
Ray Tracing with Multi-Core/Shared
Memory Systems

Abe Stephens

Real-time Interactive Massive Model Visualization Tutorial

EuroGraphics 2006. Vienna Austria.
Monday September 4, 2006

http://www.sci.utah.edu/~abe/massive06/

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Overview

• Reasons for ray tracing massive models.
• Examine Multi-Core/Processor today.

• Types of parallelism to look for.
• Considerations for ray tracing.

• Describe Manta general purpose interactive ray
tracing architecture.

• Miscellaneous Issues.
• Simple parallel practices to adopt.
• Remote/Collaborative Visualization.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Massive Model Ray Tracing
Basic ray tracing shading and

intersection technique
shared with serial renderers.

No precomputed visibility
allows for transparent
rendering, hiding or culling
geometry on the fly.

Largest datasets still well in-
core on moderate sized
machines.

Parallel systems available on
the desktop!
Tanker dataset courtesy Northrup Grumman Newport News Ship Building.
Boeing 777 dataset courtesy The Boeing Company.
All images rendered in Manta Interactive Ray Tracer

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Ray Tracing in a nutshell

Find closest intersection to
image along a ray.• Rasterization uses projection

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Ray Tracing in a nutshell

• Easy to change visibility.
• Easy shading effects.

For example: Transparency

1. Find closest intersection
2. Invoke material shader on

hit point.
• Send shadow rays.
• Send secondary rays.
• Repeat.

3. Return sample color.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Example Transparency

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Transparency is easy in a ray tracer!

One option:
• Find closest intersection.
• Shoot secondary ray.
• Find next intersection.
• Repeat.
• Blend shaded samples.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Transparency

• Find the first n intersection points.
• Sort and blend samples.
• (n depends on alpha)
Sorting is necessary since triangles won’t be intersected in order.

(Each kdtree leaf contains several triangles.)

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Other techniques?

Along the ray transparency is only one
example.

Other shading effects are possible with
secondary rays, for example ambient
occlusion.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Ambient Occlusion

Ambient Occlusion increases contrast
In areas of fine detail.

Lambertian w/ Shadows

Ambient Occlusion

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Why multi-core systems?

Large amount of
processors and memory.

The same system used for
scientific computing and
visualization.

Becoming smaller and cost
less.

Faster multi-core clusters
require fewer nodes. 16 core Opteron system. (top)

16 processor SGI Itanium
(half rack).

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Different types of parallelism
Per thread: Instruction Level Parallelism.
• Many instructions from one thread. (SWP)
• SIMD x2 or x4 or ???
Multiple threads per core.
• Hyper threading. Simultaneous issue.
• Multiple threads. Switch at stall.
Multiple cores per processor.
• Shared cache.
Multiple processors per board.
• Shared main memory.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Multi-Processor Systems Today

Clusters
• Independent operating systems.
• Separate hardware.
• (possibly) Less expensive.
• Explicit message passing/custom protocols

Single System Image
• Operating system manages all processors.
• Explicit or automatic control possible.
• Shared memory used for communication.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Single System Image.

Multi-Processor External Interconnect.
• e.g. SGI: ccNuma
• Many rack mounted devices, one OS.
Multi-Processor Board-to-Board Interconnect.
• e.g. AMD Hyper-Transport.
• Other devices connect to HT network.
Dense Multi-Core
• 1 or 2 processors with many cores each.
• Multiple threads per core.
• Possible future direction.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Example multi-processor systems for ray tracing.

SGI Prism /
Itanium2

AMD
HyperTransport
/ Opteron

CPU
SHUB

CPU

Memory

CPU
SHUB

CPU

Memory

Computation Brick

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Example multi-processor systems for ray tracing.

Dense Multi-Core
AMD

HyperTransport
/ Opteron

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

How will it scale with traditional MP
workloads?

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Cutting Planes

Hiding Objects

Users employed cutting planes and
object hiding to locate a certain region
of the model, then adjusted opacity to
examine fine details and occluded
structures.

What can we implement for Massive Model vis?

Massive Model Vis:
• Cutting Planes
• Hiding Objects
• Transparency

All with hundreds of
millions of triangles.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Application Scenario

Quality Engineers
use ray tracer to
visualize
problems with
aircraft assembly.

A. Stephens, S. Boulos, J. Bigler, I. Wald, and S. G. Parker An Application of Scalable
Massive Model Interaction using Shared Memory Systems Proceedings of the
Eurographics Symposium on Parallel Graphics and Visualization, 2006

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Manta Interactive Ray Tracer

• Platform for implementing different ray
tracer applications.

• Take advantage of modern multi-core
processors.
• Multi-threads.
• Single thread performance derived from

specific instruction stream optimizations.
- SIMD, special cases, etc.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Design Philosophy

• Obtain thread scalability:
• Parallel Pipeline, communication

constraints, state update w/ transactions.
• Facilities for good single thread performance:

• SIMD data layout.
• Wide ray packets, w/ properties.
• Lazy evaluation & special case code.

• Build acceleration structures & shaders on
top of these two goals.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

More than just triangles.

Modular Design
• Allows Manta to be embedded in other
programs.

• Supports multiple primitives:
• Massive triangle models.
• Massive volumes.
• Sphere glyph (MPM) rendering.

