
Output-Coherent Image-Space LIC for Surface Flow Visualization
Jin Huang† Wenjie Pei† Chunfeng Wen† Guoning Chen‡ Wei Chen†∗ Hujun Bao†

†State Key Lab of CAD&CG, Zhejiang University ‡ The University of Utah

ABSTRACT

Image-space line integral convolution (LIC) is a popular approach
for visualizing surface vector fields due to its simplicity and high
efficiency. To avoid inconsistencies or color blur during the user
interactions in the image-space approach, some methods use sur-
face parameterization or 3D volume texture for the effect of smooth
transition, which often require expensive computational or memory
cost. Furthermore, those methods cannot achieve consistent LIC
results in both granularity and color distribution on different scales.

This paper introduces a novel image-space LIC for surface flows
that preserves the texture coherence during user interactions. To
make the noise textures under different viewpoints coherent, we
propose a simple texture mapping technique that is local, robust
and effective. Meanwhile, our approach pre-computes a sequence
of mipmap noise textures in a coarse-to-fine manner, leading to con-
sistent transition when the model is zoomed. Prior to perform LIC
in the image space, the mipmap noise textures are mapped onto
each triangle with randomly assigned texture coordinates. Then, a
standard image-space LIC based on the projected vector fields is
performed to generate the flow texture. The proposed approach is
simple and very suitable for GPU acceleration. Our implementa-
tion demonstrates consistent and highly efficient LIC visualization
on a variety of datasets.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and Curve Generation; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture

1 INTRODUCTION

Visualizing vector fields is of paramount importance in many ap-
plications like engineering design, computational fluid dynamics,
and climate research. Many approaches for vector field visualiza-
tion have been studied, among which Line Integral Convolution
(LIC) [2] is a popular one. Reasons for that include its superior ca-
pability of space-filling, and its high efficiency when implemented
on modern graphics hardware. More importantly, LIC can be ap-
plied to surfaces to study the vector fields in 3D space. This paper
concentrates on the LIC visualization of surface vector fields.

Roughly speaking, existing texture-based visualization ap-
proaches for surface vector fields can be classified into two cat-
egories: parameterization-dependent methods and image-space
methods. The first category generates the LIC textures in a para-
metric space, which can cover the whole surface and naturally pre-
serve the texture continuity over the surface even under user in-
teractions. However, this either requires a surface parameteriza-
tion as a priori [5] or an expensive precomputation of the necessary
surface parameterization [14]. Furthermore, surface parameteriza-
tion is greatly affected by the quality of the surface mesh, spacial
distortion of the texture may arise. An additional surface patch-
ing process is typically required to overcome this issue [14]. This

∗Corresponding Author:chenwei@cad.zju.edu.cn

is challenging for large-scale surfaces with complex geometry and
topology. Alternatively, an image-space approach generates LIC
image for only the visible portion of the surface given a view point.
Specifically, it projects the vector fields and surface geometry into
the viewing screen, and then applies texture advection [26, 12] or
2D LIC in the image space [15]. This provides higher performance
than the parameterization-dependent approaches, and it is easy to
implement with the aid of the model graphics hardware. However,
this scheme may suffer from artifacts of inconsistency (Figure 1)
when the viewer is rotating or zooming the model. In other words,
the LIC result is not consistent among consecutive frames during
user interactions when the noise texture is generated independently
on the image space for each frame, or say, the noise texture on the
surface is changing. To address this issue, Weiskopf and Ertl [27]
integrate some aspects of object-space methods to achieve the effect
of smooth transition during user interactions, and keep the granu-
larity consistent. However, the method requires a 3D solid texture
which is memory costly, and cannot get consistent color distribu-
tion on different scales (see the comparison in Figure 2 concerning
the inconsistency).

In this paper, we present a novel image-space technique for the
visualization of surface vector fields which takes into account the
texture inconsistency during user interactions. Our approach takes
a similar pipeline as the conventional image-space surface LIC vi-
sualization, while modifies it with a simple texture mapping tech-
nique and an additional pre-process stage. Concerning the first one,
we propose to fix the texture coordinates of each vertex with a sim-
ple triangle-texture matching technique, making the noise textures
under different viewpoints coherent, while the conventional image-
space approach cannot warrant this through mapping the whole
model to the texture space. This scheme is feasible because con-
voluting a white noise with a vector field yields a result that is not
sensitive to the texture coordinates. In this way, no surface param-
eterization is required, and the underlying surface model can be
arbitrarily complex and large.

