational prediction has an error bar which can at best
be estimated. Coarsened data has an equivalent error, relative
to the original data, but this is known and can be visualized
and analyzed.

Whilst it is obvious that clustering based on the data
will minimize the coarsening error, the more conventional
approaches are based on physical separation of coarsened data
points or grouping similar number of elements. It is interesting
to see the clusters when each of the techniques is used in
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Fig. 16. The visualization of object vs. image flow from synthetic flow data sets. (top,left) The image illustrates the multi-
resolution mesh of synthetic data. (top,right) Hedgehog flow visualization. (bottom,left) The clusters generated using the object-
based clustering algorithm of Telea and Van Wijk [6]. (bottom,right) The results from our image-based clustering algorithm.

isolation on a mesh. The concave clusters associated with
magnitude clustering and the elongated clusters associated
with direction are not ideal but these measures should con-
tribute to increase the representative nature of the coarsened
data. Distance based clustering reduces the problems with
overlapping glyphs but this needs to be moderated through
mesh based clustering to ensure detail in fine mesh regions,
usually associated with rapidly changing results and often
areas of interest. Whilst it is difficult to see how each of these
influences can be combined to produce the “best” plot it is
clear that none on their own provide a perfect option.

As has been stated above the clustering of data loses
information. As an analyst it is as important to know what
information has been lost as what has been retained. The θ

and |v|-range plots presented in section 3.8 of the paper display
this information. These are not plots that would normally be
used to display the results but they are vital to understand how
representative the clustered data is of the simulation results.
If an analyst is to make a design decision based on clustered
data they need to be aware of the uncertainty contained in
that data. The θ and |v|-range plots prove a simple graphical
representation of that uncertainty.

6 CONCLUSION AND FUTURE WORK
In this paper we propose a novel, automatic mesh-driven vector
field clustering algorithm which couples the properties of the

vector field and resolution of underlying mesh into a unified
distance measure for producing intuitive and suggestive images
of vector fields on large, unstructured, adaptive resolution
boundary meshes from CFD. We have shown that our algo-
rithm clusters vector fields effectively by applying the distance
measure with user-defined weighting coefficients, independent
of geometric and topological complexity of the underlying
adaptive resolution mesh. The cluster hierarchy is generated
automatically according to the importance of the underlying
mesh and the properties of the vector fields for emphasizing
vector fields in important regions. No computation time is
wasted on occluded polygons or polygons covering less than
one pixel. We have shown that our framework is general
enough to incorporate any data attribute into the clustering
distance measure. New visualization inspired by statistics such
as the |v|-magnitude and θ -range glyphs have been introduced.
Additionally, our algorithm supports user interaction such
as zooming, translating and rotation. The accuracy of the
visualization is compared to a pure object-based approach.
No parameterization of the surface is required. We have also
demonstrated the robustness of the technique and the ability
of the algorithm to handle real-world, complex CFD data sets.
Clustering can be applied to stream surfaces for the first time.

As future work we would like to explore the possibility of
transferring more of the computation to the GPU. Future work
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Fig. 15. Various visualization options applied to depict vector
field clusters on the cooling jacket surface - a composite of
228k unstructured, adaptive-resolution polygons: (top) the glyph
visualization illustrating an overview of the flow field on the
surface using εεε = 25%, (middle) the glyph visualization and
(bottom) the cluster-based streamlet visualization providing a
close-up view on the area deemed interesting with εεε = 38% and
εεε = 35%.

also includes the investigation of different measures for the
derivation of mesh resolution. We would also like to extend

Fig. 17. The visualization of image vs. object based clustering
from synthetic flow data sets. (left) Images shows the clusters
generated using a full-precision, object-based clustering algo-
rithm. (right) The results from our novel, image-based clustering
algorithm. Planes are at right angles to one another.

the work to visualization of unsteady, 3D flow. However,
challenges stem from both the resampling performance time
and perceptual issues. We would also like to introduce a glyph
to represent the standard deviation of each cluster, namely:

σv(|v0| · · · |vn−1|) =
1

n−1

n−1

∑
j=0

(|v j|− |v|)2 (7)

where n is the number of vector samples in the cluster. Glyph
placement for U-shaped clusters is also an area of future work.
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