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ABSTRACT

Balancing the trade off between the spatial and temporal quality of interactive computer graphics

imagery is one of the fundamental design challenges in the construction of rendering systems.

Inexpensive interactive rendering hardware may deliver a high level of temporal performance if

the level of spatial image quality is sufficiently constrained. In these cases, the spatial fidelity level

is an independent parameter of the system and temporal performance is a dependent variable. The

spatial quality parameter is selected for the system by the designer based on the anticipated graphics

workload. Interactive ray tracing is one example; the algorithm is often selected due to its ability

to deliver a high level of spatial fidelity, and the relatively lower level of temporal performance is

readily accepted.

This dissertation proposes an algorithm to perform fine-grained adjustments to the trade off

between the spatial quality of images produced by an interactive renderer, and the temporal per-

formance or quality of the rendered image sequence. The approach first determines the minimum

amount of sampling work necessary to achieve a certain fidelity level, and then allows the surplus

capacity to be directed towards spatial or temporal fidelity improvement. The algorithm consists of

an efficient parallel spatial and temporal adaptive rendering mechanism and a control optimization

problem which adjusts the sampling rate based on a characterization of the rendered imagery and

constraints on the capacity of the rendering system.



To my family
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CHAPTER 1

INTRODUCTION

The fundamental characteristic distinguishing interactive real-time computer graphics rendering

algorithms from off-line or batch rendering algorithms is the compromise achieved between spatial

fidelity and temporal fidelity. Although the temporal cost of rendering a frame in a non-real-time

system is an important consideration, there is no direct relationship between temporal cost of each

frame and the possible temporal resolution of the imagery. The overall accuracy or combined spatial

and temporal fidelity of rendered imagery is the degree to which the synthetic sequence of images

mimics an actual or imagined visual experience. Fidelity differences may be observed in both the

quality of spatial features in individual images and the temporal resolution, or accuracy of the image

sequence, compared to an actual interaction over time.

In most high performance interactive rendering systems, spatial fidelity is the independent

parameter, while temporal refresh rate, and therefore maximum temporal resolution, is dependent

on the cost of rendering each frame. The overall spatial fidelity for a graphics system is determined

by the set of rendering algorithms, geometric representations, realism of special effects, and display

resolution which comprise the design of the system. Many choices effecting spatial fidelity such

as the visibility algorithm, the realism of the material model, and the available geometric detail of

scenes, are static choices made when the system is designed and cannot adapt to changes in the

rendering workload. In contrast, temporal resolution and temporal fidelity are much more fluid.

The refresh rate of the graphics system is not a fixed quantity. In many graphics applications, the

spatial fidelity of the imagery is engineered to achieve an acceptable level of average temporal

fidelity, e.g. sixty frames per second for real-time applications. At runtime, the actual temporal

refresh fluctuates with the computational cost of achieving the spatial fidelity configuration. If the

graphics workload changes in an unexpected way, or the capability of the graphics rendering engine

is less than expected, it is not possible, in most systems, to reverse the dependent relationship

between spatial and temporal fidelity, i.e. to make temporal fidelity the independent parameter, and

dynamically adjust the spatial fidelity of the image sequence as needed.

Unlike temporal fidelity, in interactive graphics rendering, spatial quality is not simply dictated

by a sample rate, it is usually formulated as the cumulation of a significant rendering engine and
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scene design process. However, if spatial fidelity could be formulated in a more mutable or fluid

manner, the spatial versus temporal fidelity trade off could be leveraged in a variety of circumstances

to increase the overall quality and flexibility of interactive computer graphics. This dissertation

formulates a rendering model for fine grained control of spatial and temporal fidelity based on

the manipulation of spatial and temporal sample rates on the image plane. First, an algorithm is

established to determine efficient spatial and temporal sample rates which vary both spatially across

the image, and over time; then surplus sampling work is identified and leveraged to meet a specific

fidelity strategy for the graphics system. This ability to leverage a fidelity trade off in rendered

imagery is analogous to the trade off made by compression and encoding schemes in other forms of

multimedia.

1.1 Interactive Rendering
The ideal continuous visual signal modeled by the imagery produced by a computer graphics

system, usually a combination of rendering software and hardware, may be expressed as a function

along the two-dimensional image plane and the temporal dimension. The two-dimensional image

plane corresponds to the surface of the display device and the temporal dimension to the actual

duration of the observation. The function I (x, y, t) provides a pixel or image sample color value at

the coordinates x and y on the image place, at time t. The image function is equal to the composition

of functions for the rendering model, geometry, and animation:

I (x, y, t) = R (x, y,G (A(t))) (1.1)

The rendering function R implements image formulation. Algorithms such as ray tracing and

rasterization, combined with surface shading and other effects, are discrete algorithms for evaluating

this continuous function. The third parameter of the rendering function is a time-dependent term

composed of functions G and A, a geometric model and animation of the scene. In terms of a

model like the Kajiya rendering equation [30], the temporally dependent parameter G (A(t)) is the

geometry, or visibility term, and R contains all of the other terms related to illumination. Each

function may consist of a number of additive terms, or image components; e.g. the rendering term

R may consist of image component terms for direct, indirect, and emissive illumination, each of

which may be a function of x, y, and G.

In this ideal continuous model for image formation, all of the components of I provide max-

imum fidelity compared with a natural scene, or an artist’s interpretation. During the design of a
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computer graphics system and during image synthesis, each component of I must be discretized by

a sampling function and eventually reconstructed on the output device at a finite resolution. Dis-

cretezation takes place both implicitly through the selection of an implementation of each function,

i.e. the selection of a ray tracer or rasterizer for R, or a specific geometry level of detail for G; and

explicitly through point sampling and reconstruction functions in x, y, and t.

1.2 Sampling
The rendering process on a computer graphics system requires the selection of specific imple-

mentations for time-dependent animation A, geometry representation G, and rendering R, as well

as a discretization of each over x, y, and t. One conventional set of choices is rasterization using

a z-buffer for visibility, indexed triangle geometry, and animation limited to rigid body transforms.

The set of choices includes how each object in the scene is modeled, the detail level of the animation,

and the specific set of rendering effects used. Each choice alters the level of spatial and temporal

fidelity of the rendered imagery in relation to an actual visual experience.

The discretization of certain components of I such as the animation time stamp and the pixel

discretization of the output image is accomplished by an explicit sampling operation. The sampling

function operates on parameters in a domain outside of space and time, e.g. a sampling function on

the geometry representation Sd · G(x, y, t) might vary the geometry over space and time based

on a discrete level of detail parameter d. Similar discrete fidelity parameters are common for

shadows, texture detail, and lighting complexity where three or four discrete quality settings might

be available for each component.

In addition to high level design decisions that place an upper bound on fidelity, the I must be

discretized in both space and time for display on a computer monitor with a fixed number of pixels

and refresh rate. Discretization for rendering is accomplished by selecting spatial and temporal

sampling functions.

I ′ (x, y, t) = (Sxy · St) (R ◦ G ◦ A(x, y, t)) (1.2)

The sampling function (Sxy · St) may be applied to either side of the rendering expression.

Applied to individual terms on the right side, the sampling function controls the discretization of

individual image components. If the sampling function is applied to the left side of the equation, it

is applied to the aggregation of all components, the final image produced by the renderer. Certain

rendering algorithms such as ray tracing permit this type of sampling, i.e. since the color of each
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primary ray in the image may be determined independently. Not every image component imple-

mentation or rendering algorithm scales in a way that allows postfiltering by a sampling function in

the spatiotemporal coordinates of the image frame, e.g. the discrete resolution of a shadow buffer, a

term on the right side, is not necessarily related to the resolution of the output image.

1.3 Spatial and Temporal Fidelity
In a nonadaptive rendering system, a fixed sampling function, either in terms of spatial sample

positions on the image plane, or in terms of the choice of an algorithm from a design space, is

selected for Sxy; without additional adaptivity or control, St becomes an implicit function of the cost

of evaluating I at each moment in time. In this type of system, as the complexity of the animation,

scene, and rendering effects increase, temporal samples move further apart and the temporal fidelity

perceived by the user decreases. An adaptive rendering system may explicitly vary Sxy, and St in

such a way that the computer system is able to balance the trade off between spatial and temporal

fidelity.

1.3.1 Definition of Fidelity
Consider a computer graphics animation of a car moving down a street, a ubiquitous situation in

everyday life. The ideal measure of accuracy, or combined fidelity, is the difference between the real

life visual experience and the synthetic experience of a sequence of images displayed on a computer

screen. Differences may be predominantly spatial or temporal, and the fidelity of individual image

components along a single axis may be different. For example, if the color of a certain location

on the screen changes every 16ms due to the monitor refresh rate, but due to the movement of the

car, that location in the continuous image changes every 8ms, e.g. due to the periodic motion of a

rotating wheel, then the idealized temporal fidelity of the reproduction at that location is half that of

the actual scene. Similarly, if the car is reproduced with less geometric complexity or a simplified

illumination model, an image of the scene at an instance in time will have spatial differences with

the actual scene.

It is impossible to measure this idealized fidelity difference because the viewer’s perception

cannot be recorded without some loss of fidelity due to discretization. As a thought experiment,

however, the situation provides several useful results; both spatial and temporal change is present

in the actual scene with magnitude varying between zero and infinity. The silhouette of the car

against the background is an high energy spatial edge and its movement along the roadway creates

high energy temporal edges. Regions with low magnitude temporal change occur along the body of

the car which is a consistent color with variations due to illumination. Many spatial and temporal

features are related, movement of a spatial feature causes temporal change, but both can occur
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alone: a stationary spatial feature, or change in brightness across an area with uniform color. Since

the maximum amount of sampling work possible over a certain region of both space and time is

constant, fixing a sample resolution in space or time to achieve a certain level of fidelity will likely

cause a decrease in the fidelity of the other dimension. Further, since both spatial and temporal

features vary in scale and are not bandlimited, the fixed resolution will be inadequate in some

regions and excessive in others.

The fidelity trade off is determined a priori by nonadaptive rendering systems and does not

change as the content or constraints of the system fluctuate. In a renderer which uses super sampled

antialiasing, the spatial fidelity gained due to an increase in the amount of sampling work performed

per frame may lead to a decrease in the temporal resolution of the renderer, since the frame rate is

proportional to the amount of work performed per frame. Likewise a progressive renderer fixes the

temporal resolution and renders as many samples as possible in a certain amount of time.

The relative importance of each type of fidelity depends on the computer graphics application.

In visual simulation, a situation similar to the moving car example, temporal fidelity is often more

important than spatial fidelity. In entertainment or scientific visualization applications, spatial

fidelity is often more important. Often the fidelity trade off may vary within a single application; for

example, in a flight simulator, temporal fidelity is extremely important during takeoff and landing

when a small visual delay might have large consequences, and may be less relevant at other times

during the flight.

Temporal change may be induced by user interaction, even in situations where the graphics

scene is not time varying in nature; e.g. medical visualization data sets often contain measurements

from a single moment in time, or in CAD visualization where the data visualized is completely

independent of time. In these cases, scene animation and temporal change is caused by input from

the user such as manipulation of the scene geometry, shading parameters, or camera position. The

idealized fidelity difference is still considered between the rendered image sequence and a non-

discrete version of the imagery, i.e. manipulating an actual object, or an actual model of an object,

versus the rendered imagery of the manipulation.

1.3.2 Fidelity Management Related to Image Compression
Image or video encoding and compression is analogous in many ways to active fidelity man-

agement of an interactive graphics rendering system. Figure 1.1 shows a simplified compression

pipeline for an audio or video encoding application. The first stage of the pipeline discretizes a

continuous image signal with a sampling function, such as the sensor of a digital camera. Then

analysis is performed on the discrete image to determine how to quantize the representation so that
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it may be encoded and transmitted to a viewer. Fidelity degradation may occur in the sampling,

quantization, or encoding stages of the compression pipeline.

Each stage in the compression pipeline has an analog in the adaptive response pipeline shown in

Figure 1.2; however, due to a feed back loop, the implementation and the interrelationships between

the pipeline stages are different. Instead of sampling incoming light from a camera lens with a digital

sensor, the graphics system renders image pixels of a synthetic scene on a computer display. The

quantization and encoding stages of the compression pipeline are replaced by adaptive response and

reconstruction stages. These adjust how rendering work is distributed across the image, and in turn

use available image samples to increase the overall quality or efficiency of the rendering process.

Temporally and spatially adaptive rendering differs from compression because it is a real-time

problem, where the decision of how to manage computing resources to produce each image is an

immediate problem that cannot be deferred until the future. Unlike a compression pipeline where

an image frame at or before the immediate leading edge of time may be used to determine the

quantization or encoding of an older image, the temporal constraint on real-time adaptive graphics

requires control decisions to be made for immediate or future rendering work.

Image and video compression algorithms perform a filtering operation, starting with uncom-

pressed full detail continuous imagery and producing a smaller stream of imagery, likely with less

detail and possibly with the addition of certain artifacts. Although the class of artifacts introduced by

adaptive sampling is similar, the fundamental filtering operation is different. The amount of detail

synthesized by an adaptive rendering system depends on earlier adaptive response decisions due to

the feed back loop. In the compression case, the decision to quantize or filter certain frequencies

or details does not remove those details from subsequent input imagery; the full resolution input is

always available.

Unlike conventional computer graphics imagery, fidelity trade offs are mutable in other types

of multimedia, and the parameters available to manipulate them are less intrusive. In digital music

and movies, the production and distribution of media are disjoint processes, the quality of musical

instruments or the complexity of costumes or a set is independent of the eventual distribution

technique or the viewing and listening devices employed by the consumer. During distribution,

audio and video media is compressed and filtered to an appropriate fidelity level. In contrast, a

computer graphics system must make a single choice about the relative importance of fidelity, e.g.

level of geometric detail or inclusion of rendering effects, and each choice must be specifically

engineered into the graphics application.
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Figure 1.1. Multimedia compression pipeline.
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Figure 1.2. Multimedia compression compared to the adaptive response model.

1.3.3 Fidelity and Vision
The degree to which a media compression or an adaptive rendering system degrades spatial or

temporal fidelity is dictated by characteristics of human vision. Detail that is difficult or impossible

to perceive may be eliminated without effecting the subjective quality of the media. In most cases,

graphics systems are designed to avoid synthesizing unperceivable detail, and the adaptive rendering

filtering process leads to a certain loss of fidelity. The capability of the human visual system guides

the decision of which frequencies or detail in imagery to degrade.

The human visual system consists of eyes connected through optical nerves and other structures

to the visual cortex located in the rear of the brain. The effective resolution of the system and the

ability to perceive may be affected by properties of either structure. [52, 31]

Visual acuity, or the ability to see and distinguish detail, may be used to gauge effective eye

resolution. Pattern recognition and localization are two tasks used to measure visual acuity in

clinical settings. Localization tasks judge the relative difference in position between two stimuli,

e.g. which set of points is closest, while recognition tasks, which are perhaps more relevant to

computer graphics, distinguish two or more stimuli.

The lens and humorous regions of the eye cause diffraction of incoming light and effect how

photons activate separated groups of photoreceptors. Efforts by Campbell and Green in the 1960s

to measure visual acuity used lasers to reduce diffraction [10]. The researchers asked subjects

to distinguish sinusoidal patterns produced by lasers focused on their retinas. The measurement

resulted in an effective resolution of approximately 60 cycles, or distinguishable line shaped light

impulses, per degree. This technique was later refined to measure a resolution of 150 cycles per

degree [31].

Sinusoidal laser pattern experiments are designed to mitigate as much as possible the diffraction
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caused by other structures in the eye and therefore indicate an upper bound on the fundamental limit

of the human visual system. More recent work in the context of font display on computer screens

has attempted to match resolution with the limit of effective visual acuity. Baxter and Corriveau

[3] determined that 186 pixels per inch matches the limit of visual acuity from an 18 inch viewing

distance. This corresponds to a sinusoidal pattern of 30 cycles per degree. For comparison, a 1440

pixel wide laptop screen viewed from 18 inches requires a visual acuity of 18 cycles per degree.

This provides an approximate bound on the size of detail or features which must be reconstructed

by an adaptive renderer.

Contrast, or relative difference is luminance between features, also plays a role in visual acuity

performance. The relationship between contrast and feature size can be measured by decreasing

the luminance of sinusoidal patterns. Most clinical visual acuity measurements use high contrast

images. Maximum contrast sensitivity, the ability to distinguish between two low luminance levels,

is limited by a spatial frequency of approximately 10 cycles per degree [31]. Just as in the case of

spatial visual acuity, where high frequencies result in indistinguishable objects, beyond 10 cycles

per degree, light from two colored regions may be diffracted in the eye making the two luminance

levels indistinguishable.

1.3.4 Suitability of Computer Graphics Imagery
Natural imagery statistics are examined in vision literature in terms of understanding funda-

mental human visual filtering mechanisms such as receptor sensitivity and the visual coding pro-

cess [20]. Both second order statistics, such as the power spectrum, and higher order statistics

used to correlate structures at different scales, are measures of redundancy in imagery. It is likely

that anatomical constraints cause the visual system to exploit statistical redundancy and perform

compression of viewed images during transmission from optical nerves to the cortex [21]. The

objective of an adaptive rendering method is to exploit the same type of redundancy to decrease the

cost of rendering an image.

Natural imagery has spectral characteristics suitable for adaptive sampling during rendering.

The slope of the power spectrum of natural image ensembles is approximately −2 on a log-log

scale [20]. This means that the power spectrum, i.e. a histogram of frequency content, decreases

as frequency increases with 1/f2. Sets of image ensembles from different natural habitats exhibit

slightly different distributions [2], but the curve fit nearly always has negative slope. Figure 1.3

shows the power spectrum distribution for a set of thirty two images taken from both nature photog-

raphy and computer graphics.

Representative examples of natural photography and rendered imagery are shown in Figure 1.4,

along with the power spectrum of the examples plotted in log-log scale. Frequency varies from
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Figure 1.3. Power spectrum distribution for graphics workload.

low to high along the horizontal axis of each plot. The vertical axis indicates the amount of power

in each frequency in the image, assuming the horizontal and vertical dimensions of the image are

sampled at a uniform rate. The dashed line is a linear fit of the distribution, the slope of which is

indicated at the top of the figure.

Uniform sampling renderers must choose a frequency, i.e. in Figure 1.4, along the horizontal

axis, at which to sample. Any image regions containing frequencies above that rate will be aliased.

Regions containing only frequencies well below, on the left side of the horizontal axis in the

figure, will introduce sampling overhead. Adaptive anti-aliasing methods must also choose an

initial sampling rate. These methods will decrease the amount of aliasing since a wider band of

frequencies can be appropriately sampled, but will still introduce unnecessary overhead since much

of the image will still only have lower frequency content than the initial sampling rate. Since the

exact spectral behavior of rendered imagery cannot be known until sampling is performed, a sample

density refinement algorithm should not be constrained by lower bound of an initial sample rate.

The adaptive approach should be able to enlarge the band of appropriately sampled frequencies in

either direction.

Power spectrum characteristics have been applied to computer graphics in both analytic and per-
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ceptually guided techniques. Reinhard et al. [53] describe the implications of second order statistics

to a variety of rendering applications including procedural modeling and reconstruction. They find

that geometric modeling is more influential to the statistical properties of generated images than

lighting and shading or other transformations like lossy compression or gamma correction. Results

are obtained from a small set of images and only spatial statistics are considered. Bolin et al. propose

an adaptive rendering technique based on a model of the human visual system. The reconstruction

algorithm uses the characteristics of natural images to control variance when selecting unknown

values [7].

The distribution of the power spectrum of natural and synthetic rendered imagery, the former

assumed to be a higher fidelity representation of the latter, encourages an adaptive approach to image

synthesis due to the dominance of low frequency content in the imagery. The selection of a sample

rate capable of capturing energy in higher frequencies introduces redundancy into the synthesis

process, something that may be avoided in an adaptive approach. Characterization of the amount

of redundancy present in a graphics workload, as indicated by the shape of the power spectrum of

representative imagery, is given in Figure 1.3. Although the average slope of the distributions shown

is less steep than the −2 of natural imagery, lower frequencies dominate all examples.

1.4 Thesis Statement
The principle thesis of this dissertation is:

Entertainment and scientific visualization workloads produce sufficient quantifiable redundant

detail that can be exploited by temporally and spatially adaptive rendering leading to increased

performance of high resolution, shading limited, or bandwidth limited applications.

1.5 Contributions
The central contribution of this dissertation is the algorithm and parallel design of an adaptive

rendering system combining separable control over spatial and temporal fidelity and adaptive re-

sponse based on statistical characteristics of rendered imagery. The approach is independent of

the visibility or shading algorithm used by the graphics system, and employs scalable components

suitable for implementation on massively parallel graphics processors.

1.5.1 Real-time Adaptive Frameless Rendering
The proposed algorithm introduces mechanisms to the Adaptive Frameless Rendering (AFR)

approach of Dayal et al. [14] to increase the rendering coherence and use high performance mech-

anisms of conventional ray tracers. At the same time, the proposed approach avoids inefficient

parallel structures, such as a complete hierarchical tiling, which limit scalability. These structures
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are replaced with more efficient parallel mechanisms better suited to massively parallel computer

systems. The result is a framework capable of interactive instrumented simulation or real-time

performance on a individual workstation.

1.5.2 Separable Response
Separable adaptive response is the ability of the control algorithm to effect the spatial and

temporal sample rate of the rendering system independently. Many approaches described in Chap-

ter 2, especially those which employ a probabilistic sampling mechanism, do not provide separable

response. Despite the spectral relationship between temporal change and spatial details, the behavior

is useful in situations scenes with significant background motion blur or depth of field. In these

cases, the scale of spatial features is very large compared to the rate of temporal change.

1.5.3 Spatial and Temporal Fidelity Model
The level of spatial and temporal fidelity, in terms of an isotropic spatial and temporal adaptive

sample rate, may be modeled as an optimization problem in a two-dimensional space. The control

decision which manipulates the level of spatial and temporal fidelity may be expressed as a relational

system of equations with a small number of nonlinear constraints. The system allows enforcement

of constraints on the graphics system, such as conservation of total rendering work.

1.5.4 Scalable Parallel Architecture
The parallel architecture described in this dissertation is an extension to the Manta ray tracer

pipeline architecture [5]. The architecture is extended first to accomplish interoperation with the

rasterization graphics hardware pipeline, and second to interoperate between Manta, the graphics

rasterization device, and the separate general purpose computation interface to the graphics device.

This pipeline architecture allows the overhead of spatial and temporal adaptive sample rate control

to be hidden, enabling the system to scale with the cost of tracing each ray. The number of image

samples, and therefore rays needed, in turn depends on the spectral complexity of the scene.

1.6 Applications
1.6.1 Ray Tracing and Hybrid Rendering

With the advent of nonlocal shading techniques in both rasterized graphics and interactive ray

tracing, degrees of freedom that effect rendering cost will increase. Instead of assuming a rendering

cost linearly related to the number of polygons, texture operations, or shaders instructions, the

cost will be largely determined, in a nonlinear manner, by the proliferation of nonlocal effects

including shadows, indirect lighting, color bleeding, reflections, and refractions. Due to their
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expense, especially in combination, these effects are uncommon in today’s mainstream workloads

but are ubiquitous in everyday life and will become a key element of future high fidelity workload.

1.6.2 High Resolution Displays
The distribution of necessary rendering work will vary widely in nonlocal rendering workloads

due to differences in the complexity of the effects across the image. One present day example

of this type of work distribution is high resolution rendering. With a rendering workload having

usual spectral and feature scale characteristics, high frequency regions of the image may require

considerable super sampling for adequate reconstruction, while low frequency regions of the image

will require fewer samples to reconstruct. If the output resolution is sufficiently high, the overhead

of super sampling low frequency regions will dominate the cost of rendering. Efficiently identifying

these regions and decreasing the amount of work performed in them will increase performance.

While the complexity of the rendering workload will increase, the complexity is bounded by,

and its characteristics are governed by, the geometric structure and appearance of scenery, as well

as the capabilities of display devices and the human visual system. While the ability to produce

higher fidelity graphics imagery will increase, the viewer’s ability to use it is largely constrained by

the human visual system.

In this context, the objective of an adaptive rendering approach is to identify regions in the output

which may be produced with less work. During rendering, this means identifying opportunities for

undersampling the underlying image function and reducing the number of image samples used for

reconstruction of those regions. This model moves beyond previous systems by exploiting both

spacial and temporal undersampling at several stages in the rendering pipeline. By including a

rendering pipeline from acquisition through viewing in the human visual system, downstream stages

are able to provide adaptive response to upstream stages.



CHAPTER 2

RELATED WORK

This chapter describes the relationship between the adaptive rendering algorithm described in

Chapter 3 and previous approaches through the classification of each approach within a taxonomy

of fidelity trade offs.

2.1 Sampling
Much of the early literature in computer graphics formulated nonuniform or adaptive sampling

strategies starting with the uniform sampling theorem. The uniform sampling theorem states that

the lower bound on a sampling frequency necessary to reconstruct a band limited signal is twice the

highest frequency component of the signal [24]. Aliasing occurs when too few samples are used

and a high frequency component of the underlying signal is misrepresented as a low frequency

component. This leads to structured artifacts that the human visual system is acutely able to

perceive.

The implication of nonuniform sampling in the frequency domain is described in Cook’s 1986

paper [11]. In the examples which use a band limited input signal, the Nyquist limit of the signal is

used to select the parameters of a nonuniform sampling pattern. Since multiplication by a sampling

function in the time domain is equivalent to convolution in the frequency domain, the sampling

function spectrum must be sufficiently wide in relation to the Nyquist frequency, such that no copies

of the spectra produced during convolution overlap with the baseband producing aliasing. Since

most useful signals in computer graphics are not band limited, the convolution does introduce some

overlap, the nature of which depends on the shape of the sampling function spectrum.

Reconstruction is implemented using a low pass filter to crop the baseband of the sampled

signal in the frequency domain [41]. Several types of artifacts including prealiasing, postaliasing,

and base band attenuation, may result due to reconstruction [43]. Prealiasing, the artifact referred

to above as aliasing, occurs due to undersampling of high frequencies in the underlying signal.

Postaliasing occurs when a reconstruction filter is applied that is wider than the Nyquist frequency

and subsequent copies of the spectra are not cropped. Base band attenuation occurs if the width of

the reconstruction operator is not sufficient to capture all of the frequencies in the signal. In this
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case, high frequency components are lost and the reconstructed imagery contains fewer details than

were sampled. If a nonuniform sampling function is used, noise appears throughout the spectrum

and a low pass filter will be unable to isolate the baseband.

There are two categories of nonuniform sampling schemes relevant to adaptive sampling which

result in different reconstruction approaches, schemes with uniform density, but not necessarily

uniform sample spacing across a domain, and schemes where the density varies dramatically across

a domain. Patterned and random schemes comprise the uniform density category, i.e. sample sets

which are aperiodic or stratified. Aperiodic samples are distributed using some random process,

while stratified samples are placed within fixed subregions of a domain. Nonuniform sampling

may be accomplished by adaptively applying different uniform schemes across an image. Variable

density sample sets usually result from an adaptive technique, or in boundary regions between

uniform schemes, or due to a nonsynthetic sampling mechanism, or the result of poor stratification.

2.2 Reconstruction
Certain sets of nonuniform samples can be perfectly reconstructed through an invertible warping

process. This process is suggested by the nonuniform sampling theorem which states that if a

one-to-one continuous mapping from a set of nonuniform samples to a set of uniform samples

exists, and the result of its application produces a band-limited signal, therefore uniform sampling

theory may be applied to exactly reconstruct the signal. However, it in general is not possible to

find such a mapping for signals encountered in computer graphics.

Reconstruction is often performed to resample a set of dense samples into a less dense or

stratified set, e.g. to downsample ray traced samples, or other subpixel color samples, to the res-

olution of a screen for display. Local filters, a common reconstruction technique, are a category

of reconstruction techniques where a filter kernel with compact support is placed at each resample

output location and the filter function is applied to each input sample within its extent [11]. Local

filters are effective if sampling density does not vary across the domain. In other situations, multistep

techniques must be used to account for missing information between different sample densities.

Cook suggests two approaches to implementation, either computing weights at each sample location

using filters placed at resampling points or using the filter to precompute a discrete convolution

kernel and performing a weighted gather at each resample point .

Dippe and Wold [17] specify two objectives for reconstruction filters, cropping most frequen-

cies greater than half the Nyquist rate to reduce aliasing, and smoothing lower frequency noise

introduced by the sampling scheme. The authors argue that in an adaptive nonlocal situation, the

filter should be normalized to reduce noise caused by local changes in the sampling rate. This is
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accomplished with a weighted average, dividing the sum of the product between samples and filter

weights by the sum of the weights. Other early local filters include the difference of Gaussians

proposed by Cook and the family of cubic filters proposed by Mitchell and Netravali [43].

In situations where the density of input samples varies considerably across a domain multistep,

reconstruction methods may be used to approximate the signal in areas with sparse samples. The

weighted average filter step used by Dippe and Wold was designed to reduce artifacts caused by

changes in sampling density across the domain. Varying sample density might occur with jittered

sampling as the offset amounts may be completely uncorrelated [51]. In this case, two neighboring

samples may be pushed close together, or in stratified patterns, if samples happen to be placed near

boundaries close to one another. In the case of adaptive sampling, dense regions may dominate the

weighted average, even if they are much smaller in size than sparse regions. Mitchell in a 1987 paper

[42] proposes a multistage filter which repeatedly applies a weighted average filter over different

sized subregions from fine to coarse. The average is computed hierarchically, dense subregions are

normalized before being combined with neighbors, so their contribution to the overall average does

not depend on the number of samples they contain.

In their 1996 paper on the Lumigraph, Gortler et al. [25] encounter a nonuniform sample recon-

struction problem when they attempt to reconstruct a continuous weighting function using samples

collected from a hand-held camera. The function is given by the four-dimensional continuous

integral of the Lumigraph function multiplied by a basis function. The authors describe a three-stage

push-pull algorithm to compute the integral for each weight on a uniform grid by reconstructing the

Lumigraph function using samples from the hand-held camera. There are two principle challenges:

holes in the Lumigraph function data caused by the scattering must be filled, and the effect of

varying sample density must be resolved. The first problem is addressed following a technique

introduced by Burt [9] by creating an image pyramid where each coarser level is blurred by a local

kernel from the finer level. Information from coarser levels is then used to fill in regions missing

samples in the finer levels. The second problem is addressed using Mitchell’s hierarchical weighted

average.