Even with a consistent noise texture, however, the result can still
exhibit popping artifacts caused by the texture aliasing. Meanwhile,
the LIC streamlines may greatly vary with the zooming operations,
which makes the result unclear or flickering. Our solution is to pre-
compute a customized noise texture pyramid that simultaneously
characterizes the consistency and variance of the noise texture, and
choose an appropriate mipmap level on-the-fly. This scheme en-
sures consistent LIC results because all noise textures have similar
appearances and differ only in the granularity.

We additionally design several enhancement techniques to allow
for easy controls on effects like the contrast, the density and the
length of streamlines. These techniques are compatible with stan-
dard image-space surface LIC algorithm, and can be seamlessly in-
corporated into the GPU implementation.

In summary, this paper presents an efficient surface LIC visual-
ization approach with the following contributions:

1. A parameterization-free image-space surface LIC generation
scheme that works for arbitrarily complex (manifold or non-
manifold) and large mesh models with O(N2) memory com-
plexity (assuming the image is of size N by N);

2. A novel mipmap-based noise texture generation technique

(a) (b)

��* ��*

Figure 1: Two consecutive frames during the zooming in operation. Randomly generating the noise in the image space [15] causes popping
of color as shown in (a), especially around singularities. Our method generates consistent streamline rendering result (b). Please see the
accompany video for a better illustration.

that leads to output coherent, which not only leads to smooth
transition of LIC streamlines during interaction, but also con-
sistency in different scales; To further improve the consistency
around the silhouette, i.e., the surface boundary, we extended
the streamlines to the back face of the surface, which is dif-
ferent to the conventional image-space approach which uses
only the visible portion of the surface.

3. A suite of LIC visualization enhancement techniques that is
suitable for GPU implementation.

The remainder of this paper is organized as follows. We first
review related work in Section 2 and then present our approach in
Section 3. Next, we show the results in Section 4. Finally, we
summarize this paper and highlight the future work in Section 5.

Figure 2: The image on the right column shows the region in the
red rectangle on the left image by moving the camera closer to the
surface. Our method utilizes a set of correlated noise textures in a
mipmap texture pyramid, and makes the results share similar color
distribution in different scales (upper row). Using uncorrelated multi-
resolution noise textures (lower row) cannot achieve such consis-
tency.

2 RELATED WORK

Reviewing all work on vector field visualization is beyond the scope
of this paper. We will cover the most relevant work here (LIC-based
methods) and refer readers to [8, 11] for a comprehensive survey.

The first texture-based vector field visualization method [24] dis-
tributes a large number of spots on the spatial domain, and gener-
ates an illustrative texture, called noise-based texture. Later, Cabral
and Leedom [2] proposed to locally smooth an input noise texture
by convoluting the texture with a filter kernel derived from the vec-
tor fields. The so-called LIC technique, leads to a high correlation
along streamlines, and generates a dense texture representation for
vector fields. Simply speaking, both the noise-based and the LIC
based schemes employ a space-filling scheme, and are amenable
for parallelization.

Subsequently, the LIC-based vector field visualization approach
has been improved in various aspects [16], [6], [21], and been ex-
tended to surface [5], unsteady [22], and 3D flows [4], respectively.
The efficiency of LIC is also improved by a fast LIC approach [23],
of which the speed acceleration is gained from the minimization of
the total number of streamlines.

In particular, Forssell and Cohen [5] first applied the LIC-based
visualization approaches to parametric surfaces by transforming the
vector fields into the parameter space, and generating LIC in this
parameter space. In the last step, the LIC result is mapped back to
the surface. The main problem of this scheme lies in that it is often
difficult to get a global parameterization with low distortion, which
is almost impossible for non-manifold or even curved (i.e. non-flat)
surface models. Alternatively, the technique proposed by Battke et
al. [1] tessellates a surface with triangles and packs triangles into
texture memory. A local LIC texture is computed for each triangle
based on its local Euclidean coordinates, avoiding the global pa-
rameterization. Its main drawback is that triangle packing demands
the model to have a good mesh quality. It should be noticed that
our approach basically takes a local parameterization means. The
difference from the parameterization-dependent methods [14] lies
in that our approach does not fulfill the LIC in the parameteriza-
tion domain, and thus removes the requirement of low distortion
parameterization.

