
Lawrence Livermore National Laboratory

Level-of-Detail Techniques and
Cache-Coherent Layouts

Sung-Eui Yoon
Lawrence Livermore National Laboratory

Note: this talk is not supported or sanctioned
by DoE, UC, LLNL, CASC

2

Collaborators

• Prof. Dinesh Manocha
♦ Primary investigator

• Russ Gayle
• Christian Lauterbach
• Brandon Lloyd
• Brian Salomon

3

Goal

• Efficient algorithms for:
♦ Interactive visualization (rasterization and

ray tracing)
♦ Collision detection
♦ Other geometric applications

4

Interactive Visualization

• Walkthrough
♦ large man-made structures

• Investigate scientific simulation data

5

Collision Detection

• Main component of:
♦ Dynamic simulation
♦ Navigation and path planning
♦ Haptic rendering
♦ Virtual prototyping

6

Challenges

• Complex and massive models
♦ Ever-increasing model complexity

St. Matthew,
372M (10GB)

Isosurface (472M)
from a turbulence

simulation
Power plant,

12M
Double eagle
tanker, 82M

Puget sound,
400M+

7

Issues and Our approaches

• Huge amount of data
♦ Take tens of giga-bytes in disk and memory

• Data access time
♦ Major bottleneck

• Orthogonal approaches
♦ Levels-of-detail (LODs) techniques
♦ Cache-coherent layouts

8

Orthogonal Approaches

• LOD approaches

• Cache-coherent layouts

Use simplification
given an error

Reduce the amount of necessary data!

9

Orthogonal Approaches

• LOD approaches
• Cache-coherent layouts

CPU or
GPU DiskCaches Memory

Minimize cache misses

Reduce expensive I/O accesses!

10

Orthogonal Approaches

• LOD approaches
♦ Dynamic simplification for rasterization
♦ Static LODs for ray tracing

• Cache-coherent layouts
♦ Cache-efficient layouts of meshes and graphs
♦ Cache-efficient layouts of BVHs

11

Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion

12

Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion

13

View-Dependent Rendering

• [Clark 76, Funkhouser and Sequin 93]

• Static levels-of-detail (LODs)
• Dynamic (or view-dependent)

simplification

Viewer
Object

Lower
resolution

14

Static LODs

50,00050,000 facesfaces10,000 faces10,000 faces2,000 faces2,000 faces

poppop poppop

Courtesy of [Hoppe 97]

15 Courtesy of [Hoppe 97]

Dynamic Simplification

• Provides smooth and varying LODs over
the mesh [Hoppe 97]

1st person’s view 3rd person’s view

16

Dynamic Simplification: Issues

• Representation
♦ High CPU usages

• Runtime computation and rendering
♦ Low cache-utilization

• Construction
♦ Out-of-core computations

17

Toward Scale-able Dynamic
Simplification Method
• View-dependent rendering [Yoon et al. Vis

04]
♦ New multi-resolution hierarchy (CHPM)
♦ Out-of-core construction
♦ Applied to collision detection [Yoon et al. SGP

04] and shadow computation [Lloyd et al.
EGSR 06]

• Cache-coherent layouts [Yoon et al. SIG
05]
♦ Higher GPU utilization

18

Live Demo – View-Dependent
Rendering

Pentium 4

GeForce Go
6800 Ultra

1GB RAM

20 Pixels of
error

19

Clustered Hierarchy of Progressive
Meshes (CHPM)
• Novel dynamic simplification

representation
♦ Cluster hierarchy
♦ Progressive meshes

PM1

PM3

PM2

20

Clustered Hierarchy of Progressive
Meshes (CHPM)

• Cluster hierarchy
♦ Clusters are spatially localized regions of

the mesh
♦ Used for visibility computations and out-of-

core rendering

21

Clustered Hierarchy of Progressive
Meshes (CHPM)
• Progressive mesh (PM) [Hoppe 96]

♦ Each cluster contains a PM as an LOD
representation

PM:
Base mesh

Vertex split 0

Vertex split 1

Vertex split n

…
..

Refined mesh

22

Two-Levels of Refinement at
Runtime
• Coarse-grained view-dependent

refinement
♦ Provided by selecting a front in the cluster

hierarchy
♦ Inter-cluster level refinements

Front

23

Two-Levels of Refinement at
Runtime
• Coarse-grained view-dependent

refinement
♦ Provided by selecting a front in the cluster

hierarchy
♦ Inter-cluster level refinements

Cluster-split

24

Two-Levels of Refinement at
Runtime
• Coarse-grained view-dependent

refinement
♦ Provided by selecting a front in the cluster

hierarchy
♦ Inter-cluster level refinements

Cluster-split Cluster-collapse

25

Two-Levels of Refinement at
Runtime
• Fine-grained local refinement

♦ Supported by performing vertex splits in PMs
♦ Intra-cluster refinements

Vertex split 0

Vertex split 1

Vertex split n

…
..