• Python front-end

Open Source
Highly Portable

Material Point Method Dataset

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Pipeline and Rendering Stack
1. Modular components vary by application.
2. Synchronized multi-thread pipeline
3. Asynchronous single thread rendering stack.
4. Scene intersection on top of stack.

Thread 0

Thread n

.
 .

 .

Image Traverser

Pixel Sampler

Renderer

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline
Manta Pipeline
• Modular and extensible components.
• Transaction state changes applied each stage.
• Barrier synchronization between stages.

Thread 0

Thread n

.
 .

 .

Ray Tracing

Image Display

Frame Setup

Transactions

Pi
pe

lin
e

B
ar

rie
r

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• Display frame i-1
• Thread 0 calls opengl.
• All others return immediately.

Display of previous frame.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• While thread 0 is displaying frame i-1:
• All other threads start rendering frame i.

• Thread 0 joins as soon as it finishes image display.

ray tracing

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• Load balance responsible for even work distribution
• All threads synchronize at barrier.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• Display frame I
• Repeat!

Tasks scheduled by category:
• Inherently balanced.
• Imbalanced.
• Actively load balanced.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Manta Pipeline Implementation

1. One thread per core
(if non-hyper
threaded).

2. Stages in pipeline
differentiated by sub-
functions.

3. Stages ordered by
load balance
characteristics.

4. One pipeline barrier.
5. Additional

synchronization for
transactions.

void Pipeline::inner_loop(int frame,
 int proc, int numProcs) {
 // Global synchronization.
 pipeline_barrier.waitFor(numProcs);

 // Inherently load balanced.
 parallel_animation_callbacks();

 // Imbalanced.
 if (proc == display_proc)
 image_display->
 displayImage(buffer[frame-1]);

 // Dynamically balanced.
 image_traverser->
 render_image(buffer[frame], proc);
}

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Implementing Transactions
Transactions permit manta to invoke a method in a

foreign object to change some state at a “safe”
time.

For example, using python:
def OnAutoView(self, event): # Called by python thread on GUI event.
 # Add the transaction. Unsafe to actually change or access renderer state!
 self.engine.addTransaction("auto view",
 manta_new(createMantaTransaction(self.MantaAutoView,())))

def MantaAutoView(self): # Called by Manta thread.

 # Find the bounding box of the scene.
 bounds = BBox();
 self.engine.getScene().getObject().computeBounds(PreprocessContext(), bounds);

 # Invoke the autoview method.
 channel = 0
 self.engine.getCamera(channel).autoview(bounds)

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Wide Ray Packets

Contain:
• Ray origin, direction and hit info.
• Packet properties for special case, lazy,

etc.
• Data layout for SIMD w/ vertical and

horizontal accessors.
Packets are containers for data used to:
• Perform intersection.
• Store & access info about intersection.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Manta Scaling

128 p 1.6 Ghz Itanium2
• 92% linear at 64p 82% at 126p
• Resolution 1024x768

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Need for Remote/Collaborative Rendering

Cost of a system usually justified by
multiple users.

Collaborative visualization allows many
users to interact with a large dataset,
either locally or remotely.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Load Balancing

Coarse Load Balancing.
• Choose a strategy for assigning tiles to

threads.
• Implement it as efficient as possible (hw

intrinsics)

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Load Balancing

Fine-grained Task Assignment
• Share read data, avoid common write data.
• Complications: Lazy evaluation policies,

Multi-thread/core scheduling.
• How does ray coherence effect each level

of parallelism for read/write?

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Acceleration Structure Build

Parallel KD-Tree build.
• Strategies for offline full SAH build

- Multi-thread sorting and merging.
- Evaluate split candidates in parallel.
- Build sub-trees in parallel.

Reduced 777 build time from one day to
several hours.

Recent approaches vary heuristic &
parallelization with tree depth.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Ray Tracing Practices

Eliminate high-level bottlenecks
• Synchronous display.

• Causes other threads to block!
• Easy solution: Pipeline display.

• Shared read/write data structures in high
performance code.
• Lazy acceleration update.
• Adaptive sampling structure.
• Producer/Consumer queues.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Ray Tracing Practices

Shared read/write data structures.
• Update during own pipeline stage.
• Per-thread copy of structure.
• Several threads share copy in

neighborhood.
• Choice depends on application.

• Unsafe practice is not an option.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Bottom Line

To achieve scalable multi-thread
performance:
• Use a parallel pipeline with limited

synchronization points. (transactions)
• Use asynchronous display.

Optimize for single processor performance.
• Use packet properties for instruction

optimization.
Use at least naïve sub-tree parallel kdtree

build.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Questions?

This work is supported by:
U.S. Department of Energy through the Center for the Simulation of Accidental Fires and

Explosions, under grant W-7405-ENG-48
Utah Center of Excellence for Interactive Ray-Tracing and Photo Realistic Visualization.
National Science Foundation.

Additional support through internships:
Silicon Graphics Inc.
Intel Corporation

Additional resources:
http://www.sci.utah.edu/~abe/

A. Stephens, S. Boulos, J. Bigler, I. Wald, and S. G. Parker An Application of Scalable Massive Model
Interaction using Shared Memory Systems Proceedings of the Eurographics Symposium on Parallel
Graphics and Visualization, 2006

J. Bigler, A. Stephens, S. G. Parker. Design for Parallel Interactive Ray Tracing Systems. Scientific
Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2006-027. (submitted)