The original push-pull algorithm had three stages, although the first stage including obtaining

the initial samples is application dependent. The first-stage splatting approximates the integral in

cells of a fine uniform grid by taking the average of the Lumigraph function samples in each cell

weighted by the value of the basis function at those samples. Since the basis function has compact

support, cells in regions without input Lumigraph samples have weights that are close to zero. In

the next stage of the algorithm, termed pull, the integral is approximated again using a coarser grid

resolution and the weights computed at the finer resolution to weight the average. This process is
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repeated hierarchically using coarser and coarser cells which correspond to a filter with increasing

support. To prevent regions of the grid with dense input Lumigraph samples from dominating the

average, an upper bound is placed on the maximum weight which may be used in the sum. In the

final stage of the algorithm, termed push, the coarser approximation is used to fill in holes in the finer

evaluations. This is accomplished by checking to see if the computed weight at a resolution is below

a threshold and if so, blending the value of the function at the coarser level into the finer level. The

effect of the push–pull algorithm is that the coarser levels of the hierarchy perform reconstruction of

smooth low frequency signals, which intuitively require fewer samples, for holes in the data while

the finer levels still retain high frequency information where data were available.

The technique has been used without considerable modification in other applications where

holes in sample data must be filled in, such as rendering point sample data sets and BRDF recon-

struction. In Grossman et al. [26], the push–pull method is used to fill holes in point set data for

rendering. In this context, the holes are pixels on the screen to which points from the input data set

were not projected. Unlike the Gortler paper which obtained weights from basis functions evaluated

at every input sample position, weights are computed using a depth buffer pixel coverage metric.

Matusik et al. [40] use push-pull as an alternative to a more complex reconstruction method based

on wavelet transforms. Here the technique is used to reconstruct a continuous BRDF function from

a sparse set of measured samples.

In their 2003 paper on image completion, Drori et al. [18] employ a push–pull technique iter-

atively adding samples to the approximation between each iteration. The authors solve an image

completion problem consisting of filling in a region of an image removed by a matte operation with

a plausible substitution. The matte operation produces a large unknown region of an otherwise

uniformly sampled image. At each iteration of their completion algorithm, push–pull is used to

obtain a low frequency approximation of the missing region. To add new samples (and higher

frequency information) to the missing region of the image, each level in the push–pull pyramid is

searched to match a known pixel location in the approximated region. The search is performed over

all pairs of known and unknown pixels over five levels of the pyramid and eight orientations.

2.3 Adaptive Methods in Graphics
Adaptive techniques in computer graphics attempt to efficiently control error or increase fidelity

in regard to system constraints on processing, storage, or bandwidth. These techniques fall into the

categories of video encoding, adaptive textures and shadow maps, adaptive sampling, and of course,

adaptive frameless rendering.
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2.3.1 Rasterization
Most conventional commercially realized graphics hardware performs uniform density sampling

operations, but the extension of this hardware to nonuniform sampling is explored in the literature.

Rasterization graphics hardware supports several anti-aliasing methods which increase sampling

density uniformly across the image. Super sampling increases the number of complete image

samples, i.e. shaded samples with depth and other properties, per pixel and filters the result. Mul-

tisampling decouples shading operations from the number of individual visibility samples so only

one shader is invoked per polygon per pixel while depth and other properties are computed for each

sample intersected with the geometry. Similar to interleaved sampling in interactive ray tracing,

these methods lower the total cost of rendering all of the samples in a pixel by amortizing the

more expensive operations like shading between multiple image sample or output pixels. Although

these methods can reduce some aliasing by increasing the sampling rate, they are all uniform

approaches which rely on tiles of fixed sampling patterns and therefore are unable to leverage the

aliasing-for-noise trade off provided by nonuniform sampling methods.

One example of nonuniform rasterization is the irregular z-buffer proposed by Johnson et al. [29].

Instead of rasterizing samples in each input primitive using a uniform pattern, the algorithm allows

samples to be placed individually about the image. The conventional z-buffer algorithm is used

to determine the nearest fragment to the viewer. The irregular z-buffer algorithm stores specified

samples in a two-dimensional search structure, e.g. grids, BSP trees, and kd-trees, and then performs

a triangle shaped region query over the search structure to determine which samples to rasterize in

each primitive. The algorithm operates in two phases, first rebuilding the search structure and then

querying it while rasterizing each primitive.

2.3.2 Adaptive Textures
Adaptive textures vary the distribution of texture samples across a texture image and are used

in situations where uniformly sampled textures of sufficient resolution would consume too much

storage or in situations where high texture sample density is only necessary in a small region of the

image.

Adaptive texture-based radiosity is a rendering method which computes power per unit area

measurements on diffuse surfaces in a scene [28]. These measurements are stored in a regular

quad-tree-based texture structure. Each node in the quad-tree represents a single texture sample,

the radiosity sum over the node area. The algorithm performs two passes over the image. The

quad-tree is first initialized by performing an eye pass which computes primary ray footprints on

each diffuse surface. These foot prints correspond to the resampling resolution of screen samples,

and are used to limit the maximum depth of the quad-tree, which governs the maximum sample
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resolution. During the light pass, the radiosity sum and photon count in each node is updated and

nodes above a certain threshold are split. Additionally, the splitting algorithm divides nodes close

to discontinuities detected using a binary edge filter. This is a refinement approach as nodes in the

quad-tree are never merged after they are split.

Generalized adaptive texture maps in two, three, and four dimensions have been used for com-

pression, and to provide locally appropriate resolution[34]. This technique is designed to leverage

sampling on early programmable graphics hardware by introducing a level of indirection to each

texture look up. It preserves random access look ups and avoids the search-based query of earlier

approaches which was not possible on early hardware. The adaptive texture coordinate space

is divided into a regular grid, where each cell in the grid contains actual samples at a different

resolution. An offset into another buffer and a scaling factor are associated with each grid cell

which enable a two-step look up into texture memory. Unlike the quad-tree search structure used

in software, the regular grid with indirection provides a constant time look up; however, the high

level regular grid with a fixed resolution may constraint adaptivity or increase the amount of storage

necessary.

Shadow maps are a depth buffer method to approximate shadow coverage without explicit ray

tracing. The shadow map consists of a depth buffer rasterized from the position of a light source

facing the scene. When the scene is rendered from the viewer’s position, the location of each

fragment in world space is projected on to the shadow map. If the shadow map records a depth

less than the distance from the fragment to the light source, the fragment is judged to be in shadow.

Ideally, the area of the scene’s projection to both the shadow map and the output image will be

similar so that each fragment projects to a sample on the map. Aliasing occurs when the density

of the shadow map falls below that of the screen pixels which sample it. For example, this occurs

if the light source is further away from the scene than the viewer since more than one screen pixel

might project to the same shadow map pixel.

Adaptive shadow map methods attempt to reduce aliasing artifacts by varying the resolution

of depth samples across the map. Shadow sample density is increased in undersampled or high

frequency regions. The algorithm must optimize distribution given a fixed amount of storage for

the shadow map. Fernando et al. [19] accomplish this by placing a quad-tree over the shadow

map. Each node in the quad-tree has a fixed resolution and samples are stored at each level in

the tree to facilitate mip-mapping. Nodes are added to the tree in undersampled regions based

on a cost heuristic. The cost heuristic accounts for the overhead of reading back shadow samples

because the quad-tree must be created and maintained on the CPU. The method is progressive in

that if the shadow image remains unchanged, the system can refine the quad-tree until the image
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changes. Lefohn et al.[37] describe an approach which uses a GPU page table system and more

efficiently distributes shadow sample storage. This approach uses a convolution-based edge detector

to determine where shadow sample density should increase, based on frequency, instead of a strictly

undersample detection-based method.

Strictly uniform or tiled uniform patterns cause aliasing artifacts in situations where rasterized

samples are accessed or resampled at a varying resolution. This problem occurs in shadow map-

ping where queries are often made between uniform shadow samples. One solution proposed by

Aila et al. [1] is to project 3D view image samples to the shadow map image and then rasterizing only

those points. Unfortunately nonuniform rasterization is not supported by conventional hardware,

presumably due to the performance advantage of regular sampling patterns over variable patterns

which would require more coordination during parallel rendering.

2.3.3 Progressive Anti-aliasing
Progressive refinement is an adaptive sampling process in which samples are iteratively added

to a pixel until some quality or expense threshold is reached. Whitted’s early work in ray tracing

included an adaptive refinement step for anti-aliasing as well as a mechanism to prevent geometry

from slipping between rays [71]. The anti-aliasing algorithm examined each neighborhood for four

regular samples and subdivided the neighborhood if the samples had sufficiently different values.

Since new samples were always placed on a finer regular grid, alias reduction was accomplished

through super sampling rather than a stochastic technique. Subdivision would continue until the

values of subdivided neighborhoods sufficiently converged or the machine ran out of precision.

Whitted’s renderer traced rays along a regular grid. Geometric anti-aliasing was accomplished by

computing a minimum bounding sphere around each object in the scene based on the distance to

the camera. If a ray intersected the bounding sphere but did not intersect the enclosed object, the

square neighborhood of rays on the grid would be subdivided. Convergence was determined using

several measurements including sample luminance variance, separate channel contrast weighted by

a luminance factor [41, 42]. In large sample neighborhoods, edge detection filters may be applied

to the variance measure.

Painter et al. [51] propose a nonuniform adaptive sampling mechanism based on a kd-tree

subdivision of the image. Each kd-tree node contains an estimate of the image variance of the

region contained in the node’s subtree. Refinement is performed to detect features, such as edges,

and increase sample coverage by adding more samples to large image regions. Nodes are subdivided

using an error function given by the product of the node area and the average variance of the local

neighborhood in the kd-tree. The area term attempts to ensure that sample coverage is sufficient to

not miss small features. Refinement depth is controlled using confidence interval computed from
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sample variance.

These adaptive anti-aliasing methods are employed in noninteractive systems although straight-

forward implementation in interactive systems is possible given their use of simple spatial statistics-

based control. These techniques only increase the sampling density across the image; it is not

possible to decrease the initial sample density. Without frame-to-frame information or any addi-

tional prior knowledge of image behavior, initial sample density must be sufficiently high to detect

high frequency behavior and as a result, there are fewer opportunities for spatial undersampling.

Since the principle objective in noninteractive systems is to reduce aliasing, undersampling is not

as important in off line applications as it is in interactive rendering where it provides an opportunity

to decrease the amount of work required to render each image and increase performance.

2.3.4 Adaptive Rendering
Early progressive interactive approaches employed a very coarse level of adaptivity. Bergman et al. [4]

propose a progressive rasterization-based system which initially displays only transformed vertices,

then edges, polygons, and finally increasing degrees of shadows, shading, and anti-aliasing. Pro-

gressive improvements are applied between user input when the scene and camera are stable. The

approach uses both model data and image statistics to adaptively decide which parts of the image

to render at higher quality. For example, mesh normals may be used to determine which polygons

are likely to have specular highlights and then Phong shading is applied only to those polygons.

Intensity variance is used to determine which image pixels should be anti-aliased. This type of

adaptivity was quite different than the progressive sampling techniques developed at the same time

which focused on anti-aliasing to reduce spatial error. Since the approach targeted an interactive

renderer, it introduced a very coarse notion of temporal change to adaptive control. The progressive

rendering process was restarted upon user input which would introduce temporal error.

2.3.5 Video Encoding
Video encoding is a problem closely related to adaptive image display in that attempts to

conserve bandwidth by adapting how information is encoded and transmitted based on the structure

of the video stream. Bandwidth or storage, the number of bits used to encode the stream, is the

constrained resource. There are two principle encoding categories, constant bit rate (CBR) and

variable bit rate (VBR). CBR encoders use a fixed number of bits to encode each image so quality

varies depending on image content. VBR encoders use a variety of techniques, including multiple

passes, to estimate a distribution of bits per image such that quality is more consistent over time.

Encoded MPEG video streams are divided into groups of pictures (GOP) which may be di-

vided along the lines of scenes in the video content. Each GOP contains three types of image
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records. I-type images are essentially key frames and contain the most amount of information,

P-type (predicted) pictures use motion estimation based on I-type pictures to predict (approximate)

their content. B-type (bidirectional predicted) pictures contain the smallest amount of information

and are computed based on motion estimation from previous and future pictures. Each picture is

divided into macroblocks and statistics including motion estimates are stored per block.

Digital video encoding is used in both real-time and offline applications. In offline applica-

tions such as DVD encoding, the entire input stream may be examined several times to optimize

compression. Real-time applications like video camera recording require encoding methods which

operate on smaller stream windows. Bit rate constrains the encoding operation in two ways: first

a fixed number of bits is available to encode a given segment of the stream (either communication

bandwidth or available storage); second since the decoding device has a fixed buffer size, the bit

rate must be sufficient to deliver whole images in time for display without overflowing the buffer.

The objective of offline VBR encoding is to optimize the perceptual picture quality throughout

the entire video stream given a fixed number of bits, e.g. the storage capacity of a DVD[70], and

decoding buffer constraints. This may be accomplished using a two-pass algorithm, the first pass

computes statistics across the entire stream and the second pass uses these statistics to control

encoding bit rate. The statistics computed in the first pass include a quantization scale, spacial

activity measure, and a temporal activity measure. The quantization scale counts the number of bits

necessary to encode each macroblock region in a picture. Spacial activity is measured by computing

luminance variance. Temporal activity is computed by finding a lowest error motion vector (essen-

tially projected translation) per macroblock in the image. After the first pass, a processing step uses

the computed characteristicsto determine a bit budget for each picture in the stream. The second

pass encodes the stream by reducing the bit budget for easy pictures and increasing the budget

for difficult pictures. The pass monitors encoding performance to attempt to detect exceptionally

difficult situations like abrupt scene changes or fade to black transitions.

Real-time encoding algorithms attempt to perform the same operation but have less global

information about the input stream. Instead of computing statistics in a first pass and then solving a

global optimization problem to determine individual bit budgets and guide rate control, statistics are

first initialized to known reasonable values and then updated throughout the encoding process. The

updated statistics are used to classify the behavior of the input stream and perform rate control[44].

Content transitions such as an abrupt scene change, or fade-to-black followed by a new scene, may

cause this approximation to become unreliable. These transitions may be detected by comparing

measured statistics to a predictive model and using conservative encoding parameters when sig-

nificant differences are observed. In addition to quasi-empirical predicative models, human visual
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system factors may be used to guide VBR rate control [36].

There are some important similarities between VBR encoding and the proposed model for

adaptive rendering. Both models compute statistics from the input stream to determine how to

distribute constrained resources with the object of limiting perceptual artifacts. In both cases, this

distribution may be based on human visual system factors as well as measured characteristics of the

input stream. At the same time, there are several important differences between the two models.

VBR encoding may adapt image quality only by changing the number of bits used to transmit or

store an image; it operates blindly on the input stream. The model is unable to adapt upstream

stages, such as the mechanism used to capture or discretize the image, to better match the input

stream to the possible output representation.

Video compression and encoding represents just one stage in the graphics pipeline which adap-

tive rendering attempts to optimize. In an adaptive rendering model, the encoding stage would

attempt to optimize both the encoded output stream and the upstream component which produces the

input, i.e. the rendering engine, to minimize the amount of overhead introduced by downsampling,

analogous to lossy compression.

2.4 Taxonomy of Fidelity Trade Offs
Like media compression, most computer graphics algorithms leverage some type of fidelity trade

off, either explicitly between spatial and temporal fidelity, or between the individual components

within the same dimension. Common approaches may decrease the computation cost of rendering

operations, exploit coherence to amortize expensive procedures, or decrease the complexity of the

graphics scene to adjust the rendering workload within the capacity of the graphics system.

Three characteristics distinguish these approaches, the fundamental trade off exploited by the

approach, the adaptive mechanism, if any, employed, and the spatiotemporal response or charac-

teristic behavior of the approach. Fidelity schemes may be divided into seven general categories,

described in the subsequent subsections, based on the trade off between spatial and temporal fidelity

exploited by the approach.

The definition of spatial fidelity, temporal fidelity, and accuracy given in Section 1.3.1 relies on

a top-down analysis of the rendering system, where the output imagery is compared with an actual

visual experience. The approximation to the visual experience is discretized along two orthogonal

dimensions, the spatial and temporal axes, by a set of design choices. The cumulative effect along

each axis of these design choices produces a spatial or temporal fidelity, or quality level, of the

renderer. Very few design choices effect only spatial or temporal fidelity; the majority cause some

change in both.
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The relationship between spatial and temporal fidelity may be expressed as an abstract system

or function with a single independent variable in most cases, and one or more dependent variables.

This function represents the relationship between the overall level of spatial and temporal fidelity

delivered by the system. The independent parameter may be either a fixed spatial or temporal

fidelity level, selected by a designer based on the anticipated content of the scene, or derived from

characteristics of the graphics scene or rendering system at runtime.

Let the variables Qs and Qt represent the spatial and temporal fidelity indices or quality levels,

respectively, described in Section 1.3.1. These variables are placeholders for the overall subjective

quality of the graphics system compared to an actual scene, which are not measurable qualities of

the system or its input at a specific point in time. In terms of these fidelity indices, a certain graphics

rendering approach Î, analogous to the discrete image synthesis function I ′ given by equation 1.2,

may be expressed:

Qt = Î (Qs) (2.1)

In this case, the level of temporal fidelity Qt depends on the spatial fidelity level Qs specified to

the rendering system; the variableQt is independently determined. The equation describes a spatial

for temporal trade off since the temporal fidelity of the rendered imagery depends on the spatial

fidelity level specified. The relationship is illustrated in Figure 2.1; the actual temporal quality

observed by the user may vary over time as the scene animation and user input changes the graphics

workload. The effect of these disturbances to the system, indicated by the variable z in figure, may

cause slight fluctuation, but does not alter the relationship between spatial and temporal fidelity in

the system.

An adaptive temporally dependent system is shown in Figure 2.2 where the independent spatial

fidelity parameter is given by the function Ψ:

Qt = Î (Qs) , Qs = Ψ(. . .) (2.2)

Many approaches are distinguished by the control function Ψ, which responds to varying char-

acteristics of the system, indicated by y in the figure. In some cases, the control algorithm follows

hardware counters or hardware measurements from the rendering engine; in other systems, Ψ
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Figure 2.1. Spatial for Temporal Trade Off of the rendering system Î with quality levels Qs and
Qt. In this example, graphics scene z and the generated imagery y are independent of the overall
fidelity level provided by Î.
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Figure 2.2. Dependent temporal system schematic for equation 2.1. The control input, a spatial
fidelity level Qs, is combined with disturbances z, to produce a spatial fidelity level Qt in the
system Î.

consists of analysis of the graphics scene or statistical analysis of output imagery. In caching based

systems that exploit temporal coherence, Ψ is often implemented as a cache lookup or replacement

mechanism. Different choices of Ψ are described in Section 2.3.

Table 2.1 corresponding approaches. So-called free trade offs occur when one type of fidelity

is increased independently of the other, e.g. improving a low level rendering operation such as

the rasterization of a triangle or ray intersection may increase temporal performance because the

computational cost of rendering each image decreases but should not change the spatial quality

of rendered imagery. Spatially dependent trade offs increase spatial quality by decreasing either

temporal fidelity, or decreasing a different spatial fidelity component. Temporally dependent trade

offs are just the opposite; temporal quality is increased in exchange for spatial quality, or a reduction

in a different component of temporal quality. The mechanism described in this dissertation falls

into the final category; in systems exploiting a mixed trade off, both spatial and temporal fidelity are

modulated across space and time to meet a certain criterion. These approaches specify a level of

spatial and temporal quality, and then adjust both components in different regions of the image to
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Table 2.1. Fidelity trade offs leveraged by various rendering approaches.
Fidelity Trade Off

(e.g. trade reduction for increase.)
Examples

Free Temporal Early Depth Test [33]
Ray Tracing Acceleration Structures [65]

Free Spatial Display hardware post process.

Temporal for Spatial Adaptive Refinement [4]
The Render Cache [67]
Multi frame rate Rendering [59]
InfiniteReality [45]
Geometry Aware Framebuffer LOD [75]

Spatial for Spatial Progressive Anti-aliasing [42]

Spatial for Temporal Frameless Rendering [6]
Level of Detail Techniques [38]
Shader complexity [8]

Temporal for Temporal All Frequency Relighting [50]
Reverse Reprojection [47]
Temporal Radiance Caching [23]
Incremental Instant Radiosity [35]
Reprojection Shader Caching [57]

Mixed Adaptive Interruptable Rendering [74]
Adaptive Frameless Rendering [14]
TSAR (see Chapter 3)

achieve it. Classifying rendering approaches based on a fidelity trade off in this manner yields four

categories: in each case, the independent parameter is modulated, generally decreased, to inversely

effect the dependent variable.

Table 2.2 classifies a variety of related approaches which exhibit a fidelity trade off with the

classification scheme of Table 2.1. In addition to the independent and dependent parameter, the

techniques are characterized by properties including the scope of the trade off, i.e. it effects per-pixel

or per object behavior, a whole frame, or an individual image components (denoted Img. Com.); the

basis of the control algorithm, e.g. occlusion (Occ.) or spatial fidelity (Sp. Fid.); and reconstruction

algorithms, and the benefit and detriment to the resulting imagery. The table also indicates whether

the technique relies on the progressive assumption (Pr.), described in Section 2.4.2, and if the

technique is capable of separable response (Se.).
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Within this taxonomy, the distinction between interactive or real-time rendering, and offline or

batch rendering is important. In the latter case, although a trade off exists between the computational

cost and quality of each frame, the overall fidelity of the eventual output is not constrained by either

fidelity level Qs or Qt, since the rendering is not performed in real-time. Approaches that actively

manage spatiotemporal characteristics to exploit coherence and amortize expensive operations, e.g.

the spatiotemporal architecture for animated rendering proposed by Havran et al. [27], or the caching

scheme proposed by Dietrich et al. [15], do increase rendering speed, but since they are not real-time

approaches, there is no relationship between computational speed and temporal fidelity or temporal

resolution of the output. Computational speed may limit the amount of output produced, i.e. the

number of frames rendered in an hour, but not the resolution with which time may be sampled. The

temporal fidelity Qt, in practice the temporal sample rate, is not dependent on the cost of rendering

each frame since the rendered movie may be replayed at an arbitrary speed or even in an arbitrary

order.

2.4.1 Independent
Many acceleration techniques, such as decreasing spatial structure traversal cost or the amount

of rasterization overdraw, may increase one fidelity type without effecting others, e.g. the temporal

refresh rate is increased without altering the spatial quality of imagery. These approaches are free,

considering only the relationship between spatial and temporal fidelity. In a so called free trade off,

the dependent fidelity is still a function of a design parameter, e.g. ray packet size or amount of

raster parallelism, but is independent of the complementary fidelity.

2.4.1.1 Free Temporal
Free temporal fidelity improvements deliver fixed spatial quality while temporal quality is de-

pendent on an unrelated function or parameter such as the cost of tracing an individual ray or

rasterizing a sample. In the domain of interactive ray tracing, free temporal fidelity improvements

concern the construction of acceleration structures, the selection of a traversal algorithm, or the

intersection between rays and objects in the scene. The design space described by the survey of

Wald et al. [65] consists of grid, bounding volume hierarchy, and kd-tree spatial structures and a set

of algorithms to rebuild or update the structures as the scene animation changes. One example of

a free temporal fidelity improvement in rasterization is the early depth test, or z-cull, described by

Kilgariff et al. [33]. This optimization performs a depth test before material shading in the case that

the shader is known to not alter the depth of a fragment allowing more expensive shading operations

to be avoided in cases where the fragment will be discarded by the depth test. Another example is

the acceleration of a rendering algorithm by implementation in new hardware; Schmittler et al. [55]
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describe the architecture of an interactive ray tracing approach. This architecture would produce the

same imagery as a conventional system, but at a higher temporal resolution.

2.4.1.2 Free Spatial
Free spatial fidelity approaches are more difficult to realize than independent temporal improve-

ments since nearly any change to the graphics system effects the computational cost of rendering

and the temporal refresh rate. One example is a postprocess implemented in display hardware for

the purpose of color correction and display calibration. Another example is changing the viewing

conditions of the display device, e.g. by dimming lights in the viewing room to improve contrast, or

moving the user to obtain a better viewing angle on the display. In these cases, the spatial fidelity

is improved without any effect on the temporal performance of the renderer. Free spatial fidelity

improvements but must be implemented in a manner that has no effect on the computational cost of

rendering.

2.4.2 Spatially Dependent
The majority of techniques described in computer graphics literature of the past several decades

fall into the temporally dependent category because they make a spatial fidelity trade off in exchange

for a lower per-frame rendering cost. Early computer graphics systems, designed with very limited

computational budgets, especially those used for visual simulation, employed the opposite relation-

ship between spatial and temporal fidelity. These systems guaranteed a real-time response latency,

e.g. 60 frames-per-second, and contained hardware mechanisms to fluctuate the spatial fidelity of

individual frames.

Spatially dependent trade offs often rely on the progressive assumption, the notion that after a

certain point in time, or within a large interval of time, the overall accuracy of rendered imagery

is dominated by spatial fidelity because the graphics scene has stopped changing temporally. This

situation occurs in reactive computer graphics applications, such as the visualization of static data,

where the scene does not change without user interaction to move the camera, or in situations with

band limited temporal change where an upper bound may be placed on the necessary temporal

refresh rate. The algorithm described in this dissertation is designed for computer graphics applica-

tions which do not abide by the progressive assumption.

2.4.2.1 Temporal for Spatial
Although an interactive approach by modern standards, the adaptive refinement framework

proposed by Bergman et al. [4] exploits the fundamental trade off between temporal cost and spatial

quality. The algorithm adds spatial details to the frame buffer following a seven step procedure, first



30

drawing only vertices, then adding edges, polygons, shadows, Gouraud, and Phong shading, and

finally anti-aliasing, in successive steps. The number of steps performed is determined adaptively

based on the amount of time available for rendering, essentially the required temporal quality which

is the independent parameter. The first several steps produced imagery in under a second, while in

1986, the advanced shading and anti-aliasing required twenty minutes.

The adaptive manipulation of geometric level of detail to maintain a consistent temporal refresh

rate is described by Funkhouser et al. [22] as an optimization problem with relational constraints.

The approach maximizes a benefit heuristic while keeping a cost heuristic within a temporal budget

based on the render time of the previous frame. The benefit heuristic employs a model for spatial

fidelity based on the effective raster sample rate of an object at a certain level of detail. The cost

model is determined by fitting a linear curve to experimental data based on the graphics system and

workload.

The InfiniteReality computer graphics system described by Montrym et al. [45] contains two

adaptive spatially dependent mechanisms designed to allow visual simulation applications to main-

tain a consistent refresh rate. The graphics hardware detects both geometry limited and raster

fragment fill limited conditions and either notifies the application so that geometric complexity

may be reduced, or reduces the resolution of the output frame buffer to decrease the amount of

rasterization required.

The Render Cache, described by Walter et al. [67, 66], is an early sample reprojection and

caching approach where a buffer containing samples from a spatiotemporal volume at the leading

edge of time is reconstructed to produce imagery. Image samples are produced by high quality ray

tracing or path tracing rendering algorithms at a lower temporal rate based on the cache replacement

algorithm. Sample replacement is directed by a priority image buffer, based on the density of cached

samples across the image. The algorithm tracks object movement by associating an object identifier

with individual samples in the cache.

Velázquez-Armendáriz et al. [64] describes an implementation of the Render Cache algorithm

employing both the CPU and GPU; the approach uses an edge detection scheme to improve the

performance of spatial reconstruction. Similar to the approach described in this dissertation, sample

rendering is performed by the CPU while analysis and reconstruction are performed on the GPU.

Like the original algorithm, sample density, coverage, and age guide adaptive sampling; scene

geometry is processed by the system, but only to detect edges used to guide spatial reconstruction.

The majority of other reprojection and caching approaches are classified as temporal-for-temporal

trade offs, described in Section 2.4.3.2, because certain image components are cached while other

components, such as visibility, are rendered each frame. The cached image components tend to



31

be low frequency signals, such as indirect illumination, which are expensive to render, but do not

dominate the spatial fidelity of the imagery. In contrast, the Render Cache algorithm reconstructs

frames from final image samples stored in cache, without newer information. The amount of

temporally accurate sampling at the leading edge of time performed to update the cache is the

independent fidelity parameter. The temporal fidelity controlled by this parameter is traded for

higher spatial fidelity delivered by ray tracing and path tracing rendering algorithms.

Multiframe rate rendering, described in Springer et al. [59, 60], renders different objects in the

scene at various temporal refresh rates using separate rendering devices, and then composites the

resulting images. Compositing is performed either optically by overlapping the projection of two

independent display devices, or in a digital process. The approach divides the scene into groups

of objects whose accuracy is dominated by spatial fidelity, termed visual quality, versus temporal

fidelity, or interaction quality; the former is rendered by a slow client device, and the latter rendered

on another device, termed the fast client. The classification of an object as interactive or static based

on its temporal characteristics determines the rendering device and algorithm the object is assigned

to, and therefore the level of spatial fidelity.

The frame buffer level of detail approach described by Yang et al. [75] adjusts the rasterization

resolution of fine-grained image components to maintain a consistent temporal refresh rate. The

approach uses a joint bilateral filter based on color, depth, and surface normal to upsample low

resolution components. Adaptive control of spatial spatial resolution is performed in a feedback

loop using a heuristic that estimates the time spent to render an object based on the latency of the

previous frame and frame buffer coverage of each object. The coverage estimate, expressed as a

percent of the frame buffer, is provided as a scene parameter.

2.4.2.2 Spatial for Spatial
Approaches that attempt to redistribute rendering work spatially across individual frames with-

out altering the cost of rendering the entire frame may trade spatial fidelity between different

regions. Progressive refinement, or anti-aliasing approaches, perform this trade off by first rendering

a low resolution image to the frame buffer and then progressively adding samples along image

features at increasing spatial resolution. These systems operate on the progressive assumption that

the scene does not change within the short window of time during which samples are added. An

early example in a noninteractive context is described by Mitchell [42]; the mechanism is common

in conventional rendering engines, such as Manta, Bigler et al. [5], and OpenRT Dietrich et al. [16].

The amount of refinement or anti-aliasing performed may be determined either by a certain temporal

interval, in which case the temporal refresh rate is fixed, or a fixed sample budget, in which case the

temporal fidelity of the approach might vary, but would depend on other spatial fidelity trade offs
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like the complexity of the scene or material properties.

2.4.3 Temporally Dependent
Since the introduction of high performance commodity graphics hardware, the principle fidelity

trade off addressed in interactive computer graphics literature has shifted to temporal dependent

approaches. This is likely the result of ubiquitous graphics hardware which reliably delivers an

acceptable spatial fidelity level at real-time rates. Instead of substantially reducing spatial quality

to maintain interactivity, within the last decade, the principle question has become how to increase

spatial fidelity with a minimal effect on temporal fidelity. Unlike previous approaches, the starting

point for improvement is already real-time performance. Temporally dependent approaches fall

into two categories, those where spatial fidelity is the independent parameter, and others where the

temporal fidelity of one image component is exchanged for another.

2.4.3.1 Spatial for Temporal
Spatial for temporal trade offs are distinguished from the converse trade off, temporal for spatial,

by the dependent parameter which is temporal in the former case and spatial in the latter.