PM

26

Main Properties of CHPM

• Low refinement cost
♦ 1 or 2 order of magnitude lower than a vertex

hierarchy

• Alleviates visual popping artifacts
♦ Provides smooth transition between different

LODs

27

Overview of Building a CHPM

Cluster
decomposition

Input model

Cluster hierarchy
generation

Hierarchical
simplification

CHPM

Performed
out-of-core

28

Overview of Building a CHPM

Cluster
decomposition

Input model

Cluster hierarchy
generation

Hierarchical
simplification

CHPM

29

Overview of Building a CHPM

Cluster
decomposition

Input model

Cluster hierarchy
generation

Hierarchical
simplification

CHPM

30

Overview of Building a CHPM

Cluster
decomposition

Input model

Cluster hierarchy
generation

Hierarchical
simplification

CHPM

31

Boundary Constraints

• Do not simplify boundary triangles
♦ Guarantee crack-free boundaries

• Common problem in many hierarchical
simplification algorithms
♦ [Hoppe 98; Prince 00; Govindaraju et al. 03]

Cluster E Cluster F

Boundary triangles

32

Boundary Constraints

33

Boundary Constraints

Zoomed image

34

Cluster Dependencies

• Replaces preprocessing constraints with
runtime dependencies
♦ Simplify boundary triangles
♦ Consider them at runtime with dependencies

35

Cluster Dependencies

227K triangles 19K triangles
92% triangles

reduced

After creating
cluster

dependencies

36

Runtime Performance

13GB

1GB

Model size

600MB291St.
Matthew

400MB281Power
plant

Mem.
footprint

Frame
rate

Pixels of
errorModel

512x512 image resolution, GeForce 5950FX

37

Applications

• Shadow computations
• Approximate collision detection

38

Interactive View-Dependent Shadow
Generation [Lloyd et al. EGSR 06]

39

Approximate Collision Detection
[Yoon et al. SGP 04]
• Perform approximate query based on a

simplified mesh

Object A Simplified object A

Object B Simplified object B

Exact colliding
regions

Simplified colliding
regions

ε

40

CHPM Representation

• Serve as a dual hierarchy for collision
detection
♦ LOD hierarchy
♦ Bounding volume hierarchy

• Unified representation for:
♦ Rendering and collision detection

• Advantages
♦ Improve the performance
♦ Alleviates simulation discontinuities

41

Benchmark Models – Dynamic
Simulation

Lucy model:
28M triangles

Turbine model:
1.7M triangles

Impulse based rigid
body simulation

[Mirtich and Canny 1995]

42

Live Demo – Rigid Body Simulation

Error bound:
0.1% of width
of Lucy model

Average query time:
18ms

43

Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion

44

Ray Tracing

• Well researched for 25+ years

• Slower than rasterization
• But: asymptotic performance

~ logarithmic
♦ Good choice for massive models?
♦ Observed only in in-core cases

45

Ray Tracing: Performance
• Measured with 2GB main memory

Memory
thrashing!

Render time
(log scale)

Model complexity (M tri) - log scale

Working set
Size 2GB

2GB

46

Incoherent Memory Accesses

• Model with 370M triangles
• Assuming 512x512 resolution

– Hundreds of triangle per pixel
– At most <1% of triangles visible
– Each triangle likely in different

area of memory

Scan of Michelangelo’s St.Matthew:

47

Our approach

• Add levels-of-detail to ray tracing
– LOD: simplified versions of geometry

• Selection according to LOD metric
– Rasterzation: selection per object
– Ray tracing: selection per ray

• Main benefit:
– Reducing working set size
– Improved memory coherence

48

Our approach

• R-LODs [Yoon et al. PG 06]
– Highly integrated with kd-tree [Wald et al. 05]
– Can also be integrated with BVHs

• Simple but fast LOD metric
– Works with shadows, reflections

• Integrates ray and cache coherences

49

R-LOD Representation

• Tightly integrated with kd-nodes
– A plane, material attributes, and surface

deviation
– Computed from PCA

Plane

Normal

kd-node

Valid extent
of the planeIntersection

No
intersection

Rays

50

LOD-based Runtime Traversal

• Modification of efficient kd-tree traversal
– [Wald 04]

• Traverse, evaluate metric at each node
• If satisfies, intersect with plane instead

– if it hits, we’re done
– if not, go back up, try other sub tree

• In any case: don’t need to go deeper!