The image based flow visualization approach (IBFV) [25] is re-
garded as the fastest algorithm for texture-based visualization of 2D
unsteady vector fields. Based on this technique, two dense texture-
based methods are proposed for visualizing unsteady vector fields
on surfaces: IBFVS (Image Based Flow Visualization for Curved
Surfaces) [26] and ISA (Image-Space Advection) [12]. Both ap-
proaches mentioned in [13] compute the LIC in the image space
by leveraging a projection-and-advection pipeline. In this way, no
parameterization of surfaces is needed, and the entire procedure can
be accelerated using modern graphics hardware. Later, Li et al. [15]
applied this image-space scheme to conventional LIC and achieved
high-performance vector field visualization. Recently, Zhang et al.
[28] presents an interactive visualization technique for planar and
surface tensor fields. More recently, Palacios and Zhang [17] ad-
vances the image-space LIC visualization approaches to allow for
interactive visualization of rotational symmetry fields both in the
plane and on surfaces. Image based method has great advantages
on efficiency, but suffers from inconsistencies or color blur during
the user interaction because the noise texture is generated indepen-
dently in each frame and has inadequate resolution. Weiskopf and
Ertl [27] proposed an excellent method to address these issues: em-
bedding the surface in an object-space 3D solid noise texture leads
to consistent LIC result, and blending multiple noise textures in
different resolutions makes the granularity consistent. Our method
surpasses theirs in less memory requirement and the ability of sim-
ilar color distribution in different scales, i.e. better consistency.

3 OUR APPROACH

The goal of our work is to enable consistent visualization of vector
fields on surfaces, that is, the LIC results share similar color distri-
bution and granularity whenever the surface is rotated, translated or
scaled. Throughout this paper, we describe our algorithm in terms
of a triangular surface model, while it is easy to make it amenable
for other surface representations.

Our approach can be separated into two stages: preprocessing
and visualization. The pipeline (Algorithm 1) is highlighted in Fig-
ure 3. In the preprocessing stage, we generate a consistent noise
texture pyramid and compute the texture coordinates for each tri-
angle, which is the focus of our work to address the inconsistence
issue (Section 3.2). The visualization part follows the image-space
LIC pipeline, and also is improved to enhance the quality (Section
3.3). In the step of vector field projection, we use a similar scheme
to ISA [12]: for each triangle mesh vertex p with vector v, a vertex
shader is used to calculate the image-space coordinates of p and
p+ v as p′ and (p+ v)′ respectively (the details of transforming
object-space coordinates to image-space coordinates can be found
in the appendix), then evaluate the projected image-space vector by
normalizing the vector (p+ v)′− p′. Given the image-space vector
field defined on each triangle mesh vertex, the vector on each pixel
can be interpolated in the downstream pixel shaders.

The surface and the vector

field in color (R,G,B)

The noise texture pyramid

3D-2D projection
Texture mapping

Projected 2D vector field

 in color (R,G)
2D noise texture

Consistent LIC

Figure 3: The pipeline of our approach.

3.1 Mapping Noise Texture to the Mesh
In previous image-space surface LIC approaches, the inconsistency
appears because the noise texture in the image space is generated
independently frame by frame. Our solution for that is to attach the

Input : A triangle mesh with vector field on it
Output: Interactive visualization result

preprocessing stage:
Generate a consistent noise texture pyramid.
Map the texture to the mesh.

visualization stage:
foreach frame do

Project the vector field and noise texture to the image
space.
Perform the LIC in the image space.

end
Algorithm 1: Pseudo code of the pipeline.

model with a consistent noise texture by means of a simple texture
mapping process:

1. Generate a random white noise 2D texture map. The size of
the texture is determined by the projected size of triangles in
the image space. If it is too small, the noise texture will wrap
and influence the white noise property. We use a 256× 256
texture image in all the results.

2. Generate texture coordinates for each triangle by randomly
projecting it into the texture space with the same scale.

in the model in the texture space

This process can be re-
garded as a simple local
(per triangle) parameteriza-
tion, and has no require-
ment on the continuity and
distortion of the parameter-
ization. Satisfying results
are yielded because the tex-
ture image contains only white noise. The texture coordinates
of each triangle remains the same during interaction as well as
the noise textures. This means that each triangle will always
map to the same portion of the texture every frame, regardless
of the camera and the vector field, thus guaranteeing the con-
sistent output , which is different from ISA and IBFVS and
leads to consistent noise map on the surface.