The spatial for temporal fidelity trade off is a frequent consideration in the design of material

shader programs and is illustrated by the relative performance of the three illumination models

evaluated by Boulos et al. [8] in an interactive ray tracing system with animated scenes. While

the Cook style imagery, of Cook et al. [12], arguably provides the greatest spatial fidelity of the

three; individual frames are more expensive and are rendered at a much lower temporal rate than

the Whitted imagery, of [71], or direct illumination imagery. The choice between the fidelity levels

provided by these algorithms, or other illumination and shading models, is usually made statically

by the graphics system designer based on the expected workload of the rendering system.

Scene complexity or geometric level of detail is another common design decision that effects

spatial fidelity. The survey of Luebke et al. [38] describes several approaches to adapt the geometry

complexity of the scene during interactive rendering. Reducing geometry level of detail does not

necessarily reduce spatial fidelity; in instances where the relative sample rate of the image compared

with detail in the geometry is low, a coarse geometric level of detail serves to prefilter the visibility

image component and reduce aliasing. Geometric level of detail approaches are employed by many

of the spatially dependent mechanisms described in Section 2.4.2,

The adaptive refinement approach introduced by Bergman et al. [4] included the notion of a

golden thread rendering procedure, a simple operation that could be repeated indefinitely to increase

image fidelity; frameless rendering described by Bishop et al. [6] with further analysis provided

by Zagier [76], is one such procedure. Instead of updating an entire frame buffer of pixels at one
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time, the frameless rendering approach renders individual pixels in a random order and immediately

displays them. The system proposes an extreme compromise between spatial and temporal fidelity;

there is little latency between animation update and display since individual samples are displayed

immediately, so the temporal fidelity of the approach is very high. However, in regions with

temporal change, the random update procedure may not adequately or consistently sample spatial

features, leading to lower spatial fidelity. The progressive assumption must be made to obtain

adequate spatial sampling in nonstatic regions, as the image feature must remain unchanged for a

sufficient amount of time that the random sampling process revisits it.

2.4.3.2 Temporal for Temporal
Precomputed radiance transfer, described by Sloan et al. [58] using spherical harmonics, and

extended to higher frequency effects using wavelets by Ng et al. [48], caches lighting transfer

functions from a preprocess such that the illumination of an object from multiple lights may be

manipulated and combined at run time. While the class of techniques provides high spatial fidelity

due to the sophisticated lighting effects such as indirect illumination, general animation of the scene

is constrained by the precomputation. These constraints reduce the amount or type of temporal

change permitted in the aggregate imagery, resulting in a temporal for spatial trade off.

Considering only the precomputed illumination image component, the combination of the pro-

gressive assumption applied to complex illumination effects, and temporal redundancy, is employed

by Overbeck et al. [50] to increase the performance of an incremental precomputed radiance trans-

fer approach. While the application is substantially different, Overbeck et al. employ a similar

statistical analysis to the approach described in this dissertation to characterize the relationship

between spatial and temporal image signal behavior. Both approaches employ wavelet transforms

to characterize their respective signal, either illumination or final frame image samples, and both

rely on the observation that low frequency temporal energy dominates the power spectrum. The

principle difference between the use of the wavelet transform in these two approaches is that

substantial computation and incremental update is performed in the wavelet scaleogram space by

Overbeck et al., while the transform is only used for characterization in the process of making an

adaptive control decision.

Another incremental approach exploiting temporal coherence of indirect illumination in an in-

stant radiosity algorithm is described by Laine et al. [35]. Instant radiosity, described by Keller [32],

is a spatial fidelity compromise where the diffuse radiance function across the geometric surfaces

in the scene is sparsely and irregularly sampled by tracing rays from light sources to a set of virtual

point lights at the first or second bound. Indirect illumination at visible points in the frame is

reconstructed by combining the direct illumination from each virtual point light. The incremental
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approach updates only a subset of the virtual point lights each frame based on the sample density

on the hemispheres of the light source and a validity heuristic given by occlusion of existing virtual

point lights due to changes in geometry or the light sources. In this approach, the temporal fidelity

of the indirect illumination component is traded for increased fidelity of the visibility, texture color,

and other components.

Gautron et al. [23] describe a radiance caching approach which exploits temporal coherence,

analogous to spatial undersampling. The approach attempts to low pass filter a noisy discrete

radiance signal to obtain a low power indirect illumination component. Filter shaping is performed

by computing temporal gradients in the hemispherical space of incident light to attempt to smooth

high frequency temporal artifacts such as tearing or popping. The temporal gradients are also used

to compute an estimated lifespan of cached information based on a model of temporal validity. The

approach uses a reprojection and a spatial upsampling mechanism similar to the Render Cache.

Although the scope of the technique is different, again temporal reconstruction of a single image

component versus final image samples, the use of a temporal gradient to guide the temporal sample

rate of the illumination signal is similar to the approach described in Chapter 3 and distinguishes

temporal radiance caching from other approaches which do not respond directly to characteristics

of the cached signal.

Reverse reprojection, proposed by Nehab et al. [47], is a temporal cache lookup technique

where a cache query is performed by projecting the image coordinates of a sample at the leading

edge of time into the cache backwards through time, in contrast to a forward reprojection approach

where the cache contents must be scattered or gathered based on the coordinates of the new frame.

Reverse reprojection allows the cache to be organized as a uniform frame buffer with an implicit

coordinate system, instead of a collection of cache entry structures relying on nonuniform coor-

dinates. Sitthi-Amorn et al. [57, 56] employ a reverse reprojection mechanism to automatically

improve the temporal performance of material shaders by selectively caching image components.

In the final image, caching of selective image components may preserve fidelity by allowing higher

frequencies of important features to be updated at a fast rate while lower frequencies of the same

features are cached, e.g. the visibility image component contains very high frequency edges at object

silhouettes. These features might not be cached by the system, while indirect illumination, a low

frequency component, might be cached. When visibility and indirect illumination are combined

by the rendering algorithm, the accurate silhouettes contribute more to the overall fidelity of the

imagery than indirect illumination.
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2.4.4 Combined
Combined approaches manipulate both the spatial and temporal fidelity of the rendered imagery

to increase the efficiency of the overall graphics system or implement a bias towards one type of

fidelity or another. These approaches require very fine-grained control over the rendering since they

must control both the varying spatial quality and temporal update of the rendered imagery.

The interruptible rendering approach, described by Wolley et al. [74], attempts to balance the

level of spatial and temporal quality of an interactive dynamic scene through explicit control over

frame refresh and rasterization resolution. The approach performs progressive refinement on a

dynamic scene, by repeatedly rendering the scene at a single animation time with geometric level

of detail. The change in spatial and temporal fidelity is estimated by the algorithm using a heuristic

based on geometric level of detail and the displacement of the geometry by animation over time.

While the spatial fidelity of the frame increases over time due to the refinement process, the temporal

fidelity decreases due to the animation. When temporal error exceeds spatial error, the progressive

refinement process is interrupted, and the frame is displayed. The temporal adaptivity employed

by interruptible rendering does not require the progressive assumption since the algorithm expects

and responds to temporal change in the imagery. The approach performs separable response since

the action of refining the current frame or displaying the frame and then updating the animation

exclusively improves either spatial or temporal fidelity.

2.5 Adaptive Frameless Rendering
The algorithm described in this dissertation is a direct descendent of the adaptive frameless

rendering algorithm (AFR) described by Dayal et al. [14]; although the new approach introduces a

number of capabilities not found in frameless rendering, its original motivation was to increase the

efficiency of AFR by exploiting coherence in the rendering workload and increasing the parallelism

and scalability of data structures and algorithms used for adaptive control.

Unlike the majority of approaches described in Section 2.4.3.2, these algorithms perform adap-

tive control using statistics computed from final image samples which are the reconstructed combi-

nation of all image components, evaluated at a specific spatial and temporal location.

Frameless rendering proposed by Bishop et al. [6] is an asynchronous screen refreshing mech-

anism where pixels are displayed immediately after they are rendered instead of synchronously

after an entire frame is rendered. In a frameless renderer, pixels are selected for rendering and

refresh randomly across the image over time so as not to bias any one region. This results in

an image containing samples taken at many different moments in time, and introduces temporal

sampling artifacts in dynamic scenes. Adaptive frameless rendering (AFR) modifies the distribution
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of samples across the image in both space and time to more efficiently sample the changing image

[14].

In AFR, response to spectral changes in the underlying signal is performed through modifica-

tions to a kd-tree which is used to guide individual sample placement. During rendering, leaves of

the kd-tree are selected for sampling with equal probability, and the leaves are sized in screen space

based on an error estimate. The sample tile with maximum error is split into two tiles and the two

sibling tiles with minimum total error are merged into a single tile. Through this mechanism, the

probability of sampling the region with maximum error increases at the expense of the region with

minimum error. Over time, this leads to an increased relative sampling density in certain regions

and a decreased relative density in others.

The error estimation function is based on variance across the tile weighted by sample age. Older

individual samples within a tile contribute less than current ones. This variance error metric is based

on ray sample convergence and is conservative. If a tile has low variance, then the samples within

it must have converged, and therefore, the tile region is likely not undersampling the underlying

image function. The mechanism is efficient to implement, and its effect seems reasonable for a

single ray-ray tracer-based system. The sampler increases the likelihood that a certain region will

be sampled by increasing the number of tiles in the region until the individual samples converge.

The TSAR model described in Chapter 3 is an extension of the adaptive frameless rendering

(AFR) algorithm described by Dayal et al. [14, 13]. AFR software designs using the Manta

interactive ray tracer allowed exploration of the design space of parallel adaptive sampling imple-

mentations. This experience lead to the generalized model and prototype design in this dissertation.

The new model has several differences: single sample rendering is not required, spatial and temporal

response is explicitly decoupled, and rendering and communication between pipeline stages is not

explicitly frameless. There are differences in the design of the prototype too: samples are gathered

from scalable hierarchical search structures instead of scattered into fixed size deep buffers, and the

TSAR model is generalized such that a kd-tree tiling might not be used in the sampler.

Dayal’s treatment of statistical entropy in AFR experiments provides evidence of the redundancy

which may be exploited by the TSAR algorithm. The principle result is that the amount of en-

tropy, or quantifiable information content, in AFR images is approximately twice that of uniformly

oversampled images. The AFR process was able to double the amount of information using 40

percent fewer samples than uniform rendering. Entropy is given by the minimum possible size

representation, so it is still likely that both the AFR and uniform processes produced redundant

samples; still, the smaller number of total samples used by AFR is evidence that it was able to

exploit considerable redundancy.



CHAPTER 3

TEMPORALLY AND SPATIALLY ADAPTIVE

RENDERING

This chapter describes the temporally and spatially adaptive rendering (TSAR) algorithm and a

parallel software framework used to implement it; subsequent chapters describe the mathematical

models employed by each stage of the algorithm. TSAR is a rendering control system with two

fundamental goals: first, to determine an efficient spatial and temporal sampling rate which elim-

inates redundant rendering work, and second, to redistribute surplus rendering capacity to meet a

fidelity strategy selected for the system. Fidelity management strategies, described in Section 2.4,

range from simple compromises between spatial and temporal fidelity, e.g. eliminating as much

spatial redundancy as possible without introducing significant error, or spatial fidelity loss; to more

sophisticated adaptive strategies that bias spatial or temporal fidelity at different locations across the

image and over time.

The TSAR algorithm, shown in Figure 3.1, adds two substantial stages to the end of the canon-

ical graphics pipeline of an interactive renderer. The first stage, labeled 3.1a, adaptively responds

to changes in the statistical characteristics of the renderered imagery and adjusts the sample rate

configuration of the renderer. The second stage, labeled 3.1b, reconstructs complete image frames

for viewing using batches of samples rendered at different spatial and temporal sample rates. Unlike

the single sample approaches of other techniques [67, 14], the two components of the TSAR

algorithm operate on temporally coherence batches of samples called framelets. Framelet sample

containers are produced by the interactive renderer and stored in a common buffer, or framelet

cache, which is accessed by both stages.

The response and reconstruction components of the TSAR algorithm may be attached to any

interactive rendering system which provides the capability to render small image tiles at different

spatial sample rates. Temporal adaptivity is achieved by varying the refresh rate of image tiles.

Fine-grained control of the sample rate in this manner is possible in both rasterization and ray

tracing rendering systems. Control of interactive ray tracing systems is the focus of this dissertation

because the per-sample cost of evaluating image pixels is greater. The central hypothesis tested by

the TSAR prototype is that adaptive response eliminates a sufficient quantity of redundant rendering



38

Sample 
Density
Control

Adaptive
Response

Adaptive
Reconstruction

Framelet
Cache

Interactive 
Renderer Display

︸ ︷︷ ︸
(a)

︸ ︷︷ ︸
(b)

Figure 3.1. Response and reconstruction. The interactive rendering and adaptive response compo-
nents (a) communicate with reconstruction and image display (b) through the framelet cache buffer.

work, with minimal computational overhead, such that the overall spatiotemporal fidelity of the

rendering system improves.

This dissertation addresses the efficiency and performance of the adaptive response stage by

introducing an efficient model to measure spatial and temporal sample rate error and then respond

by modulating individual sample densities across the image. The adaptive response stage is divided

into three components: tile selection, or sample placement; error estimation; and adaptive response

decision, shown in Figure 3.2. These three stages are the topics of Chapter 4, Chapter 5, and

Chapter 6, respectively. Efficiency and performance are obtained through parallel implementation

and amortization of expensive operations, e.g. the sample placement stage which controls the inter-

active renderer, places samples in large batches instead of individually, the estimation and response

stages are formulated for parallel efficiency. The efficiency and visual performance of the adaptive

reconstruction stage in the TSAR model is is described in Section 4.2, but is not the focus of this

dissertation.
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Figure 3.2. Stages of adaptive response.
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3.1 Adaptive Sampling
The adaptive sampling mechanism, labeled tile selection in Figure 3.2, controls the rendering

work performed by the ray tracer by selecting regions of the image for rendering at each animation

time step. The image is divided into discrete tiles, or framelets, containing the same number of

samples but varying in spatial extent. Regions of the image with smaller framelet tiles have higher

spatial sample rates. Temporal adaptivity is achieved by varying the refresh rate of individual tiles

across the image. Framelet tiles that are selected for rendering more frequently have higher temporal

sample rates. Tile selection is guided deterministically by a pair of spatial and temporal sample

density fields defined across the image.

The TSAR algorithm uses two different representations of the spatial and temporal sample

rate across the image. The tile selection, rendering, and reconstruction stages operate on framelet

tiles, while the error estimation and response decision stages operate on scalar fields. These two

representations are suitable for different tasks in the pipeline. The framelet tiling is a hierarchical

multiresolution structure with exceptional data locality within individual tiles, but over which spatial

search or neighbor finding is inefficient. The scalar field representation is a flat data structure, in

either a Cartesian or space filling data layout. Within the scalar field, neighbor finding or spatial

search is very efficient; however, the resolution of the field is uniform.

In addition to data layout and spatial query suitability, density representation also depends on

the type of parallelism exhibited by respective stages. The framelet tile representation of sample

density is principally used when two criteria are met: performance is obtained from amortization

over large data batches, and when the appropriate unit of parallelism is the framelet tile, with little

data communication between tiles, e.g. sample rendering in the ray tracer. Scalar fields, stored at a

much lower resolution than the smallest framelet tile, are used when parallel global communication

is necessary; and when spatial search, or neighbor finding is necessary, e.g. solution to the response

decision optimization problem using a spatial partial differential equation.

3.1.1 Sample Density Field
The adaptive rendering system maintains a spatial and a temporal sampling rate which are

defined by separate sampling functions Ss, and St. This formulation of the TSAR model assumes

that the spatial dimensions are sampled isotropically, with the same sample density in the horizontal

and vertical dimensions, i.e. Sx = Sy = Ss. The assumption is not required by the model,

but simplifies the implementation and enables a three-dimensional spatiotemporal volume to be

represented in two dimensions. For uniform sampling, both Ss and St have the form:
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St (t) =
N∑

k=1

δ

(
t− k

1
N

)
(3.1)

In a nonuniform, or adaptive case, the distance between Dirac delta functions would be modu-

lated based on a function of t.

The sampling functions may be expressed as spatial and temporal sample densities by convolv-

ing the Dirac comb functions with a density reconstruction kernel, to obtain a continuous scalar

field, termed the sample density function. The kernel must only be broad enough to resample S to

the resolution of θ, i.e. a box filter of width 1
N :

θs = Ss (s) ∗K (s) (3.2)

θt = St (t) ∗K (t) (3.3)

The exact sampling functions used by the interactive renderer in Figure 3.2 need not be known or

controlled by the adaptive response system. Instead, the scalar density fields θs and θt are commu-

nicated opaquely through the tile selection stage, during which framelet tiles containing a specific

number of samples, or amount of sample density θ, are communicated to the renderer for sampling.

The interactive renderer samples the spatial extent of the tile using its native sample placement

mechanism, and then resamples the results to the uniform grid of framelet sample positions. Later,

the adaptive response error estimation stage uses image samples placed within framelets based on

Ss, and St to perform analysis of the imagery and adaptive response.

In the spatiotemporal volume, over the course of an interactive graphics session, the sample

density functions indirectly represent sample rates on a spatial plane perpendicular to the temporal

axis at the leading edge of time. Therefore, although sample density control is performed over two

spatial dimensions and one temporal dimension, the solution, i.e. the fields θs and θt, vary only in

the horizontal and vertical dimensions and are represented by a pair of two-dimensional fields, or a

two-dimensional vector field.

Control of the temporal sample rate is similarly opaque; temporal adaptivity in the tile selection

stage is performed by either immediately refreshing, or differing until the future, each framelet in

the tiling. In this respect, the θ field is two and a half-dimensional, in that the temporal dimension

adjusts sampling behavior either at the leading edge of time, or just beyond it, i.e. without selecting

a specific temporal coordinate in the future.
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The combined spatial and temporal sample density may be expressed as field of spatiotemporal

volume elements where each element has uniform size, i.e. width and height 1
N , and depth in the

temporal direction ∆t. The spatial resolution N is a free parameter which determines the degree to

which operations on elements are amortized across the image domain, ∆t is the temporal refresh

unit. As shown in Figure 3.3, the elements have uniform size in space and time, but the number of

samples or density within each element varies.

Interpretation of θs and θt as a field of volumetric elements enables spatial constraints and

systems of equations to be written, both in terms of sample density along each dimension, and the

total amount of combined density, or volume density, of the element. These constraints are enforced

in the adaptive response control decision stage, which modulates, or transports, density across the

image while maintaining conservation and positivity.

3.1.2 Framelet Tiling
An ideal adaptive rendering system would allow arbitrary placement of samples in space and

time, and obey continuously varying spatial and temporal sample density functions, both with

minimal overhead compared to a nonadaptive system. The AFR system accomplished arbitrary

placement by selecting sample positions based on a probability distribution; however, probabilistic

sample placement conflicted with the ray packet amortization mechanism of the underlying render-

ing system and dramatically increased the overhead of adaptive sampling.

Conventional parallel rendering systems including graphics processors and software ray tracing

systems obtain high performance by amortizing the cost of operations over a large set of operands.

In the Manta system, primary ray image samples are traced in packets of rays covering tiles across

the image. The cost of acceleration structure traversal and geometry intersection for the whole

packet may be reduced by testing with the packet frustum, instead of individual rays, and tracking

special cases or optimization characteristics, such as packets with a common ray origin. Spatial

coherence between rays in the packet increases the coherence of memory access to spatial structures

and increases the efficiency of large memory caches. Ray packets also organize operand data into

coherent regions of memory, suitable for operation with vectorized instruction sets. Ray packet tiles

in Manta nominally contain a maximum of 64 rays; packets are used both for tracing primary rays

which produce samples on the image plane, and for tracing secondary effects such as shadows and

reflections.

The framelet tiles in the TSAR algorithm are analogous to rasterization tiles or ray packets. The

tiles themselves are containers of image samples on a uniform grid, and are the principal unit of

parallel work for the rendering stage through error estimation. Framelets contain a greater number

of samples than ray packets or rasterization tiles, nominally 256 or 1024, both to increase the amount
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Figure 3.3. Spatiotemporal density volume element and field.

of amortization and to provide a sufficient signal window for discrete spectral transforms which are

used for sample rate error estimation. Figure 3.4(a) shows an image reconstructed by averaging

overlapping samples in the framelet cache, the framelet tiling used to produce samples is shown in

Figure 3.4(b), and the sample density function used to produce the tiling is shown in Figure 3.4(c).

The tiling, or spatial arrangement of individual framelets, is a piecewise constant approximation

of the sample density field. Each framelet consists of a fixed number of spatial samples but the

spatial extent of the framelet varies, changing the resolution of the uniform grid of samples within

the framelet. The interactive renderer need not rasterize samples or trace rays matching the framelet

sample grid exactly; however, the discrete image samples produced by the renderer must eventually

be resampled to the framelet grid on which the error estimation stages of the response model rely.

The TSAR model allows for the interactive renderer to sample the graphics scene at a higher rate

than framelet resolution, and there is no control over the degree to which secondary effects such

as shadows or reflections are sampled, as long as the renderer output is resampled to the framelet

resolution. In super sampling cases cases where the primary ray sample rate is higher than framelet

resolution, the resampling operation to framelet resolution is likely a low pass filter which limits the

high frequencies detected during the error estimation stage.
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(a) (b) (c)

Figure 3.4. Example framelet tiling. Naively reconstructed frame (a), framelet tiling (b), and spatial
sample density function (c).

3.1.2.1 Tiling Alternatives
There is a fundamental tension in the design between uniform spatial tilings that have variable

sample rates in each tile, and those with hierarchical or nonuniform spatial tilings with uniform

sample density. The former is used in image compression, where the input is divided into spatial

tiles, and each tile is encoded with a varying number of bits. Certain operations, such as spatial

search, memory lookup, or overlap detection appear to be easier in the uniform tiling case, since

the number and position of tiles does not change. This is especially true in the case of image

compression, where a tile division and encoding of the image is performed once and then decoded

and accessed many times. While each operation may be performed in constant time with a uniform

tiling, a binary search, and possibly a lookup structure such as an octree or a kd-tree, is necessary

in the nonuniform case.

In adaptive rendering, spatial tilings are used in a more dynamic fashion where the tiling must

be constructed, filled with data, and then queried multiple times per refresh cycle. Given these op-

erations, specifically frequent update or construction, the disadvantages of both designs are largely

equivalent. Parallel rendering engine coherence criterion requires that sampling work be submitted

with a structured organization, often in fixed size, to obtain performance. In the uniform tiling

case, organization of samples for submission to the rendering engine would require some type of

subdivision, essentially a subtiling, within each high level spatial tile. This sublevel tiling would

possess all of the problems of a nonuniform high level tiling. Essentially, the uniform tiling would

need to be turned into a fixed minimum depth in a hierarchical tiling in order to be submitted to the

rendering engine.

Uniform tilings, in the form of scalar fields, are used to communicate two scalar fields in the

TSAR algorithm: sample rate error and the sample density field. The latter is a high precision

representation of the framelet tiling, e.g. the framelet tiling shown in Figure 3.4(b) has only four
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different tile sizes or resolutions; however, there are more than four scalar density values within the

corresponding field show in Figure 3.4(b). The uniform tiling or scalar field representation is used

for communication between the error estimation stage and the tile selection stage of the adaptive

response system. Unlike the framelet tiling containing rendered samples, in these stages, each tile

in the scalar field has a fixed amount of data, i.e. one scalar, so the problems of search and memory

lookup are not encountered.

The specific data structures and algorithms used to construct spatial tilings, query their contents,

and resample them to uniform fields, is described in Chapter 4.

The framelet tiling and sample density volume element field are nearly opposites of each other;

in the framelet tiling, each tile has an equal number of samples, but varying spatial extent. While

in the sample density fields, or spatiotemporal volume element field, each element has equal extent,

but a varying sample density amount.

3.2 Sample Rate Error Estimation
The first goal of the TSAR control algorithm is to identify redundant spatial and temporal sam-

pling work performed by the rendering system. Elimination of this redundancy increases efficiency

and produces surplus rendering capacity. The second goal of the algorithm is to redistribute surplus

capacity to other regions of the image to reduce aliasing and increase fidelity, or to bias spatial and

temporal fidelity in some other manner.

3.2.1 Characterization of Redundancy
Redundant rendering work, in terms of extra sampling of the graphics scene on the image plane,

occurs when an increase of the sample rate produces diminishing improvements to the fidelity of

the rendered imagery. While output fidelity is a function of both the adaptive response and adaptive

reconstruction components, shown in Figure 3.1, redundancy detected during adaptive response

must be defined in terms of the image samples available in the framelet cache, without considering

reconstruction which is a downstream stage in the pipeline. At a single infinitesimal point in the

image, the efficiency of the current sample rate is proportional to the amount of additional energy

in the frequency domain captured if the sample rate is increased; i.e. the second derivative of an

integral over a low pass band in the power spectrum:

Efficiency (2f) =
d2

df2

[∫ f

1
Fs (s) ds

]
(3.4)
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Across a region of the image, such as the extent of a framelet tile, the efficiency of the sample

rate may decrease more quickly in some areas than in others, e.g. the efficiency of increased sample

rates in low frequency areas is less than along sharp features. If the sample rate is allowed to vary

continuously, then at each point in the image, the sample rate 2f is selected at such a point that the

efficiency drops below a certain threshold. In the TSAR model, the sample density must be fixed for

small regions of the image, i.e. within the framelet tiles. The amount of sample rate redundancy is

the sum of the differences between the fixed single sample rate for the tile ftile, and each respective

maximally efficient sample rate, in set θ∗, across the tile:

ftile = max
f∈ 1

2
θ∗tile

(f)

Redundancy (θ∗tile) =
∑

f∈ 1
2
θ∗tile

|ftile − f | (3.5)

Based on the efficiency of the sample rate across the image and the amount of redundancy

incurred by fixed rates within framelet tiles, the adaptive response algorithm classifies the sample

rate in one of three ways: oversampled, adequately sampled, or undersampled. These classifications

result in an adaptive response of decreasing, leaving unchanged, or increasing, the sample density

within a region of the image. The power spectrum of these behaviors for a one-dimensional synthetic

signal is illustrated in Figure 3.5; the frequency N
2 indicates the highest frequency captured by a

framelet with resolution N .

The shape and magnitude of the sampled signal’s power spectrum provide a response direction

and magnitude, and constitute a signed estimate of the the amount which the sample density should

change within a region of the image. Characterization of the underlying image signal in terms of

an unknown ideal sample rate, and the distance to it in the spatial and temporal dimensions, is

considered in Section 5.1.2.1.

3.3 Adaptive Response Decision
The sample rate error estimation stage produces an estimate of the difference between the current

spatial and temporal sample density and the ideal sample densities based on a local characterization

of the rendered image. The estimate is made based on the signal alone, without regard to bounds

on the current sample density, or the overall distribution of rendering work across the image. In

the adaptive response decision stage, the locally greedy error estimates made independently across

the image are modulated to adhere to local constraints on the spatial and temporal sample rates and
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Figure 3.5. Characterizations of signal redundancy in one dimension, using the frequency domain
power spectrum.

global constraints on the combined sample density field as a whole.

3.3.1 Constraints on Sample Density
The application of constraints are solved in three steps, shown in Figure 3.6. First, local

constraints are enforced on the error estimate, and a combined change in the joint spatial and

temporal sample density ∆θ is computed. Next, the combined change at each element across the

sample density field is modulated to adhere to global constraints. Lastly, the modulated amount of

combined sample density change is redistributed between the spatial and temporal sample density

at each element. Modulation in the last step may be used to implement a specific fidelity strategy,

e.g. to bias temporal response over spatial response or vice versa.

Interpreted, in Figure 3.7, as a field of spatiotemporal volumetric elements, the first step com-

putes the net flux ∆θ in volumetric sample density across the element. The total sample density flux

is transported across the domain in the second step, and remixed into spatial and temporal density

components in the last step.

3.3.1.1 Positivity and bounds
The sample density must be greater than zero across the domain, i.e. the density of each volume

element must be greater than zero. The adaptive renderer is only capable of rendering samples at

discrete sample rates between a minimum and maximum; these bounds define, in part, the θideal

sampling density across the image:

∧
m

: 0 < θmin ≤ θ (m) ≤ θmax (3.6)
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Figure 3.7. Manipulation of the spatial and temporal sample densities. The net flux across the
element ∆θ is divided between a change in density in the spatial dimensions ∆θs and temporal
dimensions ∆θt. ∆θ is determined by global constraints, while ∆θs and ∆θt are the result of a
mixture process based on sample rate error.

Unique bounds may be specified for θs and θt. The parameter m specifies a position in the field.

3.3.1.2 Conservation
The total amount of work performed by the adaptive renderer over a suitable spatiotemporal

extent must not change. If the total amount of sampling work increases, the cost of a framelet batch

may cause the maximum possible temporal resolution to decrease. If the total amount of sampling

work decreases substantially, the renderer may not be fully subscribed leading to wasted capacity.

Therefore, the total change across time over the sample density field must be zero. For combined

sample densities θn = θn
s · θn

t :

∑
θn+1 (m)−

∑
θn (m) + C = 0 (3.7)

Sample density is strictly conserved if the surplus term C is omitted. If a running surplus of

sample density is permitted, than the net flux across the domain may not exceed the total running

surplus:

n∑
i=0

Ci < Cn+1 (3.8)
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Underutilization of the renderer will likely occur for C � 0.

3.4 Software Architecture
The TSAR prototype software is implemented within the Manta pipeline architecture [61, 5]

and combines the task parallel operations on a multicore CPU with data parallel operations of the

GPU. Ray tracing, scene animation, and tile scheduling are performed by threads on the CPU, while

error estimation, the adaptive response control solver, tile update, and reconstruction, are performed

on the GPU. Pipeline organization with a three frame depth minimizes the amount of time either

processor must wait for data from the other.

The prototype is designed to operate either in a full ray tracing mode, where an entire image

frame is reconstructed and displayed by a rasterizer, or in a hybrid configuration, where a texture

containing partial ray traced effects is reconstructed and used in a multiple pass rasterization algo-

rithm. The hybrid configuration also allows rasterized information such as the depth buffer of the

current frame to aid reconstruction.

The software architecture consists of three programming interface layers, shown in Figure 3.8.

The lowest layer components are the Manta ray tracer, OpenGL rasterizer, and Manta Scene Graph

(MSG) which is used to control animation and scene properties. The Manta renderer provides

an opaque interface for evaluating image samples through ray tracing. Its architecture provides

a scalable, structured, parallel pipeline to control CPU threads, which is used by higher layers

in the TSAR design. The next highest layer, the MantaGL pipeline, controls coordination and

communication between the MSG animation, the Manta renderer, and the OpenGL rasterization

components. The third highest layer implements the TSAR control algorithm, by submitting ren-

dering work to the MantaGL layer, and processing image samples produced by it. The majority of

the TSAR layer is implemented with CUDA [49] programs running on the GPU. At the top level,

a driving graphics application obtains reconstructed images from the TSAR layer and provides

animation commands or user input to the Collada, Manta, and OpenGL components. Depending on

the runtime configuration, the adaptive renderer will either produce whole frame images, or partial

frame images to be used as textures by the graphics application.