51

Properties of R-LODs

• Compact and efficient LOD representation
– Add only 4 bytes to (8 bytes) kd-node

• Drastic simplification
– Useful for performance improvement

52

Properties of R-LODs

• Error-controllable LOD rendering
– Error is measured in a screen-space in terms

of pixels-of-error (PoE)
– Provides interactive rendering framework

53

R-LODs with Different PoE
Values

PoE: Original 1.85 5 10

(512x512, no anti-aliasing)

54

Ray Tracing: Performance
• Measured with 2GB main memory

Memory
thrashing!

Render time
(log scale)

Model complexity (M tri) - log scale

Working set
size 2GB2GB

55

Ray Tracing: Performance

Model complexity (M tri) - log scale

Achieved up to three order of magnitude speedup!

Render time
(log scale)

Working set
size

56

Real-time Captured Video – St.
Matthew Model

512 by 512 and 2x2 super-sampling, 4 pixels-of-error

57

Impacts of R-LODs

PoE = 0
(No LOD) PoE = 2.5

of intersected
nodes per ray

Render time

Working set
size

10X speedup

58

Real-time Captured Video – St.
Matthew Model

512 x 512, 2 x 2 anti-aliasing, PoE = 4

59

Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion

60

Motivation

• Lower growth rate of memory access
time

Growth rate
during 1993 - 2004

0
20
40
60
80

100
120
140
160

Disk
access
speed

RAM
access
speed

CPU speed GPU
speed

Courtesy: Anselmo Lastra and
http://www.hcibook.com/e3/online/moores-law/

during 99 - 04

47X
20X2X

120X

61

Block-based I/O Model [Aggarwal
and Vitter 88]

CPU or
GPU

Fast memory
or cache

Slow memory

Block
transfer

Disk

1 secAccess time: 10-4 sec10-6 sec

62

Cache-Coherent Layouts

• Cache-aware layouts
♦ Optimized for particular cache parameters

(e.g., block size)

• Cache-oblivious layouts
♦ Minimize data access time without any

knowledge of cache parameters
♦ Even work with various hardware and memory

hierarchies

63

Our Approaches

• Algorithms to compute cache-aware and
cache-oblivious layouts [Yoon et al., SIG
05, Yoon and Lindstrom, Vis 06]
♦ Cache-aware and cache-oblivious metrics
♦ Multi-level optimization framework
♦ Specialization for bounding volume hierarchies

[Yoon and Dinesh, Euro 06]

64

Realtime Captured Video – Rendering
Throughput of Dynamic Simplification

GeForce
6800

65

Overview

Multilevel optimization
Cache-oblivious metric

Local permutations

va

vb vd
vc

Input graph

va vb vd vc
Result 1D layout

66

Graph-based Representation

• Directed graph, G = (V, E)
♦ Represents access patterns of applications

• Vertex
♦ Data element
♦ (e.g., mesh vertex or mesh triangle)

• Edge
♦ Connects two vertices if they are likely to be

accessed sequentially

va

vb vd

vc

67

Problem Statement

• Vertex layout of G = (V, E)
♦ One-to-one mapping of vertices to indices

in the 1D layout

• Compute a that minimizes the
expected number of cache misses

ϕ

:ϕ |}|, ... ,1{ V→V

→ va vb vd vc
1 2 3 4va

vb vd

vc

68

Cache-Aware Metric, One Cache Block

• Cache misses when a cache holds only
one block

• Layout computation
♦ Minimize the number of straddling edges
♦ Graph partitioning

Block 1 Block 2

Already
accessed data

Straddling edge
(its length = 2)

69

Cache-Aware Metric, Multiple Cache
Blocks

• What if a cache can hold multiple blocks?

• Approximated with cache-aware metric of
a single cache block
♦ Has strong correlation

Block 1 Block 2

Straddling edge
(its length = 2)

Already
accessed data

70

Cache-Oblivious Metrics

• Assuming arithmetic block sizes (e.g., 1,
2, 3, ..)
♦ Mean of edge lengths, Σ|x – y|
♦ Arithmetic mean

• Assuming geometric block sizes (e.g., 1, 2,
4, 8, ..)
♦ Mean of log of edge lengths, Σ log |x – y|
♦ Geometric mean

x and y are indices of two
vertices of an edge in the layout

71

Validation for Cache-Oblivious (CO)
Metrics

• Geometric cache-oblivious metric
♦ Practical and useful

Geometric
CO layout

Arithmetic
CO layout

97% of tested
block sizes

Number of
cache misses

73% of tested
power-of-two block sizes

72

Correlations with Observed Number of
Cache Misses

Cache misses
One blk : Mult blks

Arithmetic
CO metric

Geometric
CO metric

R2 = 0.98 R2 = 0.81

73

Layout Optimization

• Find an optimal layout that minimizes our
metric
♦ Combinatorial optimization problem [Diaz et

al. 2002]