3. Perform texture mapping with the given texture coordinates
and generate texture noise in the image space.

The described technique leads to consistent noise in the image
space when the viewpoint is changed. Because no global parame-
terization is required, it is naturally suitable for complex (manifold
or non-manifold) and large-sized models. It should be noticed that
our method requires only 2D texture image, and thus poses less re-
quirement to memory O(N2) than [27], which uses 3D solid texture
(O(N3)).

3.2 Generating Consistent Noise Texture Pyramid
Even though the noise is consistent, the LIC result will still present
popping artifacts caused by the texture aliasing, especially when
the model is zoomed in (please see the accompanying video). In
addition, the streamlines will become thicker (Figure 4 (b)) than
desired (Figure 4 (c)) when the model is zoomed in.

3.2.1 Automatic mipmap generation
A straightforward solution would be using the mipmap technique
(the automatic-generated texture pyramid) which is provided in
standard graphics libraries like OpenGL. The texture pyramid is
composed of a sequence of noise textures, of which the nth ∈
[nmin,nmax] image has the resolution of 2n× 2n. In this way, the

(a)

(b)

(c)

Figure 4: (a) A LIC result for the Moai model. When the model is
zoomed in, the result (b) with the noise texture used in (a) presents
color blur, while the result (c) with a noise texture selected from the
pre-computed texture pyramid presents pleasing effect.

popping artifacts can be alleviated during the zooming operation,
and the resolution of streamlines is appropriate as long as the zoom-
ing factor dose not exceed the finest level in the pyramid. However,
this scheme may fail because the contrast of the LIC streamlines de-
creases greatly when the model is zoomed out. This problem also
exists where the projected surface part is largely sheared, yielding
over-blurred results (see Figures 5 and 6).

Let us briefly analyze the process of automatic mipmap genera-
tion. Both the random colors ([17]) and gray-level noise ([27]) can
be used to generate the LIC result. Our approach employs the ran-
dom colors. When computing the image in the (n−1)th level from
the nth level, the value of each RGB channel In−1(x,y) ∈ [0,1] at
(x,y) in the (n− 1)th level is derived from the corresponding four
pixels in the nth level:

In−1(x,y) =

∑
∆x,∆y∈{0,1}

In(2x+∆x,2y+∆y)

4
(1)

According to Equation 1, the variance of the (n− 1)th level is
smaller than that of the nth level. As a result, the (n− 1)th level
is blurrier than the nth level (see the first row of Figures 5 and 6).
This explains the reason of the blurred effect when the model is
zoomed out, that is, the continuous diminution of the variance of
higher level texture.

3.2.2 Customized noise texture pyramid

To address the aforementioned problem, two requirements should
be met: the maps of the adjacent levels have adequate correlation to
make the result consistent and avoid popping, and meanwhile, the
variance of the map at each level is stable to avoid blurred effect.

For the first goal, the noise texture pyramid should be generated
from coarse to fine instead of a fine-to-coarse process which used
in standard mipmap generation techniques. Such a coarse-to-fine
strategy is also used to generate stroke-based texture in [18] for
preserving the stroke resolution in different scale. Beginning from
the coarsest map at the resolution of 1×1, a finer map can be suc-

Figure 5: From left to right, the image shows a small portion of the
texture image in the pyramid in the order of resolution gradually de-
creasing. The first row shows automatic-generated noise mipmap.
As resolution decreases, the maps become blurred. The second row
shows the customized maps without the scaling operation in Equa-
tion 2. It can be seen that the noise maps have color blocks. The
maps in the last row are generated using our algorithm (Equation 3).

cessively generated by means of the following rule:

In+1(2x+∆x,2y+∆y) = In(x,y)+σ(2γ∆x,∆y−1), ∆x,∆y ∈ {0,1}
(2)

where γ∆x,∆y is a random number uniformly distributed between
[0,1], and σ ∈ R is an adjustable number to tune the variance.

Applying Equation 2 can produce a consistent texture pyramid.
However, the value will be out of [0,1] when In(x,y) is close to 0
or 1. Clamping it into [0,1] yields obvious color blocks as shown
in the second row of Figures 5 and 6. These artifacts are actually
caused by inappropriate local variances.