3.4.1 Parallel Hardware
The TSAR prototype is designed to be used on commodity desktop workstation computer

systems, consisting of a multicore CPU and a general purpose computation capable GPU. The

principal challenge of the software architecture is to saturate the parallel capacity of the whole

system by keeping both processors fully subscribed as much of the time as possible.
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Figure 3.8. TSAR prototype software stack.

Following discrete graphics hardware terminology, components of the rendering system residing

on the GPU plugin board are collectively referred to as the device, while the remainder of the

system, including main memory and the CPU, is referred to collectively as the host. The GPU

device employed by the TSAR prototype operates in two separate modes; OpenGL rasterization

rendering is performed in graphics mode, while CUDA programs are executed in compute mode.

While data may be shared between programs running in graphics and compute mode on the device,

the two modes are mutually exclusive and may not execute concurrently.

The memory system of the prototype workstation is divided between separate memories on

the host and device. In the prototype, communication between memories is performed in large

asynchronous batch transfers. The TSAR pipeline performs a major data transfer between each

stage in the pipeline, once between ray tracing and adaptive response, and once between adaptive

response and reconstruction.

The software design concerns scheduling tasks between four threads of execution shown in

Figure 3.9. Ray tracing worker threads, treated as a single entity, and the graphics control thread

execute concurrently on the host; graphics mode rasterization operations, and compute mode thread

execute on the device.

3.4.2 Manta Interface
The Manta programming layer provides an opaque interface to a scalable parallel ray tracing

engine. The pipelined architecture of the Manta engine, and the constraints that the model places on

communication and synchronization, allow the renderer to scale efficiently. The pipelined rendering

and display components eliminate the serial image display bottleneck and statically load balanced

callback routines, are used to safely coordinate between ray tracing on the CPU and analysis, or

additional rendering passes on the GPU.

The simplified Manta parallel pipeline shown in Figure 3.10 contains four components divided

between two stages. Although the figure shows only two rendering threads plus an application

thread, the pipeline may scale to hundreds of threads on a large multiprocessor super computer.
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The pipeline is two stages deep and induces a one-frame latency. At time t, the scene animation is

sampled and rays are traced while the image previously rendered at t − ∆t is displayed. The one

frame latency is indicated by the upstream connection between the host buffer and image display

components in the figure. In the Manta pipeline architecture, configuration and animation tasks, in

the callback section of the figure, are statically load balanced, while rendering is dynamically load

balanced. By performing image display of the previous frame in a single thread concurrently with

ray tracing of the current frame, the serial display task does not cause a bottleneck in the pipeline

since all threads remain occupied and the display thread can obtain rendering work when finished.

The objective of the MantaGL and TSAR parallel pipelines is to hide the serial overhead of similar

operations by adding additional stages to the pipeline.

3.4.2.1 Timing
The prototype uses the timing facilities provided by Manta, which may be configured in a fixed

rate or wall clock mode, as the clock for animation. The fixed rate time mode is used to record

information from software counters, or to save comprehensive snapshots of the system’s state to

disk for later inspection. The data shown in most of the figures containing fine grained system

behavior were created using a fixed time rate simulation. In wall clock time mode, the Manta

control loop starts each new frame as soon as all rendering threads have completed the previous

frame.

3.4.2.2 Transactions and Callbacks
The Manta control loop uses a transaction mechanism based on callbacks into application code

to update configuration safely at the beginning of each cycle through the loop. Depending on type,

one or more Manta threads may execute each callback concurrently while the other renderering
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Figure 3.10. Manta pipeline.

threads wait at a barrier.

The MantaGL and TSAR layers use animation callbacks executed by the rendering threads at the

beginning of the renderer control loop to coordinate ray tracing with operations with the graphics

control thread. Since animation callbacks are invoked on every cycle through the Manta control

loop, they permit the Manta clock and new frame events to be safely communicated to other threads

through semaphores or barriers. The MantaGL pipeline uses an animation callback with two barriers

to synchronize OpenGL interaction with the Manta renderer.

3.4.2.3 Image Display
Image display is the second stage in the Manta rendering pipeline and is executed by a single

thread immediately after the animation callback phase of the control loop, concurrently with the ray

tracing pipeline stage. Three forms of image display are supported within Manta; the display thread

may establish a separate connection to an X11 server and transmit the image asynchronously to the

driving graphics application, the display thread may synchronize with the application thread and

allow it to execute graphics copy commands before both threads proceed, or the display thread may

communicate a pointer to the image buffer to the application thread and then proceed immediately.
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The last case requires the least synchronization between the ray tracing and GPU side of the system;

however, the shared buffer must be protected by a semaphore since it is accessed asynchronously,

at different times, by either thread. After the image buffer handoff is complete, the image display

thread continues executing rendering work with the other Manta threads.

3.4.2.4 Ray Tracing
Rendering is the first stage for a new frame in the Manta pipeline; it is executed by all but

one thread immediately after the transaction and callback phase of the Manta control loop. During

the rendering stage, each thread executes a set of modular functions to partition and order ren-

dering work for each frame. With the exception of mutual exclusion around a queue used for

work distribution, there is no communication between threads executing the rendering stack. Each

function in the stack, shown in Figure 3.11, divides rendering work into smaller and smaller pieces,

between which there is little data dependence or communication. First the image is divided into

fragments containing individual output pixels for ray tracing. Rendering work within fragment

pixels is divided into ray packets which are populated with viewing rays by a camera and then

intersected with the graphics scene.

The configuration of the Manta rendering stack is unsuitable for adaptive rendering for two

reasons: the image traverser assigns rendering work composed of batches of individual pixels, and

the output image produced by the rendering stack is resampled to pixel resolution. Work distribution

between threads is based on output image pixels; the renderer filters subpixel samples into a single

value which is written to the framebuffer, instead of preserving information at a higher resolution.

In an adaptive renderer, the spatial sample density may vary from significant undersampling, e.g.

less than one sample per pixel, to supersampling with 16-64 samples per pixel; the assumption that

each pixel would require the same amount of work, or at least the same number of primary ray

image samples, is not valid. High resolution information, such as subpixel image sample values,

is necessary to adequately characterize the image signal; this information must be computed and

stored by the ray tracer for use during sample rate error estimation.

3.4.3 MantaGL Interface
While the lower level Manta layer provides an opaque interface for tracing primary image

sample rays, the MantaGL layer provides an interface that abstracts the data transfer required for

communication between the Manta ray tracing threads on the CPU and compute or graphics tasks

on the GPU. The layer also synchronizes the camera models used by the rasterizer and ray tracer

such that corresponding pixel coordinates can be obtained in both renderers.

Implementation of the MantaGL and TSAR programming interfaces is accomplished by making
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small modifications to several modular components in the Manta architecture to track framelet

information and enable adaptive sample placement, and by adding a set of callbacks to coordinate

between Manta rendering threads and the GPU control thread.

The MantaGL pipeline is shown in Figure 3.12; the pipeline spans three types of threads on

two processors: Manta threads executing on the CPU, to the left of the dashed line, and graphics

and compute threads executing on the GPU to the right of the dashed line. All threads execute

asynchronously, although the graphics compute processes are controlled by a separate application

thread running on the CPU. The MantaGL pipeline is divided into four callbacks within which the

TSAR pipeline is implemented.

3.4.3.1 Animation
The TSAR prototype uses the MSG library to execute animations loaded from Collada format

files. These animations enable dynamic scenes with rigid body and skinned movement and are

parameterized on time. Finegrained control over scene animation and the amount of temporal

change, as opposed to experimenting with user input, allow for repeatable experiments.

Animation update based on the current frame time is performed during an animation callback,

described in Section 3.4.2.2, during which a Manta thread running on the CPU traverses the scene

graph with a update visitor, transforms geometry, and updates or rebuilds acceleration structures.

The graphics control thread executes a pre-interoperation callback concurrently with animation

update in Manta; although the default implementation is empty, this callback is used to copy to the

new framelet tiling from the device to the host in the TSAR pipeline.
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3.4.3.2 Interoperation
The MantaGL pipeline contains two interoperation barriers encountered before the ray tracer

begins processing the current frame and the adaptive response algorithm is executed on the GPU;

these barriers synchronize initialization of the new frame, and a new animation time stamp, within

both engines.

The first interoperation barrier separates animation state update on the CPU from rasterization

of the new frame on the GPU. The second barrier separates the initial GPU scene rasterization pass

from ray tracing for the new frame, and adaptive response on the GPU. In a hybrid rasterization and

ray tracing configuration, the initial graphics pass would produce input to the ray tracer determining

which regions of the image require sampling. In the nonhybrid case, the ray tracer simply samples

the whole image.

Callbacks labeled pre-interop and interop are provided to execute work on the idle processor

before the first and second interoperation barriers where the CPU and GPU are idle, respectively. In
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the TSAR layer, these callbacks are used to copy the new framelet tiling to the host and then execute

the tile selection algorithm.

3.4.3.3 Image Transfer
The MantaGL pipeline uses a specialized Manta image buffer implementation containing mem-

ory buffers on both the host and device. Both buffers store color images with a depth component

that may be used to composite ray traced and rasterized imagery.

Ray tracing a batch of framelets is the greatest bottleneck in the system; the fast semaphore

protected handoff allows the Manta image display thread to perform a very small amount of work,

i.e. only copying a pointer, before joining the other rendering threads. The asynchronous handoff,

and subsequent host to device copy by the GL control thread, occurs concurrently with frame

reconstruction.

3.4.4 TSAR Interface
While the Manta pipeline has a two-frame latency, the TSAR pipeline is three stages deep,

resulting in a three-frame latency between the time that the scene animation is sampled and the

display of imagery containing the animation. This pipeline depth allows the GPU and CPU to

execute computation and data transfer asynchronously and minimizes the amount of time that either

processor is waiting for the other.

The TSAR software architecture consists of 33 components, including computational stages,

data transfer, and data structures. Figure 3.13 contains a comprehensive diagram of the pipeline

which is described in the remainder of this chapter. The organization is best understood either by

following the path of a frame refresh through the pipeline stages from t = 0, or by considering the

operations performed by each type of thread. Concurrent tasks may occur in matching horizontal

regions between barriers.

3.4.4.1 Tile Selection
The tile selection stage which is performed by the host during the interoperation callback of the

MantaGL pipeline is responsible for selecting framelet tiles for rendering such that the temporal

sample density θt of the system is achieved by the renderer. The algorithms used to select framelet

tiles for rendering based on temporal sample density are described in Chapter 4.

Tile selection uses three data structures, the new framelet tiling containing the desired spatial and

temporal sample rates across the image, a temporal history indicating the actual temporal refresh

rate across the image, and a framelet batch table containing the framelets to be updated by the

renderer at the current time. The new framelet tiling is copied from the device to the host during the
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update which are stored in the batch table.

3.4.4.2 Rendering Stack
Framelet rendering is performed by Manta following the animation update and tile selection

stages executed in the callback section of the pipeline. Several modular components of the Manta

rendering stack, shown in Figure 3.14, are reimplemented to perform adaptive sampling and to orga-

nize the output of the renderer as a batch of framelets instead of a single contiguous image. Adaptive

sample placement within the Manta pipeline is achieved by providing specialized implementations

of the image traverser and image buffer modules, shown in Figure 3.14. Other components of the

Manta rendering stack remain unchanged.

The image traverser is responsible for constructing Manta fragments containing pixel locations

corresponding to framelet samples. Spatially adaptive sampling is performed by configuring the

pixel sampler for single sampling with pixels placed on a high resolution integer tiling across a

virtual image buffer. The resolution of the tiling matches the maximum precision necessary to

place sample adaptively, i.e. instead of pixel centers 1
2N + (0, . . . , N) in one dimension, a sub-

pixel precision M is used such that pixel centers are located M
2N + (0,M, 2M, . . . , N), and each

pixel has M2 possible subpixel coordinates. Since the components of the Manta rendering stack

downstream of the image traverser do not use pixel coordinates, the virtual coordinates may pass

through the software stack to the image buffer where they are transformed into a sample position

in a image buffer for the framelet batch. The use of a virtual high resolution coordinate system for

pixel placement does not incur measurable overhead compared to the row major sequential pixel

coordinates used in the standard pipeline.

The TSAR image buffer adds a framelet information table to the MantaGL image buffer. The

table contains the ID of each framelet as well as the offset in the image buffer and the destination

of the data in the framelet cache. Within the image buffer, each framelet is stored in a continuous

memory with samples stored in Morton order. Both the image buffer and the framelet table are

copied from the host to the device. The Manta fragment interface between the image traverser and

pixel sampler conceals the framelet structure and pixel sample order from downstream components

in the render stack.

3.4.4.3 Reconstruction
The reconstruction stage of the TSAR pipeline is responsible for producing an image at the

spatial and temporal display resolutions of the rendering system using the framelets stored in the

cache which contain samples at varying spatial and temporal resolutions. The algorithms used for
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Figure 3.14. TSAR implementation of the Manta rendering stack. The TSAR Image Traverser
creates Manta Fragments with pixel locations on a high resolution integer grid based on the framelets
selected for rendering. The virtual coordinates assigned by the Image Traverser and converted back
into pixel locations by the TSAR Image buffer. The remainder of the pipeline components from
Figure 3.11 are unmodified.

reconstruction, which principally involve the elimination through smoothing of temporal artifacts

while retaining sharp spatial features, are described in Chapter 4.2.

Reconstruction occurs in the last stage of the TSAR pipeline and is executed in two steps: first, a

device compute mode procedure extracts framelet information from the framelet cache and sample

density fields; this information is copied into a texture which is used by OpenGL to perform spatial

and temporal filtering in a series of final passes. Before reconstruction begins in device compute

mode, the framelet cache contains information that is at least two pipeline cycles old, i.e. t ≤ 2;

concurrently with reconstruction, the newly rendered framelets from t = −1 are copied from the

host to the device.

3.4.4.4 Framelet Cache Update
Framelet cache update is the first step in the adaptive response stage of the TSAR pipeline

and is responsible for copying the incoming batch of framelets into the cache buffer. The cache

replacement policy removes framelets from cache by comparing the age of each framelet to the

spatial age threshold within the extent of the framelet computed during reconstruction.
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3.4.4.5 Error Estimation
Sample density error estimation determines the direction and magnitude of an adaptive response

to improve the sampling efficiency and fidelity level of the renderer based on statistical characteris-

tics of the new batch of framelets. Each error estimation routine, described in Chapter 5, uses a set

of persistent data structures to characterize temporal behavior of the image. The input to the error

estimation step is the new batch of framelet samples and the output is a pair of spatial and temporal

sample rate error estimates.

The error estimation step only operates on regions of the error function within the extent of the

incoming batch of framelets. As a result, at any single instance in time, much of the error estimate

fields report zero error because no information about the adequacy of the sample rate in regions

outside of the framelet batch is available.

3.4.4.6 Density Solver
The density solver step in the adaptive response stage of the pipeline uses the error estimate

computed in the previous step to modulate the spatial and temporal sample density fields. The input

to the density solver, described in Chapter 6, is the current spatial and temporal sample density fields,

and the error estimate fields computed in the previous step. The newest image signal information

available to the density solver is estimated error from framelet samples rendered at time t = −1.

The density solver outputs the updated spatial and temporal sample density fields which are used to

update the framelet tiling.

3.4.4.7 Tile Update
Framelet tiling update is the last step in the adaptive response stage. The framelet tiling is a

piecewise constant approximation of the spatial sample density field, with a temporal rate assigned

to each tile by quantization of the temporal sample density. Instead of updating the existing framelet

tiling through a procedure of splitting and merging tiles, the approach taken by AFR[14], the tile

update procedure constructs a completely new tiling using a parallel algorithm described in Section

4.1.6. The input to the tile update step is the new spatial and temporal sample density fields and

the output is the new framelet tiling which is copied from the device to the host during the next

pre-interoperation callback.



CHAPTER 4

ADAPTIVE SAMPLE PLACEMENT

Chapter 3, which described the TSAR algorithm, presented the model and underlying modular

framework; the following chapters describe the design space of the system prototype and different

implementation choices. Results of the prototype implementation are presented in Chapter 7. This

chapter introduces the core algorithms and data structures necessary for temporally and spatially

adaptive rendering which is the first stage in the TSAR algorithm. The consequences of different

representations for the framelet tiling are presented as well as algorithms for constructing and

resampling tilings.

4.1 Spatial Structures
Row-major image pixel layout is ubiquitous in computer graphics, but it is an ill-suited repre-

sentation for operations on neighborhoods of pixels and lacks any intrinsic support for hierarchical

manipulation; these operations which are an intrinsic component of the TSAR algorithm require a

different spatial structure for image representation. The adaptive rendering approach described in

this dissertation produces imagery by rendering samples at varying spatial and temporal resolutions

based on characteristics of the underlying image signal. This requires a suitable representation for

multiresolution data and a set of operations for efficient parallel analysis, manipulation, and output.

Space filling curves are functions that provide a mapping from a two-dimensional or greater

domain, to an index or offset in a one-dimensional domain. The curve function must be invertible,

one-to-one, and onto. The row major pixel layout is an example of a very common space filling

curve that biases mapped locality of the first dimension, i.e. the row, over the locality of data along

each column. The Morton curve [46] and related tree structures described in this section avoid

biasing either of the Cartesian dimensions and intrinsically provide a hierarchy supporting mul-

tiresolution operations. The efficiency of these operations, in terms of computational and memory

complexity, contribute significantly to the realization of an interactive real-time implementation of

the temporally and spatially adaptive rendering algorithm.
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4.1.1 Spatial Tiling
The terms tile, pixel, and sample, are used interchangeably in this section to indicate a small

region of a two-dimensional domain. An image produced by the rendering system is then a col-

lection of tiles at a certain resolution, or a set of resolutions in a multiresolution case. Operations

may be performed directly on this tiling, or the tiling may be resampled into a uniform grid which

is suitable for display on a conventional monitor.

4.1.2 Morton Curve
The space filling curve generally attributed to G.M. Morton [46], also known under the names

Z-curve and N-curve, is obtained by uninterleaving the bits of a one-dimensional index into coordi-

nates in two or more dimensions. The curve provides a balanced locality trade off between row and

column major ordering [63].

Cartesian coordinates are converted to one-dimensional offsets along the space filling curve

by interleaving the bits of each coordinate. As illustrated in Figure 4.1, which shows the first 16

tiles along a Morton curve in two dimensions, the tile at Cartesian position (3, 2) is obtained by

interleaving two-bit sequences 3 = 11 and 2 = 10 to obtain a four-bit sequence 1101 = 13. The

Cartesian position is the thirteenth coordinate along the curve. This procedure may be accelerated by

precomputing look tables following the approach of Wise et al. [73]. The more common operation

is to obtain Cartesian coordinates of a tile along a Morton curve by reversing the interleaving of the

tile index, e.g. to convert uniform tiles along a Morton curve to row-major order for display.

4.1.3 Morton Order Tree
The integer order of indices in the Morton curve may be easily adapted for representation of

binary trees by adding an offset based on the depth of the tiles at a certain level in a complete binary

tree. For example, the tiling in Figure 4.1 contains 16 tiles corresponding to depth 4 in a complete

binary tree; therefore, the curve indices are offset by 24 = 16 to obtain tiles 16 . . . 31 of a Morton

order kd-tree. Figure 4.2 contains tilings in the first six levels of a Morton order kd-tree; Figure

4.2(e) corresponds to the tiles shown in Figure 4.2.

4.1.3.1 Tree Traversal
Traversal through a Morton order kd-tree is accomplished by shifting a tile index right or left.

Mk = kthtile in Morton order (4.1)



62

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

00 01 10 11

00

01

10

11

Figure 4.1. Coordinates of the first 16 tiles in a two-dimensional Morton curve. Note that in a
Morton order quad-tree the first tile in the lower left corner would be labeled 16.

1

(a) Depth 0

2 3

(b) Depth 1

4 5

6 7

(c) Depth 2

8 9

10 11

12 13

14 15

(d) Depth 3

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

(e) Depth 4

32

63

(f) Depth 5

64

127

(g) Depth 6

Figure 4.2. Tiles in a Morton order kd-tree.

Parent2 (Mk) = Mk/2 (4.2)

Children2 (Mk) = {M2k,M2k+1} (4.3)
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4.1.3.2 Quad-tree
Quad-tree may be represented by a Morton order tree by using only square tiles and skipping

each tiling at odd depth. The traversal algorithm must be modified to skip odd depths by shifting

indices two bits between generations instead of one bit.

Parent4 (Mk) = Mk/4 (4.4)

Children4 (Mk) = {M4k, . . . ,M4k+3} (4.5)

The advantage of the quad-tree is that the shape of each tile is the same, regardless of depth in

the tree. Applied to framelet-based adaptive sampling, the square tiles provide an isotropic sample

density at the cost of one unused bit in the tile indices representing the tree.

4.1.3.3 Interval Operations
MinChildd (Mk) returns the smallest child of Mk and depth d, i.e. the first child encountered

in a breadth first traversal of the complete tree. If Mk is more shallow than d, then the ancestor is

returned.

MinChildd (Mk) =

{
Mk·2(d−log2 k) if log2 k < d

Mk·2−(log2 k−d) otherwise
(4.6)

For example, MinChild4 (M5) is the first tile at depth 4 with ancestorM5. Since log2 5 = 2 <

4, the first case is used: M5·2(4−log2 5) = M20.

The breadth of the subtree ofMk at depth d is given by Overlapd (Mk). This function provides

the extent of a coarse tile in terms of fine tiles at a given depth; combined with MinChild, it is used

to resample Morton order tilings at different uniform resolutions.

Overlapd (Mk) = MinChildd (Mk+1)−MinChildd (Mk) (4.7)
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Parallelization of operations upon uniform Morton order tilings may be accomplished by parti-

tioning the tiling into power of two sized square intervals. The square partitions of a fine tiling form

a coarse tiling.

4.1.3.4 Resampling Between Uniform Resolutions
Consider resampling the uniform tiling in the Morton quad-tree at depth 6 in Figure 4.2(e)

containing 16 tiles, to the tiling in Figure 4.2(c) containing 4 tiles. The finer resolution tiling

contains tile indices 16 . . . 31, and the lower resolution output contains tiles 4 . . . 7. Each tile index

is shifted two bits to the right to obtain the destination tile in the lower resolution tiling. The intervals

of the Morton order curve in the finer resolution tiling corresponding to the same tile in the lower

resolution tiling are continuous, e.g.M∗
4 in the output is produced from tiles 16, . . . , 19 in the input.

Mk, k ∈

16, 17, 18, 19︸ ︷︷ ︸
M∗

4

, . . . , 28, 29, 30, 31︸ ︷︷ ︸
M∗

7

 (4.8)

If the resample operation is implemented using a parallel processor, it is very efficient to divide

the fine resolution input tiles between processing elements based on the coarser resolution output

tile, since it overlaps a continuous region along the linear curve.

4.1.4 Depth First Tree
The breadth first Morton order quad-tree is sufficient for operations on uniform resolution fields

represented by uniform tilings; operations such as resampling of multiresolution tilings are much

less efficient. Consider resampling the simple tiling in Figure 4.3(a) to the uniform tiling M∗
k, k ∈

{4, 5, 6, 7} in Figure 4.2(c).

Mk, k ∈

4, 7, 20, 21, 23︸ ︷︷ ︸
M∗

5

, 24, 25, 26, 27︸ ︷︷ ︸
M∗

6

, 88, 89, 90, 91︸ ︷︷ ︸
M∗

5

 (4.9)

The procedure is more complicated than in the uniform resampling case because coarse tiles

in M∗ overlap disjoint intervals within tiling Mk, e.g. tiles 20, 21, 23 near the beginning of the

input contribute to M∗
5, but so do tiles 88, 89, 90 and 91 which occur at the end. The resampling
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procedure must locate these intervals and update values of the coarse tiles safely and efficiently.

Parallel resampling might result in a data hazard if two of the overlapping intervals are operated

upon by different processing elements at the same time. The potential hazard may be avoided by

coalescing all of the resampling work for a coarse tile overlapping disjoint intervals, e.g. M∗
5, into

a continuous interval within a different space filling curve. Coalescing may be accomplished by

reordering the tiles such that the complete subtree of M∗
5 is contiguous in the new space filling

curve. Parallel resampling may be safely performed by dividing the continuous intervals of the new

curve between processing elements. This new curve is a depth first ordering of the quad-tree.

The maximum depth of the complete tree must be specified to determine tile order since all

possible tiles in the first subtree, based on its maximum depth, must be ordered before the first tile

in the second subtree. Let

Dk = kthtile in depth first order (4.10)

D (Mk) = tile in depth order corresponding to Mk (4.11)

The reordering operation finds D (Mk) for each tile in the Morton tiling, then sorts the tiles by

Dk such that each subtree of M∗ is a continuous interval along the curve. Consider D (Mk) for a

complete binary tree; the number of tiles visited in depth first order before Mk is equal to all tiles

visited up to and including the parent Mk/2, plus the size of a sibling subtree Mk−1, plus one if k

is odd. The size of the complete binary subtree Mk is

∥∥∥Mk

∥∥∥ =
∑

i=0...(m−log2 k)

2i = 2(m−log2 k)+1 − 1 (4.12)

where m is the maximum depth of the tiling.

D (Mk) may be written as a recurance:
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D (Mk) = 1 +D
(
Mk/2

)
+

{∥∥∥Mk−1

∥∥∥ k is odd

0 otherwise
(4.13)

D (M1) = 1

Like tile indices of the Morton order trees, indices in the depth first order trees are assigned

based on a complete binary kd-tree, of which half of the indices are unused in a complete quad-tree.

Since an entire subtree must be counted before proceeding to neighboring tiles, siblings at shallow

depths fall very far apart in the curve.

4.1.4.1 Resampling Between Tilings
Reordering the tile indices in Figure 4.3(a) obtains the indices shown in Figure 4.3(b). The

overlapping tiles for resampling are now coalesced into continuous intervals along the curve.

Dk, k ∈

3, 36, 43, 53, 54, 56, 57, 58︸ ︷︷ ︸
M∗

5

, 68, 75, 83, 90︸ ︷︷ ︸
M∗

6

, 97

 (4.14)

The multiresolution tiling does not necessarily consist of complete subtrees; in most cases the

tiling is formed by a nonoverlapping cut through the tree. As a result, the functions MinChild

and Overlap may not be written in closed form; they require a search over the tiling in curve order.

Fortunately in the case of resampling, the search may be performed for continuous intervals between

specific values.

Overlap (Mk) = {D (Mk) , . . . ,D (Mk+1)} (4.15)

For example, Overlap (M∗
5) = {D (M∗

5) , . . . ,D (M∗
6)} = {D34, . . . ,D66}; although these

tiles do not appear in the depth first order tiling in 4.3(b), their indices bound the possible overlap-

ping interval of M∗
5.

4.1.5 Summed Area Table
The integral over a coarse tile can be computed by finding the interval of fine tiles at the scalar

field resolution contained within it. For example, in a complete Morton order quad-tree, coarse
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Figure 4.3. Comparsion between Morton tiling and depth first tiling.

tile 4 contains fine tiles in the 1D interval [64, 79], inclusive, at depth four. The interval can be

found quickly by bit shifting the tile id from its depth to the depth of the scalar field. Since the

quad-tree curve advances by four times per level, moving from depth two to depth four requires

shifting four bits left: 4 � 4 = 64 and (4 + 1) � 4 = 80, so the interval for tile 4 and depth 4 is

[64, 80) = [64, 79].

The integral over 1D intervals in the Morton curve may be evaluated quickly by computing a

prefix sum along the curve over the scalar field. The integral over tiles [64, 79] is evaluated by

translating the interval into scalar field coordinates. Index 64 is the first tile at depth 3, so the

translated interval is [0, 15]. The integral is computed by subtracting the prefix sum to the left of

the translated interval from the prefix sum at its right extent.

4.1.6 Tiling Construction
The construction of multiresolution tilings is one of the two most common operations performed

on Morton order trees in this dissertation. The predominant use of a multiresolution tiling is to

approximate a discretized scalar field with a nonoverlapping set of piecewise constant tiles. The

tiles vary in size such that the integral of the scalar field over each tile is approximately the same.

4.1.6.1 Serial Construction
Construction of the Morton order quad-tree may be performed serially using a tile stack and an

output queue. First the tile stack is initialized with the root tile M1, then while the stack is not

empty, tile Mk is removed from the stack. If the integral over the discretized scalar field within the

tile is less than the tile threshold, or if log2 k is greater than the maximum depth, Mk is added to an
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output queue, otherwise Children4 (Mk) is added to the stack.

4.1.6.2 Data Parallel Construction
Simple parallelization of the serial algorithm by adding children nodes to a work queue tended

by multiple threads suffers from exponential growth of the stack, since during refinement of the

tiling, each thread adds four tiles to the stack for each one removed. This quickly causes the stack

to fill which prevents the algorithm from making forward progress.

Instead of storing tile ids on the stack, the algorithm may be reformulated so that each thread

operates within an interval on a Morton curve over the quad-tree. The total number of intervals

does not need to grow exponentially and may be bounded by the amount of memory or number of

parallel processors available. If additional processing elements or stack space become available, an

interval may be split into pieces. In the most common case when the system is fully subscribed,

each processor advances through a single interval on the curve.

Each interval is represented as a one-sided inclusive range in the Morton order quad-tree, e.g. tile

4 is represented as [4 5). During each step, the processor may push or pop an interval on the stack,

or split an interval. Pushing constitutes subdividing the tile [4 5) → [16 20) . Popping is exactly

the opposite, [18 20) → [4 5). Splitting an interval is performed if additional threads or storage are

available for processing. The thread creates three new tiles for the first three quadrants of current

tile, then advances the current token to the third child. For example splitting [16 20) yields [64 65),

[65 66), [66 67), [67 80). The interval cannot necessarily be divided into equal pieces because the

integral of sibling tiles 17,18, and 19, has yet to be evaluated.

The algorithm proceeds as follows: first, a token array with a set of coarse tile intervals covering

the domain is initialized on the stack. Each processor loads an interval and computes the integral

over it using a prefix sum. If the integral is less than some threshold or if the tile index is greater

than another threshold, the index is added to the output queue. Otherwise, if the tile is a third child,

i.e. the last sibling of a common parent, a new tile is popped from the stack. In the case that the

tile is not the third child, it is split if there is enough room on the stack, or simply put back on the

stack if additional storage is not available. If the output queue is filled, it may be flushed before the

algorithm continues with the current contents of the tile stack.