• Employ multi-level construction method
♦ Construct layouts that consider geometrically

increasing blocks sizes
♦ A good heuristic for geometric cache-oblivious

metric

74

Applications

• View-dependent rendering
• Collision detection
• Ray tracing
• Isocontour extraction

75

View-Dependent Rendering

• Layout vertices and triangles of CHPM
♦ Reduce misses in GPU vertex cache

47 M/s

90 M/s

106 M/s

Our layout

22 M/s82MDouble eagle
tanker

20 M/s100MIsosurface

23 M/s372MSt. Matthew

CHPM layout# of Tri.Models

4.5X

2.1X

Peak performance: 145 M tri / s on
GeForce 6800 Ultra

76

Comparison with Optimal Cache Miss
Ratio

0.5

1

1.5

2

2.5

3

8 16 32 64
Vertex cache size

Simulated
cache miss

ratio
(misses

per
triangle) Our layout

CHPM layout

Lower bound of
optimal cache

miss ratio
[Bar-Yehuda and

Gotsman 96]

Test model: Bunny model

77

Comparison with Space Filling Curve on
Power Plant Model

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

8 16 32 64
Vertex cache size

Simulated
cache miss

ratio

Our layout

Space filling curve (Z-curve)
[Sagan 94]

78

Collision Detection and Ray Tracing

• Bounding volume
hierarchies [Yoon and
Manocha Euro 06]
♦ Consider geometric

relationship to capture
runtime access patterns

♦ Achieve 30% ~ 300%
performance improvement Dynamic simulation

79

Isocontour Extraction

• Uses contour tree [van
Kreveld et al. 97]

• Use mesh as the input
graph

• Extract an isocontour
that is orthogonal to z-
axis

Puget sound,
134 M triangles

Isocontour
z(x,y) = 500m

80

Comparison – First
Extraction of Z(x,y) = 500m

0

5

10

15

20

25

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

Relative
Performance

over
Z-axis sorted

layout

Nearly optimized for particular isocontour

2

21

13

1

Disk access time is bottleneck

81

Comparison – Second Extraction of
Z(x,y) = 500m

Relative
Performance

over
Z-axis sorted

layout
2

21

13

0
50

100
150
200
250
300
350
400

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

379

212

10.8

Memory and L1/L2 cache access times are bottleneck

82

Advantages

• General
♦ Applicable to all kinds of polygonal models
♦ Works well for various applications

• Cache-oblivious
♦ Can have benefit for all levels of the

memory hierarchy (e.g. CPU/GPU caches,
memory, and disk)

• No modification of runtime
applications
♦ Only layout computation

Source codes are available
as a library called

OpenCCL

83

Conclusion

• Huge amount (giga-bytes) of data
♦ Limited L1/L2 cache and memory sizes

• Data access time
♦ Major bottleneck

84

Conclusion

• Orthogonal approaches
♦ Levels-of-detail (LOD) techniques
♦ Cache-coherent layouts

• Applications
♦ Visualization and geometric processing

• Achieved interactive performance

Lawrence Livermore National Laboratory

Questions?

86

UCRL-PRES-223537

This work was performed under the auspices
of the U.S. Department of Energy by University
of California Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48.

Lawrence Livermore National Laboratory

Additional slides

88

Main Requirements

• Generality
♦ Handle any kind of polygonal models
♦ (e.g., CAD, scanned, isosurface models)

• Interactivity
♦ Provide at least 10 frames per second

89

Memory Hierarchies

Register

Caches

Main memory

Disk storage

Size

1KB

1MB

1GB

> 1GB

Speed

100 ns

101 ns

102ns

104ns

90

Low Growth Rate of Memory
Bandwidth

0
5

10
15
20
25
30
35
40
45
50

Disk
access
speed

RAM
access
speed

CPU
speed

Growth rate
during 1993 – 2004

Courtesy: http://www.hcibook.com/e3/online/moores-law/

Recent hardware improvements may
not provide an efficient solution to our problem!

47X

20X2X

91

Ongoing and Future Work
●What is an optimal cluster size?