Thus, a better solution would take both the correlation and vari-
ance into account, which is essentially an optimization problem.
We design a simple and efficient scheme: In(x,y) is linearly mapped
from [0,1] into [η ,1−η],η ∈ [0,0.5], and then we add four random
numbers ξ∆x,∆y to generate In+1(2x+∆x,2y+∆y) in the (n+ 1)th

level. This can be expressed as:

In+1(2x+∆x,2y+∆y) =

((1−2η)In(x,y)+η)+ξ∆x,∆y := I′n(x,y)+ξ∆x,∆y
(3)

To ensure In+1(2x + ∆x,2y + ∆y) ∈ [0,1], ξ∆x,∆y should be in
[−I′n(x,y),1− I′n(x,y)]. The difference between the mean of four
values In+1(2x+∆x,2y+∆y) and In(x,y) is η(1− 2In(x,y))+α ,
where α stands for the mean of the four random numbers ξ∆x,∆y.
Letting α = η(2In(x,y)− 1) will increase the correlation, but will
decrease the variance especially when In(x,y) is close to 0 or 1.
Thus we choose to generate four random numbers with the zero ex-
pectation. Thus, we use the following equation to compute the re-
quired random numbers in the range of [−I′n(x,y),1− I′n(x,y)] with
zero expectation:

ξ∆x,∆y = power
(

γ∆x,∆y,
1− I′n(x,y)

I′n(x,y)

)
− I′n(x,y) (4)

Finally it turns out that the values of the four pixels in level n+ 1
are:

In+1(2x+∆x,2y+∆y) = power
(

γ∆x,∆y,
1− I′n(x,y)

I′n(x,y)

)
(5)

��* ��* ��* ��* ��* ��* ��* ��*

Figure 7: The sequence of the mipmap texture images (from 16×16 to 2048×2048). The arrows point to the relatively dark regions.

Figure 6: From left to right, the model is zoomed out. The first
row shows the results at different resolutions with the automatic-
generated mipmap. The results become blurred when the model is
zoomed out (from left to right). The second row shows the results
by employing Equation 2, where big color blocks appear when the
model is zoomed in (from right to left). The last row presents the best
quality with Equation 3.

In other words, four random numbers in the range [0,1] with expec-
tation I′n(x,y).

Note that η should be small to ensure high correlation. Whereas,
a small η will yield small variance, i.e., blurred or low contrast
result. Experimental results (e.g., Figures 5, 6 and 7) indicate that
0.25 is a good choice.

3.3 Enhanced LIC Visualization
We design several enhancement techniques to allow for easy con-
trols on visualization effects such as the resolution, the contrast, and
the length of streamlines.

Streamline resolution By modulating the parameter of
GL TEXTURE LOD BIAS, the noise density used for LIC is
changed, and consequently is the resolution of streamlines. Figure
8 shows such an example.

Streamline contrast Palacios and Zhang [17] proposed a con-
trast correction scheme to eliminate the contrast loss introduced by
image blending. It works by enlarging the image variance and fix-
ing the mean. We employ this scheme to enhance the contrast, and
additionally modulate the saturation to adjust the contrast. Figure 9
demonstrates our results.

Streamline length Concerning the LIC, the streamline length is
adjustable and influences the results, as shown in Figure 10. There
are two ways to measure the streamline length. If the streamline
length is measured in the image space, the length scales well with

(a) (b)

Figure 8: Results with different resolutions. The triangles are
mapped onto the noise texture with a higher resolution noise tex-
ture in the pyramid for (a), and thus the streamlines are thinner than
those in (b).

(a) (b)

Figure 9: Result comparison on the elephant model without (a) and
with streamline contrast enhancement (b). This modulation leads to
a balance between the details and contrast.

the model zooming. Although a degree of almost invisible inconsis-
tency may appear, a scale-dependent LIC is achieved. On the other
side, measuring the length in the object space increases the consis-
tency, but loses the property of adaptive granularity. In practice,
the user can choose the appropriate way for different purposes, e.g.
varying the streamline length according to the vector magnitude.

3.4 Special Care on the surface silhouette
For image-space surface LIC approaches, special care must be
taken on the object-space geometric discontinuities around the sur-
face boundaries, i.e., the silhouette in the image space. The reason
is that the integration of a streamline in the image space stops at
the silhouette while in the object space its counterpart will continue
onto the back face of the surface.