Although this algorithm solves the exponential stack growth problem, it does not immediately

address the exponential growth of parallel work, and does not attempt to load balance between

threads. Consider a simple initialization case where intervals for tiles 4, 5, 6, 7 are written to

the input array. The first four processors will pick up 4, 5, 6, and 7, and quickly fill the array with

subsequent children; however, the remaining processors will exit immediately. If the output queue is

sufficiently large, these four processors would produce the entire tiling in a very inefficient manner.
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This type of load imbalance can be avoided by either initializing the algorithm with a greater

number of intervals, or interrupting the kernel after a sufficient number of intervals are split, and

restarting it. After the restart, a greater number of processors will pick up intervals from the input

array. In this model, load imbalance caused by early processor termination when an interval is

exhausted may be addressed by stream compacting the input interval array after each iteration of

the algorithm.

The algorithm is invoked exactly the number of times necessary to output a tiling containing

the maximum number of tiles (which should be almost constant in TSAR). Later invocations of the

kernel simply do not perform any work: the threads start, read null tokens from the input array, then

immediately exit.

4.2 Framelet Reconstruction
Image reconstruction is the final stage in the TSAR pipeline in which the rendered samples

contained in the framelet cache are combined to create a uniform resolution image for display to the

user. Framelets in the cache are rendered at varying resolution and produced at different times. The

operation is performed in two steps; the first consists of copying information from the framelet table

into memory accessible by the graphics device, and the second step performs several rasterization

passes to shape filters before cached framelets are resampled to display resolution. Pipeling the two

steps allows the serial memory copy step to occur in parallel with other computation as indicated

in Figure 3.13. The reconstruction stage performs both spatial and temporal filtering; framelets are

resampled spatially to output pixel resolution, and framelets that overlap spatially but are rendered

at different times are resampled to the leading edge of time.

4.2.1 Reconstruction Artifacts
Reconstruction artifacts arise in regions with discontinuities in the age of framelets as well as

regions where the spatial sampling rate changes and does not adequately capture fine detail in the

scene. Both types of artifacts are addressed by increasing the amount of smoothing in problematic

transition regions.

Inadequate or incorrect adaptive response is the principal cause of artifacts during reconstruc-

tion. While oversampling of the underlying image signal in the spatial domain usually only results

in inefficiency, in the case that the total amount of computational capacity of the rendering system

is limited, the inefficiency may redundantly sample one region while starving another region, which

may result in spatial or temporal undersampling. Undersampling in the temporal domain, i.e.

delayed sampling of the underlying image signal, is a more difficult artifact to overcome because

the cache might not contain information about moving features at any level of spatial detail. Both
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spatial and temporal undersampling may result in addition during reconstruction of high frequency

detail or edge artifacts to the rendered image. In the spatial domain, these artifacts appear as rough

high contrast jagged edges when the discrete input samples lack the resolution to determine where

the high frequency detail is located. The analogous artifact in the temporal domain is tearing, where

one region of the image contains samples older than a neighboring region. If the image signal

contains motion, undersampling in the temporal domain may cause the object in motion to appear

in more than one place across the image at a time.

The ambiguity introduced by either spatial or temporal undersampling, i.e. as to where in the

image, or from samples rendered at which time, a high frequency detail should be reproduced, is

addressed by smoothing or blurring the detail. This results in motion blur in the temporal domain.

In fast changing regions of the image, or in regions with improper temporal oversampling, excessive

motion blur, or smoothing in the temporal domain, may result in the loss of spatial detail as well.

The principal challenge faced by the reconstruction stage of the TSAR algorithm is different than

the resampling problem addressed in many computer graphics applications such as image resizing

or video resampling. In these applications, image pixels are produced by a low pass filtering process

over sample data collected at a spatial sample rate, e.g. a physical scene exposed to a camera with

optics that integrate light over each element in the sensor, or a photorealistic rendering engine in

which a large number of secondary rays sample the illumination of a hemisphere. In these instances,

low pass filtering of high resolution samples eliminates errant high frequency or noise and produces

smoothly varying image features, in many cases with significant redundancy. In the adaptive

rendering case, the input is the result of a sampling process which attempts to eliminate as much

redundant detail as possible. The reconstruction stage often upsamples rendered samples to output

pixel resolution or resamples to output resolution with little additional information. In this case,

information about redundant detail in the discrete samples is not available during reconstruction.

4.2.2 Algorithm
The reconstruction stage of the TSAR pipeline uses a spatial and temporal weighting scheme

to combine the contents of the framelet cache and produce the output image for display. The

algorithm uses the graphics processor to determine regions of the cache likely to introduce high

frequency temporal edges and then estimates temporal weights to smooth these discontinuities. This

is performed in four steps, shown in Figure 4.4. First, the age of the most recent framelet in each

pixel is determined by rasterizing the framelet cache and using framelet age as depth. The resulting

depth buffer is referred to as an age buffer. Next, discontinuities between the age of framelets within

the age buffer are smoothed. In the third step, the framelet cache is rasterized against the smoothed

age values in the age buffer; samples newer than the value in the buffer pass the depth test and are
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accumulated to the color buffer along with a temporal weight based on the difference between the

framelet age and the value in the buffer. In the last step of the reconstruction algorithm, the color

buffer is normalized and resulting image is displayed.

The four steps of the reconstruction algorithm are predominately concerned with shaping tem-

poral filters such that tearing artifacts are reduced without sacrificing excessive spatial fidelity due

to the introduction of motion blur. This is especially important in fast changing regions with higher

temporal sample rates where a small temporal filter width may combine many framelets. Spatial

filtering is required to avoid the introduction of spatial high frequencies, especially in regions where

the resolution of available framelets changes; however, the set of framelets which may contribute

to the reconstruction of the image in a given region depends of the temporal characteristics of the

image signal and the contents of the framelet cache. In regions with significant temporal change, and

therefore high temporal refresh rates, although the cache may contain a large number of overlapping

framelets in the region, only the newest framelet is likely to be available due to the shape of temporal

filter weights. In this case, since this output must reflect the newest information in the framelet

cache, spatial filtering is limited by the constraints of temporal reconstruction process.

The temporally coherent collection of samples contained within each framelet largely simplifies

the temporal reconstruction problem; within the extent of a cached framelet tile, signal reconstruc-

tion at the leading edge of time consists of spatial reconstruction at the temporal plane of the

newest framelet; along the boundaries of the newest framelet where the age of framelets in the

cache changes, reconstruction must smooth artifacts caused by temporal discontinuities.

4.2.3 Temporal Filtering
Reconstruction of framelet samples in the temporal dimension consists of a downsampling

operation which must bias the newest framelets available while smoothing transitions between

newer and older framelets. Figure 4.5 contains a reconstructed frame as well as the subset of the

framelet cache used to reconstruct a square region of the frame. The framelets within the square

region indicated in Figure 4.5(a) are shown in Figure 4.5(b) with time running along the vertical

axis. The dashed line in the figure indicates a single column of the image examined in greater

detail in subsequent figures. The framelets inside this region of the image were rendered at several

different temporal refresh rates, e.g. the framelets in the upper part of the region which the vehicle is

moving through are refreshed frequently and are spaced close together along the vertical axis, while

the framelets in the lower part of the region are spaced much further apart.

In regions with animation, the newest framelets contain the most accurate samples of the motion.

If these framelets alone are used for reconstruction, in cases like Figure 4.5(b), where the newest

framelets differ by several hundred milliseconds, the temporal difference between newest framelets
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Figure 4.4. Rasterization passes during reconstruction.
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Figure 4.5. Reconstruction and the framelet cache. The result of temporal smoothing based on an
age heuristic is shown in (a), the framelets within the square region of the image are plotted in (b).

will result in a tearing artifact where the motion will appear to be incomplete or the moving object

will appear to be in two places at once.

The large difference in framelet age shown in Figure 4.5(b) is due to an inadequate granularity

of temporal adaptive response. Because the lower portion of the highlighted region contains low

spatial frequencies and is dominated by static geometry, it is sampled at a lower spatial sample

rate by a large framelet tile. The high frequency temporal change caused by the vehicle wheel and

movement of the vehicle crosses the upper left corner of the low spatial frequency tile. In this case,

the amount of temporal change was likely not sufficient to result in either a subdivision of the tile

or an increase in the temporal refresh rate of the whole tile.

Reconstruction filters along the temporal dimension are applied at each pixel in the output image

to resample framelets overlapping that pixel to a single color at the leading edge of time. Temporal

filter shape is based on the framelet sample age field computed in the first step of the reconstruction

stage shown in Figure 4.4. The filter shape is determined by the difference in the temporal dimension
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between each framelet sample and the age function.

To shape the filter more broadly at discontinuities in the age of the newest framelets available,

the age field is smoothed on the newer side of a temporal discontinuity between framelets. This

process is illustrated in Figure 4.6 which shows the framelets overlapping the column highlighted

in Figure 4.5(a) and Figure 4.7 in two dimensions; the vertical dimension of the figure indicates the

spacing of framelets along the temporal axis. The age field, given by the time stamp of the newest

framelet available in the cache for reconstruction, is indicated by the dashed line.

Framelet samples at the temporal value equal to or greater than the age field are given positive

temporal weights, while samples less than, or older than, the age field are given a weight of zero. In

the implementation used in the prototype, older samples are culled by a depth buffer operation

and do not contribute to reconstruction. Smoothing around temporal edges in the age field is

accomplished by decreasing the age field on the newer side of the discontinuity, as indicated by

the solid curve in Figure 4.6.

The age field is manipulated by applying a smoothing convolution which is constrained to only

decrease the value of the field; therefore, on the edge show in the figure, it only decreases the age

value on the right side of the discontinuity, but does not increase the age value on the left side.

This results in older framelet samples on the right, or newer, side of the temporal discontinuity

contributing to the reconstructed image and eases the transition between image samples rendered

at different times. The smoothing operation on the age field must be performed using a one-sided

operator since the age function must always be less than or equal to the age of the most recent

framelet.

The result of age smoothing for the frame shown in Figure 4.5(a) is shown in Figure 4.7. Regions

in the figure with greater luminance are newer framelets. Overlap between framelets, e.g. between

the two light gray framelets in the lower left corner, is due to the increased framelet splat size used

to perform spatial reconstruction across framelet boundaries. The temporal age of a framelet effects

the age buffer across the entire spatial extent of all samples in the framelet.

The depth buffer and depth test available on conventional graphics hardware may be used to

produce the age field, and also to efficiently cull framelets older than the field. In the first pass of the

reconstruction algorithm, the depth buffer is used to create an age field by rendering each framelet in

the cache at its spatial position and at a depth proportional to the time stamp of the framelet relative

to the oldest and newest framelets in the cache. The second pass of the reconstruction algorithm

is performed by smoothing the age field using the depth buffer computed in the first step. Before

the third and fourth passes, the depth test is reconfigured to only allow samples greater than the age

field stored in the depth buffer. Samples rendered after the age smoothing pass are tested against
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Figure 4.6. Temporal reconstruction in two dimensions. Framelets overlapping the column
indicated in Figure 4.5(a) and Figure 4.7 are shown in profile.
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Figure 4.7. Reconstruction age fields. The input age field based on the contents of the cache is
shown in (a), and the result of smoothing sharp edges to smooth temporal artifacts is shown in (b).

the depth buffer, but do not modify it. To prevent framelet samples equal to the age field from being

culled, the framelets are shifted in the temporal dimension by half the maximum temporal resolution

supported by the rendering system.

4.2.4 Spatial Filtering
Reconstruction in the temporal dimension always results in downsampling, i.e. the reduction

of all of the overlapping samples in the image within a temporal window to a single output at

the leading edge of time, given the amount of available redundancy in most workloads, and the

distribution of sample densities, upsampling from low resolution framelets to output pixels at a
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higher resolution is more common than spatial smoothing.

Spatial reconstruction is performed using a scattering approach where framelets are splatted to

the output buffer as square quads with enlarged extent to cover the support of all samples within

the framelet. The effect of the enlarged framelet extent may be observed in Figure 4.7 which shows

the contents of the age buffer consisting of framelets rendered at different times. Framelets in the

lower left region of the image appear to have overlapping corners due to the enlarged spatial extent

of each framelet. The spatial location of each framelet sample remains the same, and the extent

of the framelet quad is enlarged by half the spatial resolution of the framelet, i.e. half the distance

between neighboring samples in the framelet. When composited to the output buffer, both color and

combined spatiotemporal weight are accumulated. The spatial weight about each framelet sample is

given by a bilinear filter centered at the spatial location in the output image of each framelet sample.

During the final step of the reconstruction stage, the accumulated weight is used to normalize the

accumulated color at each pixel in the output image.

The result of this reconstruction algorithm is shown in the examples given in Chapter 7. Since

reconstruction is the last stage in the TSAR pipeline, it is principally concerned with compensating

for artifacts or inadequacies introduced by earlier stages, e.g. Figure 7.24 which shows the effect

of modulating response parameters to exacerbate rendering artifacts. Much image processing can

be performed during reconstruction to correct adaptive response mistakes by smoothing temporal

artifacts or sharp transitions between levels of spatial detail. Unlike the earlier stages of the TSAR

pipeline, however, the cost of reconstruction scales with the number of output pixels in the final

image, not the number of samples in the framelet cache, or indirectly, the spectral complexity of the

underlying imagery. The reconstruction approach presented here provides a mechanism to display

the contents of the framelet cache in a direct manner with a minimal amount of work performed

to smooth spatiotemporal sampling artifacts. Temporally and spatially adaptive sampling is the

primary focus of this dissertation, not reconstruction; the principal mechanism available in the

TSAR pipeline to correct temporal artifacts in rendered imagery is the adaptive response process,

not the smoothing and blurring performed during reconstruction.



CHAPTER 5

ERROR ESTIMATION

The sample rate error estimate across the spatiotemporal image is computed by the third stage

of the adaptive rendering pipeline, shown in Figure 1.2, and used by the fourth stage to adapt the

sampling rate. This chapter defines the ideal sample rate and sample rate error in the frequency

domain. Two approaches are described to approximate the spectral formulation, the first in the

spatiotemporal domain, and the second using wavelet statistics.

Error estimation and spectral characterization of the image signal described in this chapter is

performed at discrete locations across the image domain: these estimates may be interpreted as

locally greedy control responses to adapt the sample density. Chapter 6 describes how the individual

responses are combined, and how the sample rates used for rendering are changed, without violating

constraints and limitations on the system as a whole.

5.1 Sample Rate Error
Sample rate error is defined as the signed amount which the spatial or temporal sample densities

must change to perform both sufficient sampling of the underlying image signal, and to reduce

the amount of redundant sampling work performed during rendering. The necessary spatial and

temporal sample density across the image changes over time as user interaction or scene animation

causes the underlying image signal to change. Sample rate error is a signed quantity. Regions

where redundant sampling work is performed, or the image is oversampled, have negative error.

Regions where the sample rate is low, or the image signal is undersampled, are defined as having

positive error. The sign of the sample rate error estimate indicates the direction in which the current

sample rate should change to obtain the ideal sample rate. The magnitude of the error estimate

is proportional to the distance between the current rate and the ideal, or optimal, rate in both

dimensions.

The ideal spatial and temporal sample rates, which vary across the image, are unknown due to

the discrete sampling theorem, and the assumption that the underlying image signal for the graphics

scene is not bandlimited. The error estimate φ must be formed in relative terms by guessing the

direction and distance from the current sample density to the ideal sample rate. Consider a case
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where the spatial sample density is already close to the maximum rate the renderer is capable of

sampling, and there is very little change in color between samples; since the graphics scene is

not band limited, a very small, and very high frequency, image feature may still occur between

neighboring samples. This feature is out of phase with the sample pattern and will not be discovered

until the sample density is sufficiently increased, or the feature happens to enter the same phase as

the sampling function.

5.1.1 Schematic Interpretation
The spatiotemporal sample density error estimate φ may be interpreted in a schematic figure

using an illustration of a two-dimensional space, if the spatial sample resolution is assumed to be

isotropic. The spatial sample density in both the horizontal and vertical dimensions of the image

may be plotted along the horizontal axis of the figure, increasing from left to right. The temporal

sample density may be plotted along the vertical axis, increasing from bottom to top. Higher overall

sample rates, i.e. small framelet tiles with frequent refresh, occur in the upper right corner of the

space, while lower sample densities occur in the lower left near the origin.

Figure 5.1 illustrates the error estimation problem at one element, or discrete location, in the

image domain; point a is the current spatial and temporal density for the element, located at the

coordinate a = 〈θn
s , θ

n
t 〉, and unknown ideal sample density Θ∗ for the element is indicated as

a set of possible values. In the sample density space, the error estimate is the vector φ pointing

from the current density a towards a point in the estimated set Θ∗ which contains the ideal sample

rate. In this example, the set is plotted as a dotted circle to indicate that the exact value of Θ∗ is

unknown. The shape of the estimated set of possible Θ∗ depends on the mechanism used by the

control algorithm to characterize redundancy in the signal. The actual unknown ideal spatial and

temporal sample density, which adequately samples the signal with minimal redundancy, is a single

point in the space, not a set of points.

The magnitude of the spatial and temporal error, and therefore the precise direction, i.e. within

a quadrant, are approximate given the degree of uncertainty as to the location of Θ∗. Depending

on the direction and magnitude of φ, sample density may be add to or removed from the element;

also, if the current density is close to a maximum or minimum, the error vector may need to be

constrained before adaptive response is performed; these operations are performed by the adaptive

response control decision solver, described in Chapter 6.

5.1.2 Ideal Sample Density
The accuracy of the estimated set of possible Θ∗, and the error estimate vector φ depend on the

approximation used to characterize the redundancy, or efficiency, of the current sampling rate. In
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Figure 5.1. Sample rate error estimation at one element in the image. Point a is located at the current
spatial and temporal sample densities, the set Θ∗ indicates the unknown ideal spatiotemporal sample
rate based on the underlying image signal. The error estimation procedure computes vector φ, based
on characteristics of rendered imagery.

Figure 5.1, the ideal spatial and temporal sample density in the spatiotemporal domain is indicated

by a circular set Θ∗ to illustrate the uncertainty regarding its value. With only information about

the signal obtained from the adaptive sampling process, the actual ideal sample density may not

be determined exactly, and while the control algorithm implicitly estimates a set of possible ideal

densities, the shape of the set is likely not a circle.

Within a region of the image, such as a framelet tile, the ideal sample density Θ∗ must strike

a balance between using a higher sample rate to capture high frequency energy at sharp image

features, and the amount of redundant sampling work performed in low frequency areas of the

tile. Given the expected power law of natural imagery described in Section 1.3.4, lower frequency

features are expected to dominate the image. After the sample rate is high enough to capture

the energy of these features, the amount of additional energy captured by continuing to increase

the sample rate asympotatically approaches zero, while the amount of redundant sampling work

increases. The ideal sample density Θ∗ occurs at a point after a sufficient amount of low frequency

energy has been captured by the sampling process.
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5.1.2.1 Frequency Domain Interpretation
To illustrate this definition of Θ∗ in the frequency domain, consider the test scene shown in

Figure 5.2 which has spectral characteristics that are representative of an entertainment graphics

workload. The example consists of a half second animation sequence from the car scene from

which the framelet tile number 1442, shown in black, and enlarged in the upper right corner, is

sampled at a resolution of 1024 samples in each dimension. The sample rate corresponds to 642

samples per pixel at the 5122 pixel resolution shown in the figure, and a refresh latency ∆t < 1ms.

This sample rate is significantly higher than the TSAR prototype is capable of either rendering or

analyzing interactively. The maximum spatial rate of 42 samples per pixel, and 16ms refresh latency,

is a typical configuration for the real-time system.

In the high resolution discrete case, the ideal sample density Θ∗ may be determined by identify-

ing the spatial and temporal sample rate at which most of the energy, i.e. within a certain percent of

the total energy, is captured. In the frequency domain, the ideal spatiotemporal domain sample rate

Θ∗ is determined by finding the corresponding frequencies fs and ft, below which a certain percent

of the total energy in the high resolution discrete signal is represented.

The norm operator Normps (s, t), subsequently defined, is a measure of the total energy in the

three-dimensional power spectrum contained in the bands [1, s] in the spatial x and y directions,

and [1, t] in the time direction. The operator performs a sum in the power spectrum over a square

band of spatial frequencies, since the spatial sample density is assumed to be isotropic, and over a

rectangular band of temporal frequencies.

Let F [x, y, t] be the discrete Fourier transform of the high resolution example signal shown

in Figure 5.2, the power spectrum F2 [x, y, t] contains coefficients in eight octants corresponding

1442

Figure 5.2. Θ∗ example scene. To illustrate the definition of Θ∗ the framelet highlighted is rendered
at a spatial resolution of 1024 samples per pixel and 1024 frames per second.
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to each combination positive and negative frequencies 1, . . . , N/2, the power of these octants is

combined by the function F̄2 [x, y, t]:

F̄2 [x, y, t] =
∑

l ∈ {−x,+x}
m ∈ {−y,+y}
n ∈ {−t,+t}

F2 [l,m, n] (5.1)

Then the norm is computed by summing the total power in rectangular bands s× s× t in size:

Normps (s, t) =
∑

z=1...t

 ∑
x=1...s

∑
y=1...s

(
F̄2 [x, y, z]

) (5.2)

The spatial power summation operation is illustrated in Figure 5.3(a) for the first slice along the

temporal axis. The scalar field in the figure is a color mapped image of the log of the total power at

each spatial frequency across all eight octants of the three-dimensional FFT, produced by equation

5.1. The spatial power norm consists of summing the total power in each square band along the

diagonal, indicated by the dashed line, e.g. Normps (fs, 1), which is the sum of all power in the

square band outlined in the figure. Figure 5.3(b) contains a log/log plot of the spatial power norm

taken across the diagonal of the slice. The spatial derivative in this plot decreases very quickly.

The frequencies fs and ft are the minimum at which the gradient magnitude of the norm, i.e.∥∥ ∂
∂s ,

∂
∂t

∥∥, passes below the threshold τ :

min
fs,ft

|‖5 (Normps (fs, ft))‖ − τ | (5.3)

By the Nyquist sampling theorem, the minimum spatiotemporal sample rate necessary to obtain

the energy in the power spectrum bounded by frequencies fs and ft is:

Θ∗ = 〈2fs, 2ft〉 (5.4)
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Figure 5.3. Θ∗ example power spectrum norm.

The shape of Normps (s, t) on a log scale is shown in Figure 5.4(a); the point labeled Θ∗ in

Figure 5.4(b) indicates the location of 〈fs, ft〉. The norm is shown in three dimensions in Figure

5.4(a) and as a contour plot in Figure 5.4(b). The surface climbs steeply in low spatial and temporal

frequencies before reaching a plateau which extends through the remainder of the domain with a

very small derivative. Figure 5.3(a) shows the spatial extent of the frequency band fs; while many

features in F̄2 are visible outside of the square band indicated, based on the shape of the norm

shown in Figure 5.4(b), the power in those features does not significantly contribute to the amount

of energy already captured at band width fs.

This example, with the output pixel resolution 5122 shown in Figure 5.2, Θ∗ corresponds to

a spatial sample rate of 82 samples per pixel with an 8ms refresh latency. The ideal sample rate

falls outside the capability of the TSAR prototype, indicated by the the region Ωθ in Figure 5.5(a),

which contains an enlarged view of the lower frequencies in Figure 5.4(b). Realizable discrete rates

within this region are described in Section 6.1.1. Since the ideal sample rate is well outside Ωθ, the

adaptive response control decision will eventually split framelet tile 1442 into smaller subregions

within which the individual ideal sample rate may be realizable. The upper left subtile of 1442

shown in Figure 5.2 contains a very low frequency signal, which may indeed fall within Ωθ, while

the lower right subtile contains several sharp edges; the ideal sample density in this subregion will

likely remain outside of Ωθ.
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Figure 5.4. Θ∗ example surface.

5.1.2.2 Error Estimation
The objective of the sample rate error estimation stage is shown in terms of the power spectrum

norm in Figure 5.5(b); the point a indicates the boundary of the frequency band corresponding to the

spatiotemporal sample rate of rendering the example framelet, tile 1442, shown in Figure 5.2. For

each framelet, the error estimation mechanism attempts to approximate the local power spectrum

norm surface and the location of point a based on the current spatiotemporal sample rate. From

this point, the adaptive response should follow the surface gradient to the ideal sample rate Θ∗. The

error response vector φ is the subsequent direction and magnitude estimate following the gradient.

Real-time computational limitations prevent the error estimation mechanism from approximat-

ing the power spectrum norm surface as accurately as the analysis described in Section 5.1.2.1;

instead, the surface gradient in the immediate vicinity of point a is approximated by a variety of

statistical approaches in the spatiotemporal and frequency domains. These approaches approximate

the power spectrum by projecting the signal across different sets of basis functions in the spatial

and temporal domains. Section 5.2 describes the use of sample variance between luminance and the

spatial and temporal directions, and Section 5.3.2 describes the use of a discrete wavelet transform

to approximate the shape of the power spectrum norm.
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Figure 5.5. Θ∗ example contour plot of the surface shown in Figure 5.4(a). The region Ωθ indicates
the sample resolutions realizable by the TSAR prototype.

5.2 Spatiotemporal Domain Approximations
The principal motivation for employing first order statistics in the spatiotemporal domain is that

they are computationally inexpensive and produce a concise, if inaccurate, characterization of the

image signal. Higher order spectral statistics may more accurately approximate the power spectrum

analysis described in Section 5.1.2.1, but require a greater amount of computation and produce more

information which must be eventually reduced to a single sample rate error estimate.

5.2.1 Variance
Sample population variance is a first order statistic widely used to estimate the amount of noise

within a small image region such as a pixel. Since the spatial extent of the sample population is

sufficiently small, variance is assumed to be inversely proportional to convergence of the iterative

rendering process.

The variance of a collection of samples is given by the average distance between each sample

and the mean:

Var(x) = E
[
(x− x̄)2

]
=

1
N

N∑
i=0

(xi − x̄)2 (5.5)

Using samples from a framelet, variance may be interpreted as an approximation of average

power, or unlocalized power magnitude across the entire extent of the framelet at all scales. With
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this interpretation, the difference between each luminance sample and the mean is expressed as a

potential difference, the squared value of which may be taken as approximate power. The sum of

squared differences in equation 5.5 is then a norm

(xi − x̄) = V (5.6)

1
N

N∑
i=0

(xi − x̄)2 =
1
N

∥∥V 2
∥∥

1
(5.7)

≈ 1
N
‖P‖1 (5.8)

where V may be considered analogous to voltage and P analogous to power.

Variance does not take into account any information about the relative position of individual

samples. It provides only a single estimate for a spectral band between the minimum and maximum

frequencies within the sample collection. This extent is bounded by the smallest and largest distance

between two samples in the collection.

While these statistics provide qualitative information about the underlying image signal, it is

difficult to deduce quantitative information necessary to determine an adaptive response control

decision.

5.3 Frequency Domain Approximations
Statistics in the spatiotemporal domain are inexpensive and permit efficient incremental com-

putation; however, they lack the ability to distinguish features at different scales and are a poor

approximation to the power spectrum norm. Information about structure and scale, or the amount

of energy at different frequencies, enables the sample rate error estimate to be less conservative and

produce a much tighter bound on the sample rate error within a tile. For example, the ability to

distinguish spatial features within a collection of samples permits a region with a smooth gradient

across a luminance range to be distinguished from another region containing low magnitude noise

in the same range.

Spatiotemporal statistics, especially variance, are ubiquitous in rendering and computer graphics

in most cases because the sample population over which the statistics are computed, i.e. a subpixel

region, is not large enough to contain complex structures. Subpixel regions may be well-represented

by only a single constant value given by the mean. In the TSAR model, the cost of sample rate

error estimation is amortized over a region much greater than a pixel. Adaptive framelet tilings

produce sample populations which vary greatly in extent and include image components that range



85

in size from subpixel image features such as individual edges to much larger components of the

scene geometry. The ability of the sample rate error estimate to distinguish between the size of

these features and their location within the broad extent of a framelet allows for a more accurate

characterization of signal behavior across the set of samples.

5.3.1 Localization
Analysis of the ideal sample rate Θ∗ and the error estimate φ at the high resolution used in the

example described in Section 5.1.2.1 is prohibitively expensive for real-time application. Decreas-

ing the resolution of the analysis, i.e. taking the Fourier Transform of the signal downsampled to a

lower resolution, might appear to be an attractive alternative; however, although the FFT could be

used to estimate sample rate error, its discretization of the spatiotemporal and frequency domains

are inefficient, and the opposite of what is desired to estimate sample rate error and varying adaptive

response across the image. The FFT localizes, or isolates, frequencies using periodic basis functions

with very finegrained differences in period, i.e. from 1, . . . , N/2, but the consequence of the periodic

basis with infinite support is that the transform does not perform any spatial localization. As

a result, the transform produces more spectral information than necessary, i.e. significantly more

frequencies are included in the transform than the renderer is capable of employing. Additionally,

no information about spatially varying behavior, i.e. across the extent of a framelet, is obtained.

While the range of sampling frequencies realizable by the renderer, labeled Ωθ in Figure 5.5(a),

remains the same, the Fourier analysis performed in Section 5.1.2.1 causes the power spectrum

norm, and therefore the ideal sample density Θ∗, to vary with the position and extent of the framelet

tile. Since the Fourier basis functions are periodic and assume that the input signal is stationary, the

value of Θ∗ cannot be localized to a spatial coordinate more specific than the extent of the framelet

tile. As the spatial extent of the framelet tiling adapts to the image signal, features within the

support of coarse resolution basis functions may be excluded from the power spectrum of tiles at fine

resolutions, resulting in a change to the power spectrum norm surface shape, and the corresponding

location of Θ∗.

In the case of tile 1442, shown in Figure 5.5(a), the position of Θ∗ across the whole tile is

relatively far away from the current sample density a, shown in Figure 5.5(b). If the tile was

subdivided, the smaller tile 5771 occupying the upper left corner of the region would contain much

lower frequency features, and the ideal sample density estimate in that subregion of the tile would

move closer to the point a. Ideally, Θ∗ would be by a continuously varying field across the image

domain, instead of a tiling at framelet resolution, and would be defined as the ideal sample rate at a

specific point in the image independent of the extent over which it is estimated.
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5.3.1.1 Wavelet Transform
Wavelet transforms are a family of operators which project an input signal against basis func-

tions at different scales translated across the spatiotemporal domain, and approximate the local-

ization of signal behavior in both the spatiotemporal and frequency domains. This formulation of a

discrete spatiotemporal wavelet approximation to the power spectrum norm follows the terminology

and notation of Mallat [39].