● Performance depends on computed clusters
[Yoon and Manocha EG 06]

●How can we efficiently deal with dynamic
models?
● Require efficient data structure updates and

rebuilding [Lauterbach et al. IEEE RT 06]

92

Summary
●Dynamic simplification representation

(CHPM)
● Low refinement time

●Out-of-core construction method

● Tested with different applications

93

Cluster Dependencies at Runtime

CB

Cluster hierarchy

A D

E F

dependency
Cluster-splitForce

cluster-split

94

Approximate Collision Detection

• Uses dynamic simplification
♦ CHPM representation

• Conservative error metric
♦ Approximate collision results introduces only

epilson distance error

• Two lemmas
♦ Guarantees that our runtime LOD selection

method satisfies the metric

• Employ GPU-based collision detection

95

Image Quality Comparison – Forest
Model (32M Triangles)

PoE = 0 (No LOD) PoE = 4
and cache-oblivious

layout of kd-tree

4 X speedup

Shading
difference

96

Ongoing and Future Work

• Investigate dynamic simplification to
improve visual quality

• Extend to global illumination

97

Acknowledgements

• Model contributors
• Funding agencies

♦ Army Research Office
♦ Defense Advance Research Projects Agency
♦ Ilju foundation
♦ Intel company
♦ Lawrence Livermore National Laboratory
♦ National Science Foundation
♦ Office of Naval Research

98

New Results

• Dynamic simplification method
♦ CHPM representation
♦ Out-of-core construction method
♦ Application to collision detection

• Cache-oblivious layout algorithm
♦ Cache-oblivious metric
♦ Multilevel minimization

99

Future Work on Visualization

• Achieve end-to-end interactivity
♦ Requires no or minimal preprocessing

• Handle time-varying geometry

Just one instance
among 27K time steps

during simulation

100

Future Work on Collision Detection

• Handle dynamically deformable models
(e.g. cloth simulation)
♦ Requires no or minimal preprocessing

• Support penetration depth computations

Obj 1 Obj 2

101

Future Work on Cache-Coherent
Layouts
• Develop cache-aware layouts
• Investigate optimality
• Apply to other applications and other

representations
♦ Shortest path computation, etc.

• Provide multiresolution functionality from
layouts
♦ [Pascucci and Frank 01]

102

Comparison with Hoppe’s Rendering
Sequence

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

8 16 32 64
Vertex cache size

Simulated
cache

miss ratio
(misses

per
triangle)

Our layout

[Hoppe 99]
Optimized for 16 vertex cache size

with FIFO replacement

Optimized for no particular cache size

Test model: Bunny model

103

Limitations

• Monotonicity assumption
♦ May not work well for all applications

• Does not compute global optimum
♦ Greedy solution

104

Conclusion

• LOD techniques and cache-efficient
layouts
♦ Applied them to visualization and

collision detection
♦ Demonstrated with a wide variety of

polygonal models
♦ Achieved interactive performance on

commodity hardware

105

Multilevel Minimization

Step 1:
Coarsening

106

Multilevel Minimization

Step 2:
Ordering of coarsest graph

107

Multilevel Minimization

Step 3:
Refinement and

local optimization

108

Dynamic Simplification: Issues

• Representation
♦ High CPU usages

• Runtime computation and rendering
♦ Low cache-utilization

• Construction
♦ Out-of-core computations

109

Dynamic Simplification: Issues

• Representation
♦ High CPU usages

• Runtime computation and rendering
♦ Low cache-utilization

• Construction
♦ Out-of-core computations

110

Low Computation Speed

• Rendering throughput
♦ GPU capable of 100M+ triangles per sec
♦ Only achieved 20M triangles per sec

• Low cache utilization
♦ Cannot efficiently use triangle strips for

dynamically generated geometry

111

Comparison with Hoppe’s Rendering
Sequence

Test model: Bunny model

Highest resolution

112

Multilevel Construction Method

• Heuristic
♦ Optimize a layout for geometrically increasing

block sizes
♦ Well suited for a multi-level method

…

1. Partition 2. Lay out

113

Goal

• Compute cache-coherent layouts of
polygonal meshes
♦ For visualization and collision detection
♦ Handle any kind of polygonal models (e.g.,

irregular geometry)

114

Rigid Body Simulation

115

Collision Detection Time

2X on average

Depth-first layout

Cache-oblivious layout

116

Runtime Performance

2%

1%

Refinement
time

600MB291St. Matthew

400MB281Power plant

Mem.
footprint

Frame
rate

Pixels of
errorModel

512x512 image resolution, GeForce 5950FX

117

Ray Coherence Techniques

• Assume coherences between rays
♦ Works well with CAD or architectural models

• Highly-tessellated models
♦ Not much coherence between rays

Viewpoint

Image plane
Small

triangles

Rays per each pixel

118

R-LODs with Different PoE Values

PoE: Original 40 80
512x512 image resolution