The silhouette is composed of points that meet the following con-
dition [12]:

|zi+1− zi|> ε|pi+1− pi| (6)

where ε is an adjustable threshold. pi+1 and pi are two consecutive
points along the integral path in the image space, and zi+1 and zi

(a) (b)

Figure 10: The streamline length on the fertility model used in (b) is
longer than that of (a).

are their depth values in the object space.
To compensate the missed parts of the streamlines along the sil-

houette, a conventional solution [15] generates a random value for
each pixel in the detected silhouette. This may lead to popping ar-
tifacts near the silhouette between two consecutive frames.

It is desired that both the streamline length and the value in
the silhouette should be made consistent. We propose a two-stage
scheme to drive the integration of the streamlines onto the back
face of the model. First, the front and back faces of the underlying
surface are extracted by rendering the surface twice, i.e., with the
back-face culling and front-face culling operations respectively. In
this process, the projected vector field and the noise texture in the
image space that correspond to both faces are generated. Second,
the conventional LIC is performed in the image space for the front
face part. When the integration of certain streamline meets the sil-
houette, its value is computed by considering the back-face parts of
the vector field and the noise texture.

4 RESULTS

The primary outcome of our approach is that it achieves compara-
ble quality as the flow charts approach [14] and interactive perfor-
mance, yet with a simple and efficient means. The results shown
in the figures and video demonstration verify the efficiency and ro-
bustness of our approach. The vector fields on Moai, bunny, Bud-
dha, fish and CAD model are generated according to some vector
field design methods like [28, 3]. The others are from real world
simulations, like the cooling jacket data [9] which is from Robert
S. Laramee at Swansea University.

Figure 11: Result for a complex CAD model. To locate and check the
singularities on the model, consistent LIC visualization is very helpful
for such tasks.

Figure 13: Visualization of a vector field on the boundary geometry
of a cooling jacket.

Another benefit of our approach is that it is completely
parameterization-free, and works for arbitrary mesh models. Fig-
ure 11 shows a challenging CAD models. The model is composed
of many triangular patches, and is not a manifold model. In addi-
tion, a low-distortion global parameterization is intractable even if
the patches are merged into a single manifold mesh. Conventional
parameter space LIC approaches can hardly handle this model,
while our approach can achieve satisfying results. Thanks to the
consistent LIC visualization, the user can easily locate and view
several interesting singularities. Without the requirement of param-
eterization, our method can also easily handle large dataset with
complex surface topology. In Figure 13, we visualize the flow from
a cooling jacket simulation. The model has over 227K faces and
many holes, yielding big troubles for the parameter space method,
even for the method [14] with multi-chart parameterization.

Figures 4 and 6 compare our approach with the ones without the
proposed special care. It is apparent that our approach outperforms
these configurations with negligible computational cost.

We demonstrate various enhancement effects in Figures 8, 9
and 10. In fact, these enhancements are fully controllable, and
can be incorporated together without sacrificing the interactivity of

(a) (b)

��* ��*

��* ��*

Figure 12: Two consecutive frames during rotation of the bunny model. Our result in (b) is more consistent than that of [15] shown in (a). Please
see the accompany video for a better illustration.

the vector field visualization (see the accompany video). This veri-
fies the advantages of the image-space surface LIC over the object-
space surface LIC schemes.

Our method can be easily integrated into other LIC algorithm.
As a demonstration, we apply the noise map scheme into the LIC
method [17] to visualize rotational symmetry field [7, 19, 20], and
show the result in Figure 14.

(a) (b)

Figure 14: Our method is simple enough to easily integrate with
other LIC technique. (a) shows the result of applying our method
to visualize rotational symmetry field [17]. Compared with (b) which
uses a set of uncorrelated images in the texture pyramid, our method
achieves better color consistency in different scales.
4.1 Performance
Compared with conventional image-space LIC approaches, our ap-
proach requires additional cost for computing a noise texture pyra-
mid. Fortunately, it can be pre-computed and reused for all models.
Another difference lies in the way of computing the texture coordi-
nates of each triangle, which is randomly and quickly determined
in our approach. In the visualization stage, our approach projects
the underlying vector field and the noise texture to the image space
twice to handle the silhouette. This is still fast because every oper-
ation can be implemented in GPU.

Table 1 lists the performance measured on the bunny model with
12K faces for the image resolutions of 500×500 and 1000×1000
respectively. Our current implementation is not fully optimized
compared with the same GPU implementation in [17], which can
render the LIC result in less than 20 ms at the image resolution of
512×512. Although our approach needs to process the vector field
twice (for the front face and the back face of the model), for the
cooling jacket model with over 227K triangle faces at the resolu-
tion of 1000×1000 (Figure 13) it still achieves the frame rate of 5
fps.