Wavelet basis functions are a set of functions which integrate to zero across their domain:

ψ (t) =
∫ ∞

−∞
ψ (t) dt = 0 (5.9)

These basis functions may be scaled by parameter s and translated byu to provide a parameter-

ized transform:

ψus (t) =
1√
s
ψ

(
1
s

(t− u)
)

(5.10)

The continuous wavelet transform of a function f is then the correlation between f and u:

W [f (t)]us =
∫ ∞

−∞
f (t) · ψus (t) dt (5.11)

= f (t) ∗ ψus (t) (5.12)

The wavelet transform W [f (t)]us is a continuous two-dimensional field over the parameters

u and s. Modulation of the scale parameter s attempts to isolate energy in f (t) at frequencies

approximately corresponding to the spectrum of the wavelet function ψ (t), i.e. the convolution

f (t) ∗ ψus (t) in the spatiotemporal domain, to produce a scalar at coordinate u, s, is equivalent to

the product of f and ψ in the frequency domain, which isolates frequencies within the spectrum of

ψ, which is likely not bandlimited. In this way, the parameter s is an independent variable of scale

space, denoted ω, rather than the frequency domain, indicated by f in figures, e.g. Figure 5.6 which

shows a discretization of the function. The terms scale and frequency will be used interchangeably
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in this formulation; however, the wavelet scale parameter does not isolate individual frequencies in

the same manner as the Fourier transform parameter.

The Haar basis, shown in Figure 5.7(a), used in this formulation has two sharp features which

provide compact support and spatiotemporal localization, compared with a similar FFT basis shown

in Figure 5.7(b); however, the power spectrum of the Haar basis, shown in Figure 5.7(c), is much

broader than the Fourier basis, whose energy, by definition of the transform, is contained within a

single frequency.

Interpreted as a difference operator, the Haar basis at different scales may correspond to power

spectrum in a similar manner as equation 5.8. Unlike sample variance, the parameterization of the

basis function enables the detection of oriented structure at different scales in the signal.

Discretization of the spatiotemporal and scale space plane based on a hierarchical power-of-two

subdivision grid results in a transform known as the discrete wavelet transform (DWT). The DWT

discretizes u and s with a hierarchical grid, shown in Figure 5.6(b), such that the finest scale of

the wavelet is evaluated with the greatest spatial resolution and measures the highest frequency;

the next finest scale is twice as large and evaluated at half the spatial resolution. The power

of two relationship results in each discrete scale capturing energy in a decreasing octave of the

signal spectrum. The parameter s is over discrete octaves ω in the figure, and the parameter u over

positions in the spatiotemporal domain t. Only one spatial dimension is shown in Figure 5.7.

The DWT may be expressed as a recurrence where coefficients in the highest octave are used

to compute the coefficients of the second highest octave and so forth. At each octave, the signal is

convolved with a wavelet function g and a scaling function h. The operator g is a high pass filter and

the convolution produces N
2 detail coefficients, while the operator h is a low pass filter producing N

2

approximation coefficients of the signal. The DWT of the next slower frequency octave is computed

from the approximation coefficients.

as+1 [t] = as ∗ h [2t] (5.13)

ds+1 [t] = as ∗ g [2t] (5.14)

The discrete Haar basis function g, and the low pass filter h are:
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Figure 5.6. Frequency domain discretizations of the windowed FFT and DWT.
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Figure 5.7. The Haar wavelet function.

g [t] =


1 if 0 ≤ t < 1

2

−1 if 1
2 ≤ t < 1

0 otherwise

(5.15)

h [t] =

{
1
2 if 0 ≤ t < 1
0 otherwise

(5.16)

With a multidimensional signal, separable convolution is performed along each dimension with

h and g.

Compared to the continuous algorithm, the DWT algorithm trades continuous localization in

the spatiotemporal and scale domains for an efficient implementation. Compared to the FFT, the

DWT provides precise spatial localization while allowing energy from a broader set of frequencies

to contribute to each scale. In the case of TSAR, the low computational complexity of the transform
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is attractive, and the decreased spectral localization is less of a concern since the transform is only

used to characterize the signal rather than to represent, compress, or encode it.

5.3.1.2 Spatiotemporal DWT
The DWT may be applied to spatiotemporal data by treating the signal as a three-dimensional

function. At each octave, the approximation coefficients from the previous octave are convolved

with g and h, along each axis separating the signal into detail and approximation coefficients. To

simplify notation, the result of convolution with the h operator will simply be written h instead

of as+1 = as ∗ h; similarity g refers to the operation producing ds+1 from equation 5.14. After

separable convolution in three dimensions, the coefficients in each octave are divided between eight

octants, labeled hhh through ggg in the order of binary numbers, i.e. the coefficients in octant hhh

are the result of the low pass filter applied in each dimension, ghg contains high pass in the first

dimension, low pass in the second, and high pass in the third, etc. Figure 5.8 indicates the notation

of octants and organization of coefficients in the DWT algorithm.

The eight octants at each octave of the spatiotemporal DWT characterize the magnitude and

scale of different types of features in the signal. Octave five, hgh, detects horizontal edges, ggh

spatial corners, and hgg corners in y and time. The octant hhh contains the approximation coeffi-

cients used to compute the next octave in the transform.

5.3.1.3 Leading Edge of Time
The canonical form of the DWT convolves each complete dimension with the h and g filters

to produce a set of coefficients equal in size to the input; however, much less than the complete

temporal dimension changes with each refresh of the rendering pipeline. In the canonical form,

for N3 input luminance values, eight octants of (N/2)3 coefficients are produced, seven containing

detail coefficients and one containing the low pass approximation of the signal. If the spatiotemporal

transform is performed at each temporal refresh, only the input on the spatial plane at the leading

edge of time may change, and only coefficients in the N3 volume that are a function of luminance

values at the leading edge need to be updated. The leading edge of time is shaded in Figure 5.8,

which shows a single octave; given the input of N2 new luminance values in the spatial plane, 2N2

coefficients are produced, utilizing N2 cached coefficients. Coefficients in the canonical transform

before the leading edge of time have already been computed by the algorithm prior to the current

time.

The number of coefficients that must be retained depends on the support of the wavelet basis

function used in the temporal dimension. In the case of the Haar basis, with a support of two, only

one set of spatial coefficients must be retained at each octave. Figure 5.9 shows the discretization of
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Figure 5.8. Notation for the DWT in three dimensions of a scalar volume into eight octants.

the scale and time plane; the spatial dimensions are not shown. Along the temporal axis, the highest

frequency wavelet basis A is convolved with the cached coefficients A′, producing coefficients in

eight octants. At octaveA, the low pass octant hhh is the inputB at the leading edge of time. These

coefficients are combined with the cached values B′, and so forth for octaves A through D.

This relationship between coefficients of the complete transform needed to incrementally update

the DWT along the leading edge of time is the basis for the streaming DWT algorithm described in

Section 5.3.4. The algorithm operates on data stored in Morton order in framelet tiles, instead of

the implicit row major indexing scheme shown in equations 5.13 and 5.14.

5.3.2 Localized Levelwise Norm
The spatiotemporal DWT applied at the leading edge of time provides spatial localization pro-

portional to feature scale, and in the temporal dimension, discretization of scale space at the leading

edge of time. The transform does not reduce the dimensionality of the input data, and its results

must be converted to a measurement of sample rate adequacy, analogous to equation 5.2, to produce

an estimate of spatial and temporal sample rate error. This will be formulated in two steps: first,

a norm operator is shown to reduce the spatial and temporal dimensionality of the transform and

divide the information between spatial and temporal features; then, an operator is given to produce

an error estimate by comparing the norm with a threshold. Both operations are formulated in one

dimension and then applied in the spatiotemporal domain.

The localized levelwise norm (LLN) operation reduces the dimensionality of the DWT while

preserving or emphasizing certain characteristics of the data. The LLN is the application of a vector

norm to a set of coefficients at each scale within a specific spatiotemporal extent. The approach

reduces the dimensionality of the input while the choice of norm operator allows filtering of different

characteristics, e.g. a nonmetric operator such as the infinity norm may be used to provide a bound

on the magnitude of power within a region, while an L2 norm reports the total amount of power.
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Figure 5.9. Heisenberg boxes for the DWT along the temporal axis; the spatial axes are not shown.
Atoms intersecting the leading edge of time are highlighted.

Figure 5.10 shows the extent in scale space of an LLN operator applied in one spatial dimension.

Coefficients overlapping the LLN extent at each scale are treated as a vector to which the norm is

applied. In the figure, the highest frequency scale contains four coefficients, the next highest two,

etc.; at the lowest frequency, the wavelet basis is broader along the spatial axis than the extent of

the LLN, and a proportional fraction of the energy is included in the norm. In the example shown,

the eight coefficients are reduced to four scalar measures, one at each scale; in higher dimensional

cases, the reduction is greater and the norm may be designed to isolate specific behavior by only

including energy from specific octants.

At each octave, octants ghh, hgh, and ggh are included in the spatial LLN, and hhg, hgg,

and ghg are included in the temporal error norm. The eighth octant ggg detects corners in all

dimensions; since this octant combines high pass energy from both space and time, it does not assist

in distinguishing spatial and temporal change, and is not used.

The LLN transforms the spatiotemporal DWT into a set of vectors describing the spatial and

temporal power spectrum of the signal at each point across the spatial plane, at the leading edge of

time. The shape and magnitude of these vectors are used to determine sample rate adequacy across

the image.

5.3.3 DWT Error Estimation
The error estimation stage uses a DWT to approximate the power spectrum of the sampled image

signal in each framelet, and then uses a LLN-based comparison to approximate the local shape of

the Θ∗ surface. In terms of Figure 5.5(b), the point a is given by the current spatial and temporal

sample rate of the framelet and the error vector φ is produced by using an LLN based comparison

to approximate the local shape of the power spectrum norm surface.
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Figure 5.10. Localized levelwise norm in scale space.

5.3.3.1 Signed LLN Difference
Ideally, the desired power spectrum of the sampled image, e.g. the point Θ∗ in Figure 5.5(b),

would be dictated by properties of the reconstruction process, such as the spectral support of

resampling filters in the manner of the filter design process of Mitchell [42]. Without a wavelet

convolution theorem, neither the reconstruction process, nor its consequences in frequency space,

may be related directly to the DWT power spectrum. Instead, the DWT power spectrum is compared

to a threshold amount of energy at each octave using an empirically defined threshold template

power spectrum. The comparison is analogous to the conventional band pass analysis performed

in frequency space, but the two operations are not mathematically equivalent. The template power

spectrum may be generated by taking the DWT power spectrum of a specifically formulated lumi-

nance signal which represents desired sampled signal behavior in the vicinity of Θ∗.

The LLN-based error estimation approach for a one-dimensional luminance signal is shown in

Figures 5.11 through 5.13. In the error estimation stage of the TSAR pipeline, the same procedure

is performed for both spatial and temporal error estimates using the LLN over each set of high

frequency spatial and high frequency temporal DWT octants, instead of over a one-dimensional

luminance signal in the example figures. Since the norm reduces coefficients in three of the DWT

octants at each scale to a single scalar value, the approximation is analogous to the one-dimensional

example.

The error estimation procedure approximates the local shape of the signal power spectrum

within the framelet by taking the signed norm between the template function power spectrum and

the signal DWT power spectrums. The signed norm is sum of the differences between the LLN

across three spatial or three temporal octants, depending the component of the error vector, over all

octaves. Two LLN measures, for spatial and temporal signal behavior, respectively, are computed
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Figure 5.11. Characterization using the localized levelwise norm in one dimension.
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Figure 5.12. Example signal scaleograms

across the framelet. Since the spatial sample density is assumed to be isotropic, and is controlled by

a single parameter, it is not necessary to distinguish between vertical and horizontal spatial features;

therefore, energy within high pass spatial features must only be distinguished from energy in high

pass temporal, and low pass spatial features.

5.3.3.2 Threshold Function
The template DWT power spectrum is assumed to have exponential shape both due to the

spectral characteristics of the expected graphics workload, related to those of natural imagery and
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Figure 5.13. Example signal error summation.

described in Section 1.3.4, and the behavior of the DWT whose low pass averaging operator, given

in equation 5.13, tends to accumulate power in coarser scales.

Linear luminance functions produce a DWT power spectrum which is uniform in space with

exponentially increasing magnitude in coarser scales. This characteristic may be observed by

considering the application of the high pass detail coefficient operator of the Haar wavelet, equation

5.14, which takes the form of a difference operator, to luminance functions of different shapes.

When the detail coefficient operation is applied to a luminance template function with varying

slope across space, it produces coefficients of varying magnitude. However, a template luminance

function with a constant slope produces the same difference everywhere and at coarser scales, the

difference operator is applied over a wider extent of the signal hierarchically which produces an

exponentially larger magnitude difference at increasing octaves.

Figure 5.11(a) shows an example luminance function plotted along with a linear luminance

template function. In this example, the slope of the luminance template function is determined em-

pirically by selecting the slope of the luminance signal function which is adequately and efficiently

reconstructed at sample rate N ; i.e. the spatial coordinate of Θ∗ occurs near sample density 1/N

for this imagery.

The template power spectrum for both the spatial and temporal domains is defined as a linear

function in a logarithmic space with two parameters, a vertical offset and a negative slope. In a linear

space of the LLN power spectrum, the template function is an exponentially decreasing distribution.

Although the LLN power spectrum norm space is not mathematically equivalent to the frequency

domain power spectrum, the template function vertical offset parameter is analogous to the DC
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component of the signal in the frequency domain and the slope parameter analogous to the desired

distribution, e.g. following Figure 1.3, −2 for natural imagery. The implications of this design and

examples of the algorithm’s sensitivity to the parameters is discussed in Section 7.3.2.

5.3.3.3 Computing the LLN
The example luminance signal in Figure 5.11 was taken from a simple scene and consists of four

luminance gradients produced by Phong illumination separated by sharp edges. In Figure 5.11(b),

the horizontal coordinate axis of the plot is divided into eight regions enumerated a1 through a8;

a levelwise norm and error estimate will be localized to each of these regions. The expected error

response in this case should distinguish regions containing sharp features from those containing low

frequency gradients.

Figure 5.12(a) shows the LLN power spectrum scaleogram of the luminance signal. The sca-

leogram is computed by squaring the DWT coefficients of the signal and then taking the levelwise

norm over each of the eight regions. Fine octaves, approximating high frequencies, are at the top of

the figure and coarse octaves, approximating lower frequencies, are at the bottom. Pyramid shaped

energy features may be observed in the scaleogram about regions of the luminance signal containing

sharp features, in the regions a1, a7, and a8. Lower power features may be distinguished starting in

the middle scales 5 and 6 in regions a4 and a5.

The LLN power spectrum scaleogram magnitudes for regions a2, a3, a5, and a7 are plotted

in Figure 5.12(b) on a log scale along with the DWT power spectrum of the luminance template

function from Figure 5.11(a). Regions a2 and a7 contain sharp features at either side of the signal

and therefore have more power at finer scales, to the right of the plot, than regions a3 and a5 which

contain smooth features. In general, all regions of the signal will contain energy at every scale; even

in cases like a3 which is clearly oversampled, the smoothly varying gradient contains low magnitude

power at fine scales.

The signed difference between the template and the signal DWT for the spatial and temporal

error estimates are computed incrementally octave by octave using the approach as described in

Section 5.3.4. The result is a cumulative summation of the difference between the signal and

template from fine to coarse scales. The cumulative power from coarse to fine scales in the four

example regions is shown in Figure 5.13(a) on a linear scale. This cumulative summation of the

signal and template DWT power spectrums provides similar information about the Θ∗ surface

shape as the power spectrum norm shown in Figure 5.5(b). Both the shape and magnitude of each

power spectrum distinguish the sample rate error estimate and the eventual adaptive response in

each region. All regions have similar shape in coarse scales. In the midrange scales, the energy

captured at finer scales levels off in regions a3 and a5, while the amount of power continues to
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increase through the finer scales in regions a2 and a7. While the LLN of regions a3 and a5 are

shaped similarly to the template thresholds, behavior within the two regions is distinguished by the

magnitude of power within them. Overall, region a3 has less signal power than a5, or the template,

which indicates more redundancy between samples in the framelet and results in a greater negative

magnitude error estimate.

The result of the LLN-based error estimate procedure for the one-dimensional test signal is

shown in Figure 5.13(b). The estimate is piecewise constant over the interval of the luminance

function based on the resolution of the eight localized error estimates.

5.3.4 Streaming Discrete Wavelet Transform
The localized levelwise norm may be applied to a spatial temporal signal by combining coef-

ficients within a certain spatial extent at the leading edge of time. The LLN produces a spatially

varying measure of energy at each octave resulting in a set of coefficients at each point across the

image similar to the one-dimensional example shown in Figure 5.13.

The LLN operation performs a significant reduction over all of the DWT octant coefficients at

each octave, combined with the signed difference comparison between the template and framelet

signal. The storage overhead of the streaming algorithm is minimal. For each octave of the DWT,

detail coefficients are produced in seven two-dimensional octants at the leading edge of time, plus

one two-dimensional octant of low pass coefficients. Six of the seven octants are combined by the

LLN into two norms, one spatial and one temporal, while the seventh octave is unused.

The streaming DWT algorithm performs three convolutions in the spatial and temporal dimen-

sions at each octave; the procedure is shown in Figure 5.14 using the canonical DWT indexing

scheme for the purpose of illustration. Given a framelet at full resolution, the first octave of fine

scale coefficients is obtained applying equations 5.13 and 5.14 to the luminance value of each

sample across the horizontal x dimension. The detail coefficients given by equation 5.14 are packed

immediately following the approximation coefficients given by equation 5.13 in the output. Next,

the high and low pass operators are applied along the y direction and the results are packed similarly.

The result of the two spatial convolutions with the new framelet consists of the same number of

coefficients as samples in the input framelet, these coefficients are defined as field A for the first

octave.

Temporal convolution is performed by loading a matching set of coefficients A′ and applying

the high and low pass operators. The third convolution produces coefficients in eight octants over

which the spatial and temporal LLNs are performed. Coefficients in the first octant hhh are used as

the input at the leading edge of time to the transform at the next highest octave. After convolution
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in the temporal dimension, the coefficients A replace A′ in the cache. In instances where the cached

coefficients A′ do not exist, only spatial error estimates are reported.

The DWT is performed on framelet samples stored in Morton order and require modification of

the canonical DWT algorithm indexing scheme given in equations 5.13 and 5.14. In Morton order,

described in Section 4.1.2, coefficients are stored along a space filling curve instead of a row major,

or column major layout. Although the latter data layouts are more efficient for general separable

convolution, the extent of the Haar wavelet operators is only two elements so each convolution in

the DWT may be applied to a 2× 2 neighborhood of the input.

The indexing scheme for the two spatial convolutions of the DWT is shown in Figure 5.15 for

a 4 × 4 example framelet; the actual framelet resolution used for testing the prototype is either

16× 16 or 32× 32. Coordinates are addressed by subscripts based on Morton quad-tree tile indices

described in Section 4.1.3, so the first index in the 4 × 4 example is tile 16. After the first two

spatial convolutions, the input will be divided into four quadrants containing coefficients of the hh,

gh, hg, and gg operations; coefficients within each quadrant are arranged in Morton order. The

first convolution along the x direction stores the result using an interleaved packing within the same

2 × 2 neighborhood. The indexing scheme after the first convolution follows the Morton kd-tree

tiling order using the next coarser level of the tree in the first dimension, i.e. the result of convolving

F[16] and F[17] with h and g is stored in two elements starting at the location of kd-tree tile 8 = 16/2,

labeled g8 and h8 in the figure. The second convolution along the y direction operates within the

same neighborhood of coefficients, across g8, h8 and g9, h9, but stores its results in the uninterleaved

packing of separate quadrants.

The result of the temporal convolution in the seven high pass octants is immediately combined

with the incremental LLN for the octave, while the uninterleaved ordering ensures that the first

octant containing low pass coefficients in each dimension is in the same sample order of the input

at half the resolution.
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Figure 5.15. Interleaved coefficient packing.



CHAPTER 6

ADAPTIVE RESPONSE CONTROL DECISION

The adaptive response control decision modulates spatial and temporal sample density across

the image based on a sample rate error estimate produced by the algorithms described in Chapter 5.

Sample density error values characterize the amount of redundancy between samples as a measure

of sampling process efficiency. The estimated error vector describes the difference between the

current sample density and the optimal sample density across the image. The response control

algorithm applies a series of local and global constraints to the sample rate error estimate to safely

update the sample densities and respond to changes in the graphics scene.

6.1 Decision Problem
The adaptive response control decision manipulates sample rates used for rendering by changing

spatial and temporal sample densities of elements across the image. If modeled in a two-dimensional

space with a single isotropic spatial density along one axis and the temporal sample density along

the other, the control decision estimates a transformation between an initial coordinate, the current

sample density of each element, and a point at an unknown coordinate corresponding to the ideal

sample density in the underlying signal. Figure 6.1 shows the space of sample densities, termed a

θ-space, for a single element.

Point a represents the current spatial and temporal sample density for the element, with densities

at coordinates as and at, respectively, and combined spatiotemporal sample density θn. The curve

in the figure passing through point a contains other combinations of spatial and temporal density

equal to θn. Point a is the current estimate of the desired sample density for the element, measured

on a real valued scale, based on the convergence of the adaptive response control process before

the leading edge of time. Other points in the figure are determined by the control algorithm and

contribute to the eventual control decision for the algorithm. The space is bounded by the minimum

and maximum possible spatial and temporal sample densities of the system, θmin
s , θmax

s , θmin
t , θmax

t ,

respectively. Larger values along the horizontal axis correspond to higher spatial densities and

smaller framelet tiles. Larger values along the vertical axis correspond to higher temporal refresh.

While the sample density space in Figure 6.1, for one element is continuous, the adaptive
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Figure 6.1. The adaptive response control decision problem for one element. Point a is the initial
density of the element, points b∗ and b are intermediate solutions, and point c is the new sample
density. The vector ca is the result of the control decision for the element.

renderer is only able to place samples at specific spatial and temporal sample rates indicated by

the irregular grid of crosses. Information about the estimated ideal sample density and the control

decision itself are made at a much higher numerical precision. These values are approximated by the

discrete sample rates realizable by the renderer during a quantization step when a discrete framelet

tiling is built over the sample density fields, described in Section 4.1.6.

The objective of the adaptive response control decision for each element is to select a pair of

spatial and temporal sample densities as close as possible to the ideal sample density Θ∗ which

is an unknown property of the underlying image signal. The new sample density for the element

b∗ must fall within a set of local and global constraints on the sample density values. The control

decision algorithm has three stages: first, local constraints are enforced on the local sample rate

error estimate to determine the amount of change in combined sample density at the element; next,

global constraints such as conservation of combined sample density are enforced across all of the

elements; and lastly, the constrained amount of combined sample density change is compared once

more to the sample rate error estimate and modulated by any spatiotemporal fidelity bias. The first

and last stages consist of finding solutions to equations locally at each element in the space shown
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in Figure 6.1, the second stage is solved using a transport equation over all elements.

6.1.1 Schematic Interpretation
In terms of the illustration in Figure 6.1, the control decision algorithm is formulated as follows.

The direction and distance between a and Θ∗ is estimated by an error vector φ, with direction ~m,

computed by the mechanisms described in Chapter 5. Individual error estimates only characterize

local behavior of the sampled signal and do not adhere to local constraints on the sample densities

at the element or global constraints on the sample density across the image as a whole. To enforce

local constraints on the sample density of the element, the control algorithm determines point b∗, the

desired new sample density for the element. The difference between the combined spatiotemporal

sample densities at b∗ and a is the locally constrained net change of sample density ∆θ∗ at the

element. The control algorithm enforces global constraints by modulating the amount of change

in combined sample density permitted at each element, and determines a new combined sample

density θn+1 and constrained ∆θ. The local constraints are communicated to the second stage of

the algorithm by specifying a maximum amount of combined change ∆θmax between a and b∗max.

In the final stage of the control decision algorithm, a specific point b on the curve given by θn+1 is

selected based on ~m; further modulation, for the implementation of a biased fidelity management

strategy, is possible by moving the solution b along the curve θn+1 to point c. The vector ca is

the control decision for the element. These stages are illustrated in Figure 6.2 with the per-element

variables related to each stage indicated.

In the case shown in Figure 6.1, the control decision increased the spatial sample density slightly

more than the temporal sample density. The response might occur after the disocclusion of an object,

requiring a higher refresh rate in an area of the image, and additional spatial samples to reconstruct

the object’s features. Depending on the selection of discrete sample densities from the realizable

grid, this control decision may double or quadruple the sample rates used by the adaptive renderer.

The new spatiotemporal sample rate of the element at point c likely occurs between nodes in

the grid of realizable sample rates. The selection of an optimal sample rate between the realizable

candidates closest to Θ∗, the four highest grid points in this case, depends on the bias of the fidelity

management strategy. If temporal fidelity is more important than spatial fidelity, the upper right

node might be selected, or conversely the lower right node.

The sample rate must move between nodes on the realizable grid to alter sample placement in

the renderer and improve the fidelity of the graphics process. The grid may be exponentially spaced

along the horizontal axis, due to the constraints of framelet tiling, and uniformly spaced along the

temporal axis based on the cost of rendering a batch of new samples and executing the control

algorithm.
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6.1.2 Proportional Response
The control decision may be expressed as the time derivative of the spatial and temporal sample

density across the image. At the leading edge of time, this derivative is approximated by sample rate

error, an estimate of the direction and distance between the current sample rate and the ideal sample

rate for the signal. The spatiotemporal error fields φs and φt are approximately the derivative of

their respective sample density fields θs and θt:

d
dtθs ≈ φs
d
dtθt ≈ φt

}
(6.1)

On notation, an arbitrary scalar value of field theta spatial is written θs (m) for element m in

Morton order (see: 4.1.2), or simply θs in an elementwise operation; equations of the whole field,

such as reduction over the whole field, are written θs
m

, i.e. the entire field θs indexed bym. Equations

6.1 and 6.2 refer to elementwise operations; an example of the latter form will be equation 6.24,

concerning a sum over all elements in the field.

The relation in equation 6.1 is approximate because the error estimate φ is a characterization of

the local signal and is unconstrained. Direct application of φ as a derivative might violate constraints

on the sample density field; instead the derivative is expressed as a function k̂ of the error estimate:

d

dt
θs,t = k̂ (φs, φt) (6.2)

The function k̂ must enforce constraints on the sample density and is the principle design choice

of the control decision algorithm, for example, the choice of how global constraints are enforced,

such as positivity of the sample density and conservation of the total amount of sampling work

across the image. In Section 6.3.1.2 a system of equations with relational uncertainty is used to
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enforce global constraints; Section 8.4 describes the use of a partial differential equation based on

a physical model. Both formulations of k̂ address local constraints on the sample density as the

solution to a system of equations with linear relations and a pair of nonlinear terms constituting the

mixture of spatial and temporal density change. The fidelity management strategy of the adaptive

rendering process is implemented by manipulating bias between of the mixture components.

6.2 Local Constraints
As illustrated in Figure 6.1, the spatial and temporal sample density of an element may be

represented as a point in Cartesian coordinate space, where a certain element at position m in the

image has spatiotemporal sample density represented by point a = 〈θs (m) , θt (m)〉. The combined

sample density of a is the product of the spatial and temporal dimensions, or the area of rectangle

between point a and the origin:

Area (a) = θs (m) θt (m) (6.3)

= asat (6.4)

= θn (6.5)

In Section 3.1.1, an element of the sample density field is defined as a three-dimensional vol-

umetric entity at the leading edge of the spatiotemporal volume; the same element is considered

here in two dimensions since the spatial sample densities are assumed to be isotropic in so far as

horizontal and vertical sample rates are the same, i.e. both spatial densities
√
θs; therefore Area (a),

indicated by dotted lines in Figure 6.1, is the same as the quantity illustrated in Figure 3.3 projected

to two dimensions.

The variable θn is the combined spatiotemporal sample density volume of element m at time n.

The objective of the local constraint enforcement stage of the control algorithm k̂ is to determine an

appropriate value:

∆θ = θn+1 − θn (6.6)

for each element in the sample density field. Substituting equation 6.4 into equation 6.6 ∆θ is

expressed as a difference between points b∗ = 〈bs, bt〉 and a:
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∆θ =
(
θn+1
s θn+1

t

)
− (θn

s θ
n
t )

= (b∗sb
∗
t )− (asat)

= Area (b∗)−Area (a) (6.7)

Where the point b∗ is the desired new spatial and temporal sample densities for elementm. Both

areas are indicated by dotted lines in Figure 6.1.

To implement proportional response, the location of b∗, and the net change in the total sample

density of the element ∆θ, should be proportional to the spatial and temporal sample rate error

estimate produced using the mechanisms described in Chapter 5. The error mechanism produces

two signed error estimates, nominally φs, φt ∈ [−1, 1]; the mixture ratio between spatial and

temporal error may be expressed as a normalized vector:

~m =
1

‖〈φs, φt〉‖2

· 〈φs, φt〉 (6.8)

Then the set of solutions b∗ with the mixture ratio occur at a distance k along a ray extending

from the point a in the direction of ~m:

b∗ = a+ ~mk (6.9)

The adaptive renderer has a minimum and maximum sample density constraint for both spatial

and temporal dimensions, written θmin
s , θmax

s , θmin
t , θmax

t , from which constraints on the value θn+1,

and Area (b∗) may be derived. These constraints may be expressed by linear relations:

θmin
s ≤ b∗s ≤ θmin

s

θmin
t ≤ b∗t ≤ θmin

t
(6.10)
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6.2.1 Response Speed
The overall speed of the adaptive response is the rate at which the sample density changes in

reaction to changes in the graphics scene or animation within each adaptive response cycle, i.e.
‖∆θs,∆θt‖

∆t , where the control decision algorithm is executed at ∆t intervals. The response speed

depends on the accuracy of sample rate error estimation in detecting features and the amount which

the spatial and temporal density change is modulated by local and global constraints.

The proportional response criteria makes the assumption that the ideal spatial and temporal

sample density, shown as the possible set Θ∗ in Figure 6.1, is an unknown distance from a along

~m. Although the actual distance is unknown, it is assumed to be proportional to the length of φ.

This ensures that elements with high magnitude error respond more quickly than elements with low

magnitude error, even if they have the same error direction. The choice of the ray parameter k in

equation 6.9 determines the response speed at the element, before modulation by global constraints,

and may determine whether the response control decision overshoots Θ∗ resulting in underdamp-

ened control behavior, or approaches Θ∗ too slowly, resulting in overdampened response.

Adaptive response that is proportional to the error estimate φ occurs if b∗ falls along the ray

equation 6.9, a distance proportional to the magnitude of φ:

kφ = ‖φ‖2 (6.11)

The maximum value of the ray parameter k is given by the intersection of equation 6.9 with

the linear and nonlinear constraints equations 6.10. Solving the four linear constraints on sample

density for k yields four maximum values:

k0 = θmin
s −as

~ms

k1 = θmax
s −at

~ms

k2 = θmax
t −at

~mt

k3 = θmax
t −at

~mt

 (6.12)

These bounds determine the potential spatiotemporal change at each element, and constitute a

significant constraint on the error vector φ. By definition, φ is a characterization of redundancy

in the underlying signal; nonbandlimited spatial or temporal features such as high contrast edges

will produce large magnitude positive error estimates regardless of sample density. The constraints
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in equation 6.12 limit the potential change caused by φ based on the current sample density at the

element in relation to the bounds of the local sample density space.