5 CONCLUSIONS AND FUTURE WORKS

This paper proposes a novel image-space surface LIC technique to
achieve consistent and smooth LIC results. Coherent visualization

500×500 1000×1000
vector projection 31 31

LIC without back face 62 78
LIC with back face 108 127
adjusting of contrast 15 30

Table 1: Performance measurement for the bunny model in two dif-
ferent resolutions (the time unit is milliseconds).

Figure 15: Result for a complicated Buddha model. The complex
wrinkles still cause some popping although our silhouette treatment
has dramatically reduced such artifacts.

is achieved when the model is rotated or zoomed by leveraging a
consistent 2D noise texture pyramid, which can be pre-computed
with the computational and memory complexity of O(N2) and used
for arbitrary data. Our method not only provide smooth transition
during the user manipulation, but also leads to similar color distri-
bution in different scales. Besides several enhancement techniques
to allow for easy controls on visualization effects, we continue the
streamlines crossing the silhouette to the back face which alleviates
the popping artifacts efficiently. These techniques are easy to be
incorporated into the GPU implementation. The integrated toolkit
compares favorably with existing solutions in terms of performance
and quality, and enables the user to interactively study the vector
fields on a surface in any resolution.

Because our method shares some similarities to [27] in using
object-space texture coordinates and hierarchical texture image, it
is possible that our method can also be extended to visualize the
unsteady flow as shown in [27]. Thus, for the future work, it is
natural to apply the present technique to unsteady flows and to

combine with the visualization of integral surfaces (e.g. stream-
surfaces [10]).

Our approach can provide consistent LIC visualizations for most
models. However, some complicated models (e.g., the model
shown in Figure 15) have many small wrinkles, which lead to pop-
ping artifacts when the model is rotated. The technique presented
in Section 3.4 for handling the silhouette effectively alleviates the
popping artifacts along the silhouette. Yet, it can only handle the
cases where a streamline passes the silhouette once. For a very
complicated surface, a depth peeling is needed to extract more than
two layers (the front and back faces) to achieve the same effect as
the object-space surface LIC approaches. In addition, the popping
artifacts may still exist because the numerical error near the silhou-
ette can be large. We plan to explore more sophisticated solution to
handle the silhouette issue when the model under certain view has
multiple depth layers.

Although 10 level mipmap in our implementation is already ad-
equate for most cases, the fixed level of pyramid restricts the range
of zoom-in and zoom-out: the result gets popping for very far view
point and gets rough when view point is very close to the surface. It
is interesting to explore new method to construct the texture image
on-the-fly according to the current scale without rapidly increasing
the memory consuming.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their valu-
able comments. This research was partially supported by NSFC
(No. 61170139 and No. 60873123), China 973 Program (No.
2009CB320801) and ZJKJGY (2011C21058). Guoning Chen was
partially supported by DOE VACET.

REFERENCES

[1] H. Battke, D. Stalling, and H. Hege. Fast line integral convolution for
arbitrary surfaces. In Visualization and Mathematics, pages 181–195,
1997.

[2] B. Cabral and L. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of ACM SIGGRAPH, pages 263–272,
1993.

[3] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang.
Vector field editing and periodic orbit extraction using Morse decom-
position. IEEE Transactions on Visualization and Computer Graphics,
13(4):769–785, July 2007.

[4] M. Falk and D. Weiskopf. Output-sensitive 3D line integral convo-
lution. IEEE Transactions on Visualization and Computer Graphics,
14(4):820–834, July 2008.

[5] L. Forssell. Visualizing flow over curvilinear grid surfaces using line
integral convolution. In Proceedings of IEEE Visualization, pages
240–247, 1994.

[6] L. K. Forssell and S. D. Cohen. Using line integral convolution for
flow visualization: Curvilinear grids, variable-speed animation, and
unsteady flows. IEEE Transactions on Visualization and Computer
Graphics, 1(2):133–141, 1995.

[7] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. In Pro-
ceedings of the 27th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’00, pages 517–526, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[8] D. H. Laidlaw, R. M. Kirby, C. D. Jackson, J. S. Davidson, T. S. Miller,
M. da. Silva, W. H. Warren, and M. J. Tarr. Comparing 2D vector field
visualization methods: A user study. IEEE Transactions on Visualiza-
tion and Computer Graphics, 11(1):59–70, 2005.

[9] R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and
H. Hagen. Visual analysis and exploration of fluid flow in a cooling
jacket. In In Proceedings IEEE Visualization 2005, pages 623–630,
2005.

[10] R. S. Laramee, C. Garth, J. Schneider, and H. Hauser. Texture advec-
tion on stream surfaces: A novel hybrid visualization applied to CFD
simulation results in data visualization. In Proceedings of the Joint

EUROGRAPHICS - IEEE VGTC Symposium on Visualization (Euro-
Vis 2006), pages 155–162, Lisbon, Portugal, May 2006.

[11] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf. The state of the art in flow visualization: Dense and
texture-based techniques. Computer Graphics Forum, pages 203–221,
2004.

[12] R. S. Laramee, J. Schneider, and H. Hauser. Image space based visu-
alization of unsteady flow on surfaces. In Proceedings of IEEE Visu-
alization, pages 131–138, 2003.

[13] R. S. Laramee, J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS:
Image space-based visualization of flow on surfaces. IEEE Transac-
tions on Visualization and Computer Graphics, 10(6):637–648, 2004.

[14] G.-S. Li, X. Tricoche, D. Weiskopf, and C. D. Hansen. Flow charts:
Visualization of vector fields on arbitrary surfaces. IEEE Transactions
on Visualization and Computer Graphics, 14(5):1067–1080, 2008.

[15] W. C. Li, B. Vallet, N. Ray, and B. Levy. Representing higher-order
singularities in vector fields on piecewise linear surfaces. IEEE Tran-
sections on Visualization and Computer Graphics, pages 1315–1322,
2006.

[16] A. Okada and D. Lane. Enhanced line integral convolution with flow
feature detection. In In SPIE Vol. 3017 Visual Data Exploration and
Analysis IV, pages 206–217, San Jose, California, January 1997.

[17] J. Palacios and E. Zhang. Interactive visualization of rotational sym-
metry fields on surfaces. IEEE Transections on Visualization and
Computer Graphics, 17(7):947–955, July 2011.

[18] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching.
In Proceedings of the 28th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’01, pages 581–586, New
York, NY, USA, 2001. ACM.

[19] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic global
parameterization. ACM Trans. Graph., 25(4):1460–1485, October
2006.

[20] N. Ray, B. Vallet, W. C. Li, and B. Lévy. N-symmetry direction field
design. ACM Trans. Graph., 27(2):10:1–10:13, May 2008.

[21] H.-W. Shen, C. R. Johnson, and K.-L. Ma. Visualizing vector fields
using line integral convolution and dye advection. In Proceedings
of the IEEE Symposium on Volume Visualization 1996, pages 63–70,
October 1996.

[22] H.-W. Shen and D. L. Kao. A new line integral convolution algorithm
for visualizing time-varying flow fields. IEEE Transactions on Visu-
alization and Computer Graphics, 4(2):98–108, April 1998.

[23] D. Stalling and H. Hege. Fast and resolution independent line integral
convolution. In Proceedings of ACM SIGGRAPH, pages 249–256,
1995.

[24] J. J. van Wijk. Spot noise-texture synthesis for data visualization.
Computer Graphics (Proceedings of ACM SIGGRAPH91), 25:309–
318, 1991.

[25] J. J. van Wijk. Image based flow visualization. ACM Trans. Graphics,
21(3):745–754, 2002.

[26] J. J. van Wijk. Image based flow visualization for curved surfaces. In
Proceedings of IEEE Visualization, pages 123–130, 2003.

[27] D. Weiskopf and T. Ertl. A hybrid physical/device-space approach
for spatio-temporally coherent interactive texture advection on curved
surfaces. In Proceedings of Graphics Interface 2004, GI ’04,
pages 263–270. Canadian Human-Computer Communications Soci-
ety, 2004.

[28] E. Zhang, J. Hays, and G. Turk. Interactive tensor field design and
visualization on surfaces. IEEE Transactions on Visualization and
Computer Graphics, 13(1):94–107, January 2007.

APPENDIX

Given the OpenGL’s ModelView matrix Mmv and Project matrix
Mp j, we compute the image-space coordinates p̄ of a point p in the
object space according to the standard OpenGL specification:

p̄ =
M(1 : 2,1 : 3)p+M(1 : 2,4)

M(4,1 : 3)p+M(4,4)

where M = Mp jMmv and the above notation for sub-matrix follows
the grammar of Matlab script.