The ray parameter k corresponding to b∗ is the minimum positive distance along ~m:

kmax = max (0, min (k0, k1, k2, k3)) (6.13)

kmin = min (kmax, kφ) (6.14)

b∗ = a+ kmin ~m (6.15)

Equation 6.13 gives the maximum distance along the ray to a linear boundary, and equation 6.14

is the minimum of this distance and the proportional response distance kφ.

While equation 6.14 ensures that b∗ adheres to local constraints on the sample density of the

element, the density transport stage enforces global constraints like conservation of the total sample

density across the image. Conservation is enforced by modulating the total amount of change in

sample density at each element. The amount of combined sample density flux between point a and

b∗ is obtained from equation 6.9 and equation 6.7:

∆θ∗ = Area (a+ kmin ~m)−Area (a) (6.16)

This is the change in the combined spatiotemporal sample rate for solution b∗, whose response

is proportional to the spatiotemporal mixture and magnitude of φ.

6.2.2 Maximum Change in Density
Local constraints are communicated to the subsequent density transport stage, which enforces

global constraints on all of the elements, by specifying a maximum positive modulation amount

that the value ∆θ∗ may change at each element such that a solution to equation 6.9 exists within

constraints 6.12. The transport stage may modulate ∆θ∗ by a positive scalar, the change may be

increased or decreased, but the direction of the response, the sign of ∆θ, written sgn (∆θ∗) may not

change.

In terms of Figure 6.1, the transport stage selects a new combined spatiotemporal sample density

for the element θn+1 = θn + ∆θ∗w by adjusting modulation term w based on global constraints
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across the image. After the transport stage determines θn+1, the last stage in the decision control

algorithm selects a new point b, Area (b) = θn+1 proportional to φ.

The modulation term w must be bounded such that the response improves the sample density,

i.e. Area (b), is no further from Area (Θ∗) than Area (a); the sign of the response must not change,

sgn (Area (b)−Area (a)) = sgn (∆θ∗); and a combined sample density along the curve θn+1

occurs within the local constraints 6.12. Two cases must be considered to determine bounds on

the modulation term, when the spatial and temporal components of mixture ratio ~m have the same

sign or when they have opposite sign. The first case is illustrated by the point a0 in Figure 6.3(a)

where the function ∆θ increases with k along the ray and is monotonic, plotted in Figure 6.3(b).

In the monotonic case, the maximum change between Area (a) and a point along the ray occurs at

distance kmax, given by equation 6.13. The second case, shown in Figure 6.3(c), occurs when the

signs of ~m do not match, and the function ∆θ along the ray has both positive and negative sign at

different distances.

In the nonmonotonic case, the maximum combined sample density occurs at the unknown point

b∗max a distance k∗max along the ray:

b∗max = a+ ~mk∗max (6.17)

Area (b∗max) = (as + ~msk
∗
max) (at + ~mtk

∗
max) (6.18)

= asat + as ~mtk
∗
max + at ~msk

∗
max + ~ms ~mt (k∗max)

2

This function is a parabola with maximum value at distance k∗max where the derivative along the

ray is zero:

d

dk
Area (b∗max) = as ~mt + at ~ms + 2~ms ~mtk

∗
max = 0 (6.19)

k∗max = −as ~mt + at ~ms

2~ms ~mt
(6.20)

At point a, distance k = 0 along the ray, ∆θ = 0 and increases with the ray parameter k to the

extrema of the parabola at k∗max, and the sign of ∆θ changes at the distance 2 · k∗max along the ray,

indicated by lines along the horizontal axis in Figure 6.3(c). Point b∗ and ∆θ∗ occur at a distance

kmin along the ray; therefore, the distance along the ray to the location of maximum change in the



109

θm i n
s

θm ax
s

θm i n
t

θm ax
t

a0

a1

(a) Densities and mixture ratios.

k = 0 k ∗

m ax

∆
θ

=
0

(b) ∆θ for a0.

k = 0 k∗

m ax
2k∗

m ax
km ax

∆
θ

=
0

(c) ∆θ for a1

Figure 6.3. Nonmonotonic and monotonic cases of ∆θmax. ∆θmax is evaluated along the rays
starting at points a0 and a1.



110

same direction sgn (∆θ∗) is:

k∗sgn =

{
k∗max if kmin < 2 · k∗max

kmax otherwise
(6.21)

The actual amount of change from θn = Area (a) is:

∆θmax = Area
(
a+ ~mk∗sgn

)
−Area (a) (6.22)

In cases where ~m is axis aligned, the denominator of equation 6.17 is zero, but the ∆θ function

6.7 is monotonic and k∗sgn = k∗max.

6.3 Density Transport
The application of local constraints to the error estimate vector φ at each element produces an

intermediate solution b∗, which is a coordinate in the space of spatial and temporal sample densities,

and combined spatiotemporal density change ∆θ∗ between b∗ and a, given by equation 6.16. The

combination of each ∆θ∗ over all elements might violate global constraints like conservation of the

total sample density, i.e.
∑

∆θ∗ is not constrained. Conservation is enforced by modulating the

quantity ∆θ∗ at each element such that their sum is within certain bounds; the manipulation must

not violate already enforced constraints on the spatial and temporal density.

Unlike the first and last stages of the control decision which balance spatial and temporal sample

density individually, shown in Figure 6.2, the transport stage operates on the total combined change,

or density flux, at each element. To obtain a conservative solution, the total amount of positive

change, i.e. the sum over elements with ∆θ∗ > 0, must equal the total amount of negative change,

which is the sum over all elements with ∆θ∗ < 0. The control decision may be able to improve

the sampling rate in a region even if the combined response at an element is modulated to zero by

redistributing density between the spatial and temporal dimensions without adding or removing

density from the element. The combined change in the positive direction is termed a positive

response and the negative combined change is termed a negative response. Positive responses

increase the sample density and improve image fidelity as the dynamic scene changes, negative

responses decrease the sample density and exploit redundancy, freeing capacity for sampling work

to be performed elsewhere. Figure 6.4(a) shows several image features at a single animation frame
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with the corresponding locally constrained spatiotemporal response vector shown in figure 6.4(b),

and the quantity ∆θ∗ for each element highlighted by grid lines in Figure 6.4(c). The monotonic

curve in Figure 6.4(c) shows the non-zero ∆θ∗ values for all of the elements in the image, sorted in

ascending order. The density transport stage must modulate the curve ∆θ∗ to find a similar curve

within the local and global constraints on sample density.

The adequacy, or speed, of an adaptive response control decision depends on how much the

response magnitude |∆θ∗| is increased or decreased to obtain a conservative solution. Rather than

the length of the error estimate ‖φ‖, the magnitude of the response in the density transport stage

depends on the total amount of combined density flux at each element. All locally constrained

response vectors in Figure 6.4(b) have approximately the same length, i.e. ‖b∗ − a‖; however, the

transport response magnitude in Figure 6.4(c) varies considerably. Consider points a1 and a3; due

to the Area function use to compute combined sample density, the response magnitude shown in

Figure 6.4(c) of point a3 is very small compared to a1 even though the distance between a3 and b∗3
in Figure 6.4(b) is almost the same as the distance between a1 and b∗1. In the case of a3, nearly the

entire change in sample density may be accomplished by redistributing the current sample density

Area (a3) between the spatial and temporal dimensions; because the contours of a3 and b∗3 on the

Area are very similar, the contour of b∗1 is much greater than a1, so a substantial density flux is

necessary. In response to image features in the animation, a1 likely requires a greater response

because its location, shown in Figure 6.4(a), is at the leading edge of an object in the animation, the

opposite of a3, element a2 occurs on a spatial edge away from temporal change.

6.3.1 Global Constraints
The principal global constraint is conservation of the total sample rate over space and time, such

that the total rendering capacity of the adaptive renderer is accounted for at each moment in time.

Sample density is either distributed between framelets in the tiling, or accounted for by a surplus of

unused density. Sample density is considered to be proportional to rendering work or computational

capacity.

6.3.1.1 Conservation
The transport stage must determine a globally constrained combined sample density change

∆θ at each element, and then a new combined sample density θn+1, within the bounds given by

equations 6.16 and 6.22:

0 ≤
∣∣θn+1 − θn

∣∣ ≤ |∆θmax| (6.23)
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Such that the sum of the change in combined sample density over all of the elements is zero, or

is less than a certain allowed surplus C:

∑
m

θn+1 (m)−
∑
m

θn (m) = 0 (6.24)∑
m

∆θ = 0 (6.25)

or 0 ≤
∑
m

∆θ ≤ C (6.26)

If the sum of negative ∆θ is greater than the sum of positive ∆θ, there is a net decrease in the

total combined sample density required across the image producing a surplusC. If a running surplus

is employed, subsequent control decisions may allow the total negative and positive to response to

differ by at most surplus C accumulated over time:

Cn+1 =
∑
m

∆θ − Cn (6.27)

Cn+1 ≥ 0 (6.28)

6.3.1.2 Relational Linear Constraints
The density transport stage may be formulated as a search for the optimal modulated response

within two relational constraints, global sample density conservation in equation 6.24, and the

maximum change at each element 6.23.

Instead of operating on ∆θ∗ directly as a scalar field on the image plane, a vector, or ordered

set, ϕ is defined as a permutation of elements in the field ∆θ∗, e.g. sorted in the ascending order of

∆θ∗max at each element:

ϕ = Sort
∆θ∗max

(∆θ∗) (6.29)

The set ϕ may be divided into two subsets A and B based on response direction above and

below zero:
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A = {ϕm : ϕm > 0} (6.30)

B = {ϕm : ϕm < 0} (6.31)

Z = (ϕ) ∩ (A ∪B) (6.32)

The third subset Z consists of elements with zero sample rate error ∆θ∗ = 0. The subsetA∪B,

excluding Z, is shown in Figure 6.5. All subsets are mutually exclusive and consist of intervals

along the curve ϕ; B occurs to the left of the cross in plots 6.5(b)-6.5(f), andA to the right. Because

the error estimate φ is only computed for framelets in the most recent rendered batch, only elements

within the extent of the batch are potential members of A and B.

Equation 6.24 may be written in terms of A and B and scalar surplus C:

0 ≤
∑

∆θ =
∑

A+
∑

B ≤ C (6.33)

0 ≤
∑

|A| −
∑

|B| ≤ C

0 ≤ ‖A‖1 − ‖B‖1 ≤ C (6.34)

The second sum over B contains only negative elements, so its positive valued norm must be

subtracted. The set Z contains only elements with zero density change and does not contribute to

the conservation equation.

The density transport stage will produce a solution ϕ∗ by modulating ϕ to balance ‖A‖1 and

‖B‖1, or stated differently, by searching the set of functions within the constraints defined by

equations 6.22 and 6.24.

The ∆θ∗max constraint bounds the magnitude of individual elements such that they meet local

constraints on the sample density and defines a set D:

D =

{
ϕ∗ ∈ <1 :

∧
m

ϕ∗m ≤ ∆θ∗max (m)

}
(6.35)

The conservation equation bounds the total sum over the solution, and comprises a subset of D
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Figure 6.5. Set of solutions to the transport equation. Elements with |ϕ| ≥ 1 are shown along the x
axis in ascending order of ∆θ∗max. (a) shows set D which enforces local constraints on the sample
density at each element. (b) shows the integral of ϕ; the cross indicates the zero crossing dividing
membership between A and B. (c) shows the trivial solution to the transport problem, ϕ∗ = 0.
(d)–(e) show other solutions with C = 0. C is the set of all solutions ϕ∗, four of which are shown.
All plots have the same scale.
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in which ϕ∗ must reside, the set of functions in D which integrate to less than C:

C =

{
ϕ∗ ∈ D : 0 ≤

∑
m

ϕ∗ ≤ C,

}
(6.36)

The shaded area in Figure 6.5(a) shows the set of functions D; this space must be searched for

a function ϕ∗ ∈ C. Membership in C is a relational constraint based on the integral over ϕ∗. In the

case shown in Figure 6.5(b), the integral over the positive response, to the right of the cross, is much

greater than the negative response to the left. In Figure 6.5, ϕ and ϕ∗ are plotted in the ascending

order of ∆θ∗max, resulting in an appearance that is not smooth. The order in which ϕ is sorted is not

relevant for most operations; however, ordering by ascending ∆θ∗ produces a smoother boundary to

the set D in figures. Certain operations employ partial derivatives along ϕ to determine the desired

shape of ϕ∗; in these cases, the set is ordered ϕ = Sort
∆θ∗

(∆θ∗).

6.3.1.3 Example Solutions
Each density transport solution ϕ∗ shown in Figures 6.5(c)-6.5(f) modulates ∆θ∗ in different

arbitrary ways to obtain a conservative solution ϕ∗ ∈ C. The amount that the response at various

magnitudes is increased or decreased effects how quickly the adaptive renderer is able to response

to changes in the scene. Figure 6.5(c) shows the trivial solution ϕ∗ = 0̄, which is the modulation

of ∆θ∗ to zero across the whole domain such that θn+1 = θn. This solution is only necessary if it

is not possible to obtain another solution within C because ϕ has only one response direction and

no surplus is available, i.e. ‖B‖1 = 0 and ‖A‖1 > C. If the trivial solution to the density transport

stage is employed, the response control decision might still modify the spatial and temporal sample

densities by adjusting the mixture between dimensions in the third stage of the decision algorithm.

The remaining examples in Figure 6.5 show arbitrary solutions in the absence of any surplus,

i.e.
∑
ϕ = C = 0; less modulation would be necessary if a surplus were included; however, the

size of C is still infinite and the search problem no easier. In the first example in Figure 6.5(d), ‖A‖1

is larger than ‖B‖1, so A is multiplied by a constant factor to normalize to the sum of B. The result

is that the faster response, A in this case, is dramatically slowed while B remains unchanged. This

approach will be referred to as case B in Section 6.3.2.3. The example in Figure 6.5(e) squares A

before normalizing
∥∥A2

∥∥
1

to ‖B‖1; squaring the initial response ϕ introduces a bias towards larger

magnitude responses during normalization. The last example shown in Figure 6.5(f) modulates

both A and B; here, the magnitude of B is increased towards the boundary of set D, and then a
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cumulative summation over elements in A, in descending order, is performed until the sum is equal

to the modulated sum of B; the remaining elements in A are set to zero.

These examples maintain similarity between ϕ and ϕ∗ in different ways and employ operations

of varying computational complexity and parallel efficiency; however, without additional criteria, it

is not clear which solution is best. Figure 6.6 shows |ϕ∗| for each example along with a reconstructed

image with elements in the 70th percentile of |ϕ| highlighted, a reference plot containing |ϕ| at the

same scale is shown in Figure 6.7.

Although the fastest example, shown in Figure 6.6(f), slows the large magnitude positive re-

sponse the least, over half of the elements in A are modulated to zero response, and many elements

in B have been sped past the magnitude of ϕ. In ϕ∗, ‖B‖1 > ‖A‖1 even though the opposite

was true in the input ϕ. While Figures 6.6(d) and 6.6(e) show a significantly slower response

for large magnitude elements, small improvements are still made across the both sets. In these

examples ‖A‖1 and ‖B‖1 differ by about one order of magnitude; however, if
∥∥A2

∥∥
1
� ‖B‖1,

normalizing by ‖B‖1
‖A2‖1

would undesirably attenuate lower magnitude responses in A to nearly zero.

The proportional response criteria may provide some guidance of how to choose an optimal solution

between these examples and all of the other ϕ∗ ∈ C.

Equation 6.36 produces a set of solutions defined by linear relations, in which the optimal

solution is unknown. Determinization is the selection of one solution from the set of possible

solutions, i.e. the heuristic for the selection of ϕ∗ from the set C. Two approaches are considered;

in Section 6.3.2, functional solutions are obtained by converting the relational constraints C into

equivalences, i.e. solving an equation in terms of and equivalence with a specific point or boundary,

e.g.
∑
ϕ∗ = C, instead of a relation defining all points inside the boundary 0 ≤

∑
ϕ∗ ≤ C; and

in Section 6.3.3, a heuristic, usually an iterative approximation, is used to select a solution in the

interior of the set, i.e. an algorithm leading to a solution 0 ≤
∑
ϕ∗ ≤ C.

6.3.2 Two-Dimensional Functional Solutions
Instead of modulating the N dimensional vector ϕ to obtain a solution in C, consider a simpler

choice of applying two uniform weights wA and wB to the subsets A and B of ϕ. The solution

ϕ ∈ C is then given by the weighted combination of A and B:

ϕ∗ = wAA ∪ wBB (6.37)

This type of operation was shown in Figure 6.5(d) where the subset A is weighted by a constant
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Figure 6.6. Implication of density modulation to response. Figures (a)-(c) show the response
magnitude of example solutions in C from figures 6.5(d)-6.5(f) with a threshold indicated by the
dotted line. Figures (d)-(f) show nearest neighbor reconstructed frames with the elements above the
threshold highlighted. The first three plots have the same scale.

factor such that
∥∥A · wA

∥∥
1

= ‖B‖1, in that case with wB = 1. The solution uses a functional form

of the equation defining membership in set C, the weight wA is given by an equivalence with an

analytical expression in terms of A, B, and C, although C = 0 in the examples given in Section

6.3.1.3.

Many functional solutions in terms of these parameters are possible, including the four examples

given in Section 6.3.1.3; however, only Figure 6.5(c), the trivial solution, and Figure 6.5(c), men-

tioned above, are possible in the two-dimensional simplification. The set of other possible solutions

may be expressed more concisely than in terms of membership in C and D, constraints applied to

the whole set ϕ∗, by placing constraints corresponding to set membership on wA and wB .

First, membership in set D is written in terms of ∆θ∗ and ∆θmax, given by equations 6.16 and

6.22, respectively, to produce a bound wmax on the modulation term w:
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Figure 6.7. Magnitude of unconstrained response. Figure (a) shows the response magnitude of
the input ϕ and a threshold indicated by the dotted line. Figures (b) shows nearest neighbor
reconstruction with elements above the threshold highlighted.

wmax =
∆θmax

∆θ∗
(6.38)

0 ≤ w ≤ wmax (6.39)

The bound wmax is positive regardless of the element’s membership in A or B, since the signs

of ∆θ∗ and ∆θmax match in either case. For each element in the sets A and B, the minimum over

the maximum scaling factor within the local constraints is given by:

wA
max = min

m∈A
(wmax

m ) (6.40)

wB
max = min

m∈B
(wmax

m ) (6.41)

0 < wA ≤ wA
max (6.42)

0 < wB ≤ wB
max (6.43)

The conservation equation 6.24 may be simplified to:

0 ≤
∥∥wA ·A

∥∥
1
−

∥∥wB ·B
∥∥

1
≤ C (6.44)

Then the combination of relations 6.40 and 6.44 is equivalent to membership in set C; however,
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the set of solutions C2D having only two weights is significantly smaller:

C2D =
{
ϕ∗ = wAA ∪ wBB : 0 ≤

∥∥wA ·A
∥∥

1
−

∥∥wB ·B
∥∥

1
≤ C, 0 < wA ≤ wA

max, 0 < wB ≤ wB
max

}
(6.45)

6.3.2.1 Schematic Interpretation
The density transport stage may be interpreted in a two-dimensional space containing points

with horizontal coordinates of total positive direction response
∥∥A · wA

∥∥
1

and vertical coordinates

of total negative direction response
∥∥B · wB

∥∥
1
, shown in Figure 6.8(a). The horizontal and vertical

axes are parameterized by the weights wA and wB , such that the initial configuration ϕ = A ∪ B

occurs at wA = wB = 1, point a in the figure. With the exception of the trivial solution wA =

wB = 0, modulation weights are positive; values less than one slow down the magnitude of the

response, in the positive and negative directions, respectively, e.g. resulting in
∥∥A · wA

∥∥
1
< ‖A‖1,

and values greater than one increase the response speed.

In the strictly conservative case, i.e.
∥∥wA ·A

∥∥
1
−

∥∥wB ·B
∥∥

1
= C = 0, solutions in C2D occur

on the diagonal line
∥∥A · wA

∥∥
1
−

∥∥B · wB
∥∥

1
= 0, below and to the left of constraints wA

max and

wB
max. With C > 0, the shaded region in Figure 6.8(b) above the line

∥∥wA ·A
∥∥

1
−

∥∥wB ·B
∥∥

1
= C

contains the set of solutions. Points within this region either produce an additional surplus if they

occur above the diagonal where
∥∥wB ·B

∥∥
1
>

∥∥wA ·A
∥∥

1
, or consume some or all of the sample

density surplus C, i.e. 0 <
∥∥wB ·A

∥∥
1
−

∥∥wB ·B
∥∥

1
≤ C.

Response speed of a solution in the density transport stage across the whole image is taken

as ‖∆θ‖
∆t , which is proportional to the integral over the magnitudes of A and B, and in the two

parameter formulation, determined by wA and wB . Solutions in the quadrants surrounding point

a modulate the response speed differently; below and to the left slow the negative and positive

response, respectively, while points above and to the right increase the speed of the response.

Various combinations of behaviors are shown in Figure 6.8. Since possible solutions must occur in

the set C2D, bounded by the off-diagonal line C and the constraintswA
max and wB

max, some behaviors

are not possible in many configurations, e.g. in Figure 6.8(a), no solutions occur in the faster positive

and faster negative quadrant, above and to the right of a, while a small number of solutions in that

quadrant are possible in Figure 6.8(b) due to the available surplusC > 0. Given the configuration of

the space, solutions with slower response are always possible by modulating the response towards

the trivial solution.

The higher dimensional case when ϕ is modulated by more than two parameters to produce a
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Figure 6.8. Relational constraints on the density transport equation.
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solution ϕ ∈ C may still be interpreted geometrically by taking wA and wB as vectors equal in

size to A and B, instead of constant scalar weights. The point a is the same; however, the solution

is written
〈∥∥A · wA

∥∥
1
,
∥∥B · wB

∥∥
1

〉
by taking the norm of the dot product between the response

direction vector and the respective weight vector. The solution in C is then ϕ∗ =
(
wA ·A

)
∪(

wB ·B
)
. Functional solutions in terms of A or B in the higher dimensional case would be written

in terms of systems of equations, e.g. linear operators on A or B taken as vectors.

6.3.2.2 Certainty
Uncertainty in the adaptive response control decision algorithm stems from the unknown ideal

sampling rate Θ∗, a dynamic property of the underlying image, which may not be determined from

an instantaneous error estimate based on a set of discrete samples at the leading edge of time. The

transport stage of the control decision algorithm does not directly effect the movement of the sample

density at each element towards Θ∗; instead, the transport stage modulates the speed of the overall

response in the positive and negative directions by determining the sample density flux ∆θ at each

element, from which individual spatial and temporal response is derived. Since the exact value of

Θ∗ is unknown, shown as a set in Figure 6.9, the amount which ∆θ∗ should be modulated to produce

θn+1 = θn + ∆θ is uncertain.

This modulation effects the total change in sample density at each element; optimal modulation

would minimize:

min
∆θ

∥∥Area (Θ∗)− θn+1
∥∥ (6.46)

where θn+1 is given by equation 6.6. If the modulation weights wA and wB are too small, the curve

θn+1 will be further away from the ideal sample density than was possible, and if the modulation is

too great, the curve may overshoot Θ∗.

Consider the initial value a in Figure 6.10(b), within the region defined by the relational con-

straints 6.44 and 6.40 is an unknown point g at which the modulation of ∆θ across the image by

vectors wA∗ and wB∗, g =
〈∥∥A · wA∗∥∥

1
,
∥∥B · wB∗∥∥

1

〉
minimizes equation 6.46. Based on the

assumption that ∆θ, as a function of the error estimate vector φ, accurately characterizes the signal

and provides an accurate response direction to improve fidelity, the ideal modulation vectors wA∗

and wB∗ are assumed to only increase response magnitude:
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Figure 6.9. Uncertainty in the transport stage for a single element. The density transport stage
modulates the locally constrained quantity ∆θ∗ at each element to produce a change in combined
density θn+1 = θn + ∆θ. The new spatial and temporal sample densities will occur on the curve
θn+1 shown. The optimal θn+1 is uncertain because Θ∗ is unknown.

‖A‖1 ≤
∥∥A · wA∗∥∥

1
≤

∥∥A · wA
max

∥∥
1

(6.47)

‖B‖1 ≤
∥∥B · wB∗∥∥

1
≤

∥∥B · wB
max

∥∥
1

(6.48)

This places g in the quadrant above and to the right of point a. While the point g is unknown, its

position may be represented using a relational description, comprised of equations 6.44, 6.48, and

6.40, or an analogous constraints for higher dimensional parameter spaces.

In Figure 6.10(b), the set of possible solutions for g comprises most of the space given the

surplus constraint C > 0. The optimal solution is uncertain in both cases when C is zero or

greater than zero. Consider that in Figure 6.8(a), a solution may occur anywhere along the main

diagonal between the origin and point e; however, since the surplus case C > 0 is significantly

less constrained, the certainty distribution is more intuitive. In an example like Figure 6.8(a), the

distribution betweenA andB is very skewed and there is great subjective certainty that any solution,

even between b and e, is very poor since the magnitude of B is very far from the diagonal.
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Figure 6.10. Example cases for solutions to the transport equation.
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6.3.2.3 Functional Solutions
The set C2D, given by equation 6.45, provides a relational description of the solution to the

density transport stage; functional solutions are obtained by finding equations for specific points in

the sets in terms of the initial point a and the constraints. Points b, c, d, e, and f in Figure 6.8(a)

are examples of possible functional solutions within the relational constraints; only points b and e

are legitimate solutions within all of the constraints shown in the figure. Each solution occurs at

the intersection of pairs of constraints, or at coordinates expressed as a function of point a and a

constraint.

Consider the labeled points in Figure 6.8(a); point a is the locally constrained initial condition,

and solutions within the conservation constraint occur along the main diagonal. Point b does not

change the speed of the lower magnitude response, in the positive A direction, but slows the larger

magnitude negative response. Point c does the opposite; the larger magnitude response, in the

negative direction is unchanged and the positive response is accelerated, violating the wA
max in this

example. Point e occurs at the intersection of wA
max and C = 0; this is the largest magnitude,

conservative, positive response. Point f is the largest magnitude conservative negative response.

Point d increases the positive response and decreases the negative response by the same amount to

the conservative diagonal. Of these points, only b and e occur within all constraints; b is the safest,

slowest response since it does not increase either magnitude; point e, or f if wB
max < wA

max, is less

safe and may overshoot the idea solution since one response direction is increased to its maximum

magnitude.

Functional solution b to the density transport equation slows the response direction of greater

magnitude to a conservative solution on the main diagonal. Figure 6.11(a) shows the application

of solution b to several dozen frames from the car test scene. Small black dots indicate initial

conditions, and white dots indicate solutions. Each white and black dot pair constitutes one control

decision.

Functional solution b slows the greater magnitude response to that of the slower magnitude

response, in the example shown ‖B‖1 � ‖A‖1, and so the magnitude of B is drastically decreased

to conservative solutions along the diagonal; no surplus is allowed in this example C = 0.

If a surplus was allowed in the example shown in Figure 6.11(a), then most of the initial points,

which occur above the main diagonal, would be members of C2D without modulation; however, if

these solutions were accepted, the total sample rate across space and time would decrease dramati-

cally.

Density transport control decisions using solution e are plotted in Figure 6.11(b) for the same car

test scene tracking a running surplus over the sample density. Surplus tracking allows the algorithm
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Figure 6.11. Scatter plot of functional solutions b and e for several hundred frames of the car
scene. Unconstrained initial conditions are represented by filled dots and are connected to circles at
corresponding solution coordinates. Plots show two parameter transport equation solutions.

to make a small number of large magnitude responses, such as the first response from the upper left

corner in the figure, and then use the available surplus to reduce the magnitude of later responses.

Many more functional solutions may be obtained if a surplus is allowed and C ≥ 0 since the set

of possible solutions is much larger; in the two parameter case, the possible set is a convex polygon

instead of a line. All of the function solutions in Figure 6.8(a) along the conservative diagonal

where C = 0 are still valid, as are analogous solutions along the off-diagonal C. It is possible

to express functional solutions in the interior of the set C2D, above the diagonal C in the figure,

in terms of analytic expressions of the constraints; however, because the difference between these

solutions are more finegrained, selection between them may be better performed using a relational

or nonfunctional approach. Such an approach, based on shape similarity between ϕ and ϕ∗, is

described in Section 6.3.3.

6.3.2.4 Limitations
The two-parameter formulation of the transport equation given in equation 6.44 is a projection

of the high number of individual control decisions to two dimensions that are convenient for illus-

tration, but the approach overly constrains the magnitude of the overall response. Due to equation

6.40, a single highly constrained element may restrict the entire response in the positive A direction

or negative B direction. In the average case for the test scene, approximately two thirds of the

elements have a non-zero sample density flux, i.e. |∆θ∗| > 0, and they are members of sets A and

B, of which only 3 percent have proportional response solutions b∗ within the boundaries of the
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local constraints allowing their response magnitude to be increased, i.e.
∣∣∣∆θ∗max

∆θ∗

∣∣∣ > 1, the speed of

the remaining elements may only be slowed.

The minimum and maximum reduction operators in equation 6.40 cause the 97 percent of highly

constrained elements to slow the response of the 3 percent in the interior of the bounds. 3 percent

of a frame is a significant portion of the image, equivalent to about a 1282 region at one Mpixel

output resolution. This is approximately the size of the leading edge of occluding features in the

test scenes.

6.3.3 Relational Heuristics
While the definition of set C in equation 6.36 provides enough information to determine if a

certain response vector is a solution to the transport problem, it provides little guidance about

how to obtain potential solutions. Application of the proportional response criteria in equation

6.1, originally used to relate the magnitude and direction of the spatial and temporal response with

that of the error estimate, to the change in combined sample density, allows comparison between

both the quality of different solutions, and the benefit of different perturbations of an intermediate

solution. This comparison allows the transport stage to be formulated more explicitly as a search or

gradient descent problem over vectors ϕ∗ in the set D towards an optimal solution within the set C.

While the dimensionality of ϕ is close to the order of output image resolution, a size which prevents

the practical implementation of a descent algorithm, the general formulation as an optimization

problem provides a model for realizable approximations to be compared.

After global constraints are applied, the relative magnitude, or relative shape of the response, of

ϕ∗ should be similar to ϕ. Shape similarity is given by a function Shape (ϕ), to be defined later, and

similarity given by the distance between the shape of two vectors. While shape is vaguely defined,

it provides a model to determine the optimality of different solutions ϕ∗ ∈ C and allows for the

formualtion of an optimization problem:

Distance (ϕ∗, ϕ) = ‖Shape (ϕ∗)− Shape (ϕ)‖ (6.49)

minϕ∗∈C Distance (ϕ∗, ϕ) (6.50)

Consider the N dimensional vector ϕ∗, in an iterative search for an optimal ϕ∗ ∈ C, element

m at iteration t is written: ϕ∗(i)m ; the vector ϕ∗(i+1) may be obtained by evaluating the gradient, i.e.
∂
∂iDistance

(
ϕ
∗(i)
m , ϕ

)
, in each direction m ∈ {1, . . . , N}, to find the largest negative change.
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6.4 Density Mixture
The density transport stage applies global constraints to the intermediate solution b∗ at each

element and produces a new constrained change in sample density ∆θ. The point b∗ determined by

the first stage of the control algorithm might not fall on the curve θn+1 = θn + ∆θ, determined by

the density transport stage after modulating ∆θ∗ at each element, so a new solution b, proportional

to φ, must be computed. The density mixture stage, the final step in the response control decision

algorithm, determines the new point b and may also bias the spatial and temporal sample densities

by sliding b along the curve, in the increasing direction of either the spatial or temporal sample

densities, to a final decision c. If ∆θ is zero, the mixture stage may still effect a response by

redistributing sample density at the element without changing the combined amount.

The coordinate b is found by intersecting a ray from point a in the direction ~m with the curve

given by θn+1; following equation 6.9, the ray equation with parameter k is:

b = a+ ~mk (6.51)

bs = as + ~msk (6.52)

bt = at + ~mtk (6.53)

The curve θn+1 is given by equation 6.4:

θn+1 = Area (b)

= bsbt (6.54)

The system defined by equations 6.52, 6.53, and 6.54, has up to two roots. In the case that ~m is

not axis aligned, the roots k0 and k1 are given by:

c =
√
~m2

ta
2
s + ~m2

sa
2
t + 4~ms ~mtθn+1 − 2~ms ~mtasat (6.55)

k0 = −
at − ~msat−~mtas+c

2~ms

~mt
(6.56)

k1 = −
at − −~msat+~mtas+c

2~ms

~mt
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The solution b is computed by equation 6.51 using the minimum positive root. In the axis

aligned cases, b is given by bs = θn+1/bt or bt = θn+1/bs for the horizontal and vertical directions

of ~m, respectively.

Bounds on the density mixture problem are enforced by the nonlinear constraint ∆θmax com-

puted in the local constraint stage of the control algorithm. The constraint ∆θmax is given by

equation 6.22 which enforces the linear bounds on spatial and temporal sample density in equations

6.12. The threshold ∆θmax ensures that a solution along the curve θn+1 occurs within the linear

bounds. Equation 6.21 avoids the zero root case of equation 6.51, which would occur if the direction

of ~m from initial point a was such that the ray missed the curve θn+1.



CHAPTER 7

EXPERIMENTAL RESULTS

The TSAR algorithm attempts to increase a combination of the spatial fidelity, temporal fidelity,

or overall efficiency of a renderer by adding an adaptive response component to the rendering

pipeline. This component adjusts the sampling work performed by the renderer and in doing so,

consumes computational resources. In order to be beneficial to the overall rendering system, the

added overhead of the adaptive response and sampling control mechanism must be compensated

for by an improvement in generated imagery. The TSAR algorithm improves the overall rendering

system in many cases, especially in terms of temporal fidelity; however, in certain situations, the

overhead of adaptive response or adaptive sampling is too great and an improvement is not obtained.

The relationship between algorithmic performance and the graphics scene input, algorithm

parameters, and rendering situation distinguish the TSAR approach from the fidelity independent,

or free trade off, approaches described in Chapter 2. The adoption of free trade off approaches

does not result in a compromise between both the spatial and temporal fidelity of produced imagery.

For example, selecting one acceleration structure over another will not effect the spatial fidelity of

individual images; however, it may allow for faster refresh and greater temporal fidelity. Since the

TSAR algorithm presents a significant trade off between both types of fidelity, it must be evaluated

differently than other high performance graphics techniques.

Instead of describing the average temporal refresh rate achieved by the prototype system, the

experimental results presented in this chapter describe the relative amount of error produced by the

TSAR approach compared to a nonadaptive uniform renderer with equal or greater computational

cost. The ratio of error, measured as a difference between the respective rendering output and

reference high spatiotemporal resolution imagery, is used to determine the sets of scene input

and algorithm parameters where TSAR approach is more suitable. The result of each test run is

presented as a distribution of the error ratio across the temporal extent of the test run. Suitable

and unsuitable cases are distinguished by the spatial and temporal characteristics of the generated

imagery and the cost of the sampling mechanism.

This chapter describes the formulation of suitability, and then the search for it across the space

of algorithmic inputs. This consists of a reduction of the large number of algorithm parameters,
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the assumptions made while estimating the cost of the adaptive and nonadaptive approaches, and

finally, the result of the evaluation.

7.1 Suitability
Since the TSAR algorithm poses a fundamental compromise between spatial and temporal

fidelity, the tradeoff along with computational cost of the approach must be included in an evaluation

to identify suitability. Certain situations are clearly not suitable, e.g. cases where the nonadaptive

per-pixel rendering cost is trivial or the imagery does not exhibit appropriate spectral characteristics

for sparse sampling and reconstruction. Due to the cost of adaptive sampling and response in these

cases, the benefit of the algorithm might be low or the effect might be harmful. The cost of adaptive

sampling and response may be unimportant at the other end of the spectrum too, e.g. where the

cost of adaptive response would be insignificant compared to that of a high quality noninteractive

renderer. The evaluation of the TSAR algorithm presented in this chapter identifies a set of suit-

able cases between these two extremes where the approach results in an improvement in fidelity

compared to a conventional nonadaptive framed rendering approach. This chapter provides an

existence proof that situations exist in interactive graphics where the TSAR algorithm is beneficial,

and describes the relationship between the suitable cases, algorithm parameters, characteristics of

the input imagery, and the overall cost of the approach.

7.1.1 Graphics Scene Input and Algorithm Parameters
This evaluation of the TSAR system constitutes a search for situations where the approach is

suitable, i.e. cases where the combination of graphics scene input and algorithmic parameters pro-

duce imagery at a lower cost computational cost and higher quality than the nonadaptive alternative.

The space of graphics scenes, algorithmic parameters, and definition of computational cost and

image quality are defined in the following sections.

Analysis of the TSAR algorithm is performed in a hardware-independent manner by counting

floating point operations in the algorithm to determine the complexity of each component. The cost

constraint, expressed in terms of computational requirements relative to a nonadaptive approach,

ensures that both approaches may be implemented on equivalent hardware.

Both computational cost and the quality of output imagery are sensitive to parameters of the

algorithm and spectral characteristics of the graphics workload such as the amount of motion and

the size and complexity of spatial features. Each suitable case may be described by a certain type

of graphics imagery paired with a specific configuration of the TSAR algorithm. The principal

challenge in the evaluation is to limit the number of potential cases necessary for testing since the
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graphics input to the system and the number of possible algorithmic parameter values is nearly

unbounded.

7.1.1.1 Test Scenes
While the possible number of different graphics scenes is unbounded, the practical size of the

space of input to the TSAR prototype is limited by several components of the prototype system: the

capabilities of the scene modeling and animation tool, constraints of the scene description format,

constraints of the underlying ray tracing system, and the expense of creating test scenes. Since

the adaptive rendering algorithm was layered on top of the Manta rendering engine, without any

changes made to the underlying software, the material model is limited to textured surfaces with

Phong illumination, shadows, and reflections. Both the cost in terms of labor of modeling dynamic

scenes and limitations of the scene marshalling software restricted the possible graphics input to

rigid body motion of objects, cameras, and lights in the scene.

Limitations on the complexity of test scenes and the amount of time necessary for evaluation

resulted in a single test world scene containing five different animation sequences, each with dif-

ferent spatial and temporal characteristics. The five different animation sequences are referred to as

different test input scenes in this chapter. Representative frames from each test input are shown in

Figures 7.1 and 7.2.

Throughout the evaluation process, these five test input scenes produced over two hundred test

runs. Each test scene consists of a vehicle moving across a paved surface with textures, reflections,

and shadows. The vehicle chassis position, wheel rotation, camera position, and orientation are

animated based on time. The animation sequences, consisting of different relative positions of

the camera and vehicles, are selected to represent situations encountered in visual simulation or

entertainment applications.

The initial vehicle geometry was obtained from the Google 3D Warehouse, attributed to an

anonymous author. The geometry was improved to correct surface normals and animated before

being added to the test scene. Textures in the test world scene were extracted from landscape

photographs.

Two representative frames from input zero are shown in Figure 7.1(a). The test case consists of

a fixed camera frame into which a vehicle moves through the upper left of the frame. Only the upper

left of the image contains any temporal change; the foreground contains coarse spatial detail. When

the vehicle is not visible in the camera frame, there is no temporal change and little difference in

spatial detail.

The second input is a chase camera position where the viewer is positioned a fixed distance

from the vehicle and moves with it through the scene. Although the relative location of the vehicle
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Example Frames Description

(a) Test input scene 0

Fixed camera. Localized tempo-
ral, uniform spatial. Transient
detail.

(b) Test input scene 1

Chase camera. Consistent spec-
tral characteristics.

(c) Test input scene 2

Fly-by camera. Transient spatial
and temporal features.

Figure 7.1. Representative frames test input scenes produced by a nonadaptive framed renderer.

in the frame does not change, the reflections on the vehicle, the wheels, and the background change

as the vehicle moves through the scene. Two representative frames from input 1 are shown in

Figure 7.1(b). The spectral characteristics of different spatial regions of the imagery do not change

over time because the camera tracks the vehicle from a fixed distance. Spatial detail in the scene

varies between coarse and fine features across the foreground and background.

The third input is a fly-by camera scenario, shown in Figure 7.1(c). The camera is located

at a fixed position but pivots to follow the vehicle as it moves past. Most of the image changes

from one frame to another as the ground and background rotate around the camera, although the

spectral characteristics of the image are consistent throughout the sequence since the vehicle always

occupies the center of the frame. This results in a test case with consistent spectral features, i.e.

the horizon and the texture in the foreground are always at approximately the same position, but

changing spatial detail since the shape of the horizon and region of the texture within the frame

change.

The fourth input is a fixed camera frame where the vehicle moves towards the camera but the
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Example Frames Description

(a) Test input scene 3

Dolly camera. Largely static spa-
tial detail, enlarging region of
temporal change.

(b) Test input scene 4

Fixed camera. Rapid transient
features.

Figure 7.2. Representative frames test input scenes produced by a nonadaptive framed renderer for
the remaining two scenes.

orientation of the camera frame remains unchanged. Since only the vehicle is moving, most of the

image remains unchanged. Input 3 is shown in Figure 7.2(a). The vertical edge apparent in the

background of the images is a texture mapping artifact.

The last input case consists of a fixed camera frame across which the vehicle moves very quickly.

Input 4 is shown in Figure 7.2(b). This is a difficult case for adaptive response because the speed of

the movement creates rapid occlusions and disocclusions of regions with markedly different spectral

characteristics and the response component of the pipeline is only able to observe information up to

the leading edge of time.

7.1.1.2 Parameters
Besides the graphics scene input, the space of possible algorithmic parameters is particularly

large because the TSAR prototype system allows one hundred arguments to be set at runtime, al-

though nearly all have empirically set constant values. The set of possible configuration parameters

must be significantly culled to produce a tractable number which may be tested with the input scenes

and compared to the nonadaptive renderer.

The search over the parameter space for algorithmic configurations to test suitability is con-

ducted using a four step process to constrain the space of possible parameters and input. First,

a cost model is formulated in terms of a number of independent parameters to reason about the

relative computational complexity of different components of the algorithm. Next, the cost model is
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projected into a low dimensional space which may be empirically mapped to algorithm parameters.

Third, a lower cost subspace is selected from the simplified cost model based on the relative cost

of the nonadaptive approach. Finally, the cost model dimensions are transformed into the space of

system parameters, and the lower cost subspace is sampled by executing test runs of the system

with each combination of parameters. The aggregate quality of each run is compared against a

competitive nonadaptive approach to identify instances where the quality of the TSAR approach is

greater.

The hardware-independent cost model employed for evaluation is described in Section 7.1.2

and quantitative evaluation of the sample points identified within the relative cost constraints and

the characteristics of the test scene is described in Section 7.2.

7.1.2 Cost Model
The TSAR prototype used for evaluation provides interactive performance, depending on the

type and amount of information recorded during experimentation. However, a wider variety of

experiments may be performed if the system is run in simulated time, where the upper limit on the

pace of temporal change in the imagery is not dictated by the constraints of computer hardware. In

this way, the prototype may be seen to provide a fast simulation of a real-time rendering system.

Several factors contribute to the need to employ simulated time: instrumentation of the pipeline, in

the form of software event counters, such as the size of the tiling or the number of sample density

scalars changed by the adaptive response stage, require pipeline components to be executed in a

serial emulation mode on the host processor instead of in parallel on the graphics device processor;

recording the state of the error and density fields, as well as the new framelet sample batch and the

output reconstructed frame, require data to be copied each pipeline cycle from the device to the host

memory and eventually to persistent storage on a disk; and limitations of the scene modeling and

loading pipeline result in inefficient rendering by the ray tracing engine. The combination of all of

the instrumentation, profiling, and recording overhead prohibits quantitative real time analysis in

every test case. Nevertheless, the difference between real time and the temporal rate achievable by

the prototype is less than an order of magnitude.

Since evaluation of the TSAR prototype must be performed on different hardware than the

intended real time implementation, a model of computational cost and complexity in terms of aggre-

gate operations is used, instead of a hardware-specific cost analysis. The cost model is formulated

by manually counting the total number of floating point operations that would be performed by

the most significant stages of the pipeline in a serial and hardware-independent manner. Several

simplifications to the operation count are made: only floating point operations are counted, the

execution path with the greater number of operations was counted in instances where conditionals
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caused divergence, also transcendental floating point operations such as pow, sqrt, log, etc. were

counted as a single operation; and generalizations were made in particularly complicated divergent

cases, such as the number of traversal steps of a spatial acceleration structure during ray tracing, or

the amount of overdraw incurred during reconstruction.

The stages of the TSAR pipeline included in the cost model are: framelet rendering by ray

tracing, error estimation, sample density update, framelet tiling rebuild, and reconstruction. In

each stage, the total number of operations per-entry, i.e. in aggregate by all threads, is counted, in

addition to a per-output pixel cost, which is the entry cost in floating point operations divided by the

number of pixels, i.e. output frame size, reconstructed in each pipeline cycle. The cost model for

the nonadaptive renderer consists of only the per-pixel ray tracing cost.

7.1.2.1 Model Parameters
The number of operations performed in each pipeline stage is a function of several parameters,

some of which are constant in the implementation and others which may be specified at execution

time, or as properties of the scene. The independent parameters in each stage along with the default

values assumed for cost analysis are shown in Table 7.1; all but the last two rows are possible

command line parameters. The default values were determined empirically while developing the

prototype.

Expressions for the entry cost of each stage per pipeline cycle are shown in the following

set of equations, in terms of the individual components of each stage. Constant integers indicate

approximate operation counts in the implementation.

Table 7.1. Cost model independent parameters
Parameter Default

value
Description

batch size 128 Framelets rendered per pipeline cycle.
sdf size 1282 Resolution of the θ and φ scalar fields.
framelet size 162 Number of samples in each framelet.
recon res 5122 Reconstruction output resolution in pixels.
cache size 2048 Number of framelets stored in the cache.
recon age support 128 Width of the framelet age smoothing operator.
recon spa support 32 Size of the reconstruction spatial filter.
trace segments 5 Number of ray segments per pixel.
tiling size 512 Number of framelets in the tiling.
dwt coeffs 448 Number of coefficients contributing to the LLN measure.
tree size 1024 Number of spatial structure tree nodes.
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selection per entry = (tiling size ∗ 1 + batch size ∗ 2)

error per spa conv = 16 ∗ dwt coeffs

error per tem conv = 37 ∗ dwt coeffs

error per framelet = per spa conv + per tem conv

error per entry = batch size ∗ per framelet

update per compute dtheta = sdf size ∗ 49

update per scale error = 19 + 96 ∗ sdf size

update per entry = per compute dtheta+ per scale error

retiling per sum tables = sdf size ∗ 2

retiling per tiling build = 2 ∗ tiling size ∗ log2(tiling size)

retiling per entry = per sum tables+ per tiling build

recon per age buffer = framelet size ∗ cache size

recon per age smooth = recon res ∗ recon age support ∗ 4

recon per framelet filter = (16 ∗ recon spa support+ 6) ∗

avg recon overdraw ∗ recon res

recon per normalize = recon res

recon per entry = per age buffer + per age smooth+

per framelet filter + per normalize

tracing per bvh node = 16

tracing per triangle = 64

tracing per shader = 96

tracing per traversal = log2(tree size) ∗

per bvh node ∗ per triangle

tracing per ray tree = trace segments+

(per traversal + per shader)

tracing per entry = batch size ∗

framelet size ∗ per ray tree

naive per pixel = tracing per ray tree
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The per-entry and per-pixel cost vary widely between the different stages. Reconstruction,

which is a multistage image-based algorithm, contains four subcomponents corresponding to the

approximate number of floating point operations in each pass. Error analysis has the greatest

per-entry cost, but it is parameterized on the batch size and framelet resolution. These quantities are

an order of magnitude smaller than their divisor, the output pixel resolution, so the per-pixel cost is

much lower. The output resolution is the chief independent parameter of the reconstruction stage

and the parameter divides out of all but the first subcomponent of the stage, so the computational

cost is not effectively amortized across image.

7.1.2.2 Simplified Model
While less than the hundred possible command line parameters, the number of independent

parameters listed in Table 7.1 is still too great for a tractable search for suitable configurations. To

limit the number of potential parameter combinations, the cost model is projected from a eleven-

dimensional space to a three-dimensional space.

The three parameters, batch size, number of ray traced segments, and output resolution size,

are selected as the independent parameters of a simplified cost model which is obtained by fixing

the other parameters to their default values. The batch size parameter controls the number of

framelets rendered per pipeline cycle in the adaptive renderer which is equivalent to the number

of output image pixels in a framed renderer. The number of ray traced segments determines the

cost of rendering each image pixel or framelet sample; one segment is counted for each ray traced

to color the pixel, e.g. a pixel containing the reflection of a diffuse surface with a single light

source would require four segments: a primary ray cast from the camera, a reflection ray from

the initial intersection, and two shadow rays, one from the primary and one from the secondary

intersection points. The model assumes that each ray segment has equal cost. The last parameter

of the simplified model is the resolution of the output imagery; in the adaptive renderer this is

the resolution at which reconstruction is performed and in the nonadaptive renderer it is simply

the number of pixels colored per frame. These three independent parameters are most likely to

be dictated by the requirements of a graphics situation, e.g. the degree of indirect illumination, or

implementation hardware limitation.

Cost comparison between different stages of the TSAR pipeline and between the adaptive

approach and a nonadaptive framed rendering approach is performed in terms of the difference

between producing a single complete image from one cycle through the rendering pipeline. In the

nonadaptive pipeline, the size of the output image is simply the number of pixels ray traced in each

frame. In the TSAR pipeline, the size of the output is image is the resolution at which reconstruction

is performed.
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The output imagery resolution in pixels versus the cost per-pixel is shown in Figure 7.3. The

other independent parameters of the cost model assume default values. The solid thick line is the

sum of the cost of all stages in the adaptive pipeline and the dashed thick line is the cost of rendering

an image at the same output resolution using a nonadaptive framed rendering algorithm. The vertical

axis of the plot is on a log scale.

Since the cost of reconstruction is dominated by operations performed at output pixel resolution,

it is nearly constant as resolution increases. At higher output resolutions, the cost of reconstruction

dominates that of other stages in the pipeline. As the cost of the other pipeline stages approach zero,

the total adaptive cost approaches that of the reconstruction stage, which is more than an order of

magnitude less than the cost of the nonadaptive renderer due to the default batch size which is listed

in Table 7.1 and fixed in this figure. In cases where the output resolution is less than 2562, the cost

of ray tracing framelet samples alone is greater than the cost of framed rendering.

The batch size parameter of the TSAR algorithm controls the number of framelets which are

selected for rendering from the tiling in each pipeline cycle. Based on the default parameter value in

Table 7.1, each framelet contains 256 image samples. The total number of image samples rendered

in each pipeline cycle is this number multiplied by the batch size. Batch size versus the cost per-pixel

of each pipeline stage is plotted in Figure 7.4. At batch size 1024, the same number of ray traced

image samples is the same in both the adaptive and nonadaptive renderers; the difference between

the nonadaptive and adaptive cost, which is greater, shows the overhead of the adaptive approach.

Just to the left of this batch size, the cost of both approaches is the same. The reconstruction cost

function increases very slowly with batch size while the update and retiling functions are constant

and independent.

The number of ray segments traced per image pixel versus per-pixel cost is shown in Figure 7.5.

This independent parameter is proportional to the amount of nonlocal shading effects used to

synthesize the image. Common interactive ray traced scenes may employ between two and sixteen

ray segments per image sample, while high quality indirect illumination may require significantly

more. The zero ray segment point along the left side of the plot indicates the cost model behavior

when the cost of rendering a sample is trivial or the sampling mechanism is free. As the complexity

of each image sample increases, the difference between the adaptive and nonadaptive approaches

converges to the ratio between the batch size and the output resolution, in this case, one quarter the

number of image samples, while the cost of the other pipeline stages is constant.

7.1.3 Cost Constraint
The suitability definition specifies that the cost of the adaptive approach must be less than or

equal to the cost of the competing nonadaptive approach, and separately, that the quality must
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Figure 7.3. Cost per pixel versus output resolution. The solid thick line indicates the total cost of
adaptive rendering, the dashed thick line indicates the cost of a nonadaptive framed renderer. Each
thin line indicates the cost of a stage in the TSAR pipeline.

be better. This cost constraint significantly limits the space of possible parameter values. The

computational cost of both approaches may be expressed as functions of the simplified model, and

the constraint as a relationship between either function. The simplified cost model of the adaptive

algorithm may be expressed as a three-dimensional function with independent parameters batch

size, number of ray segments, and output resolution. The cost model of the nonadaptive framed

renderer is a function with two varying parameters, the number of ray segments and the output

resolution. The cost constraint is satisfied when the two functions are equal or the nonadaptive

per-pixel cost is greater than the adaptive per-pixel cost.

The set of parameters over which the cost of the algorithms is the same is shown in Figure 7.6

for intervals of parameters consistent with the capabilities of the TSAR prototype. The isosurface

shown is drawn where the ratio is equal to one. The region of parameter space above the isosurface

satisfies the cost constraint and the region below does not. Along the right edge of the figure at

the zero ray segments coordinate, there is no region of the parameter space above the isosurface.

Likewise, before batch size 256, nearly all of the parameter space is within the constraint.

The space above the equal cost isosurface must be sampled to identify parameter combinations

within the suitability constraints; these may be tested. Several potential coordinates are marked by

boxes in Figure 7.6. These occur at ray segment coordinate four which is the approximate number
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Figure 7.4. Cost per pixel versus batch size. The solid thick line indicates the total cost of adaptive
rendering, the dashed thick line indicates the cost of a nonadaptive framed renderer. Each thin line
indicates the cost of a stage in the TSAR pipeline. The total number of image samples rendered per
pipeline cycle is equal to 256 times the batch size. The total cost of the adaptive approach exceeds
the nonadaptive approach along the right edge of the figure.

of ray segments per pixel in the test input scenes.

7.2 Quantitative Evaluation
The equal cost isosurface shown in Figure 7.6 constrains the space of possible parameter combi-

nations to be considered in the search for suitable configurations. The parameter space above the iso-

surface in the figure contains parameter combinations which are less expensive than a nonadaptive

framed renderer, but the cost model does not provide any information about the relative quality of

imagery produced by these parameters, compared to nonadaptive imagery. This section formulates

a quality analysis for quantitative comparison of imagery produced by parameters combinations

within constraints of the cost model.

7.2.1 Measuring Quantitative Quality
Quantitative approaches to measure the perceptual quality of still images and video imagery

may be divided into three categories: measures based on pixel error or difference between images;

approaches which estimate the similarity between features or structures in the images, the overall
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Figure 7.5. Cost per pixel versus θ resolution. The solid thick line indicates the total cost of adaptive
rendering, the dashed thick line indicates the cost of a nonadaptive framed renderer. Each thin line
indicates the cost of a stage in the TSAR pipeline. Since the cost of tile selection does not change
with the resolution of the error and sample density fields, it appears along the bottom edge of the
figure.

perceptual likeness; and approaches which estimate the prevalence of an anticipated type of artifacts

in the imagery. The suitability of each approach depends on the definition of image quality in the

application at hand. In the field of image compression, expected type of quality degradation is well

known and measurement of specific artifacts is possible, e.g JPEG quantization artifacts assessed

by Süsstrunk et al. [62]. The second category is suitable in instances where quality is defined in

terms of the overall perceptual similarity of a synthetic image and an actual object. Approaches

in this category include Wang et al. [69] and Winkler et al. [72], and are specifically motivated

by shortcomings of error or difference-based quality assessment, such as a sensitivity to minor

translations or high frequency aliasing artifacts. The definition of quality in terms of visual similarity

to an actual object seems very compatible with the definition of fidelity given in Section 1.3.1,

but the relative insensitivity to minor changes such as translation decreases the response of these

approaches to common types of temporal change, such as objects moving across the image.

The ideal quantitative quality measure for the evaluation of the TSAR algorithm would judge

the adequacy of the spatial and temporal sample rates for reconstruction of imagery. While a pixel
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Figure 7.6. Equal cost per-pixel isosurface. Scalar volume is the ratio between the per-pixel cost
of the nonadaptive and adaptive approaches over dimensions framelet batch size, ray segments
per-pixel, and output pixel resolution. Isosurface indicates equal cost, i.e. ratio equal to one, of the
adaptive and nonadaptive approaches. The adaptive approach is less expensive above the surface
and more expensive below. Marked points above the surface indicate the parameter values of test
cases.

difference-based quality measure, like mean squared error, is not able to distinguish between various

types of image differences and may be more sensitive than the human visual system, as illustrated

by Wang et al. [68], it does provide a reliable distance measure between two images and is sensitive

to differences due to small temporal changes. Earlier approaches that are more sophisticated and

computationally expensive than pixel difference measurements, as summarized by the Video Quality

Experts Group [54], produce statistically equivalent results when compared to subjective quality

measurements. Quantitative analysis based on frame to frame mean squared error between test run

and reference imagery at a high temporal resolution is used in the evaluation of the TSAR algorithm

principally due to its computational efficiency and sensitivity to differences caused by temporal

sample rate artifacts.
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7.2.2 Reconstruction Artifacts
Two principal factors contribute to differences between test run and reference imagery, differ-

ences in the temporal refresh rate or age of images, or differences in the spatial sampling and recon-

struction approaches used during rendering. Differences in the rate and time of temporal refreshes

cause motion in the test run imagery to proceed at a slower rate than in the reference. Substantial

differences in frame rate may introduce sharp temporal features, artifacts where animated motion is

aliased. Spatial artifacts decrease the fidelity of test run imagery when the size and detail of spatial

features reconstructed by the test run differ from analogous spatial features in the test run imagery.

In general, the TSAR algorithm decreases the spatial or temporal sample rates used to render

the test run, and most of the artifacts which reduce fidelity are caused by inadequate spatially and

temporal up sampling, which is unable to reconstruct enough detail compared to the reference

imagery. Spatial up sampling artifacts produce smooth regions of individual frames which lack

high frequency detail; other spatial artifacts may occur at the boundary between framelets where

the sample rate changes. Temporal up sampling artifacts produce regions of frames containing

older sample information; boundaries between older and newer regions of the image are smoothed

through the addition of motion blur.

Test run imagery for evaluation of the TSAR algorithm is compared to high resolution reference

imagery produced by rendering each test input scene at a high spatial and temporal sampling rate.

Test run imagery is collected separately from the adaptive renderer and the nonadaptive renderer

and individually compared to a single high resolution reference. The result of this comparison for

each test run produces two quality measures from which the suitability of the adaptive test run may

be determined.

7.2.3 Comparison Pipeline
The quantitative quality comparison pipeline consists of four stages: test run collection, resam-

pling, error measurement, and result aggregation, which are illustrated in Figure 7.7.

First, individual frames are recorded by the renderer in the test run collection stage. The

TSAR prototype may be configured to download fully reconstructed frames from the front buffer

of the graphics processor during execution. This overhead is one factor that contributes to the

requirement that analysis be based on simulated time test runs. In both the TSAR prototype and the

nonadaptive framed renderer, the animation time stamp, either a real-time or simulated time value,

is recorded when the front and back buffers are swapped by the display hardware. The per-frame

timestamp allows different test runs to be temporally resampled for frame to frame comparison

either qualitatively with each other or quantitatively with a high resolution reference sequence.
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Figure 7.7. Quantitative comparsion pipeline.

The second stage of the comparison pipeline prepares the reference and test imagery for pixel

to pixel comparison and is implemented differently for each type of imagery. Test run imagery is

up sampled along the temporal dimension to the temporal resolution of the reference imagery, and

reference imagery is down sampled spatially to the output resolution of the experiment, which is

defined as the test run imagery spatial resolution. Temporal up sampling is performed by deter-

mining the image visible on the test run display device at each reference image sample coordinate.

The previous test run image is duplicated for each temporal sample in the reference run between

subsequent test run temporal sample locations.

Spatial down sampling of the reference is a low pass filtering operation that resizes individual

reference images to the spatial resolution of the test run imagery. The test run imagery is produced

at a specific spatial pixel resolution with the rendering engine configured for super sampling. Down

sampling in the quality comparison pipeline is analogous to the filtering operation performed to

resample subpixel samples to pixel resolution. The spatial resampling stage allows a single high

resolution set of reference imagery to be compared with test run imagery at several different reso-

lutions.

The third stage of the pipeline computes the mean squared error, expressed:

mt =
1
N

N∑
y=1

N∑
x=1

(Run (x, y, t)− Ref (x, y, t))2 (7.1)

which is the average difference squared, between matching pairs of pixels in the test run and

reference image sequences.

Test runs may be summarized in the fourth stage of the comparison pipeline by computing

descriptive statistics across each error value across the entire run to describe the relative behavior

of the adaptive approach. Relative behavior is expressed as a ratio between the run-to-reference
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mean squared error of adaptive TSAR runs divided by the run-to-reference mean squared error of

the nonadaptive runs, for each reference time stamp:

mt (TSAR)

mt (nonadaptive)
(7.2)

Quality ratio values greater than one indicate that the TSAR run error is greater than the non-

adaptive error, and that even for a set of parameters within the cost constraints, the case is not

suitable. For parameter combinations within the cost constraints, values less than one indicate

suitability since the TSAR error is less than the nonadaptive error.

7.2.4 Quality Index Behavior
Within the constraints described in Section 7.2.1, the relative spatial and temporal quality of

rendered imagery may be deduced from the output of the comparison pipeline. The difference

between pairs of pixels in a test run image versus a reference image is the sum of the difference

between the reconstruction of spatial features and the reconstruction of temporal features in the test

run. The quality of the reconstruction of both spatial and temporal features is determined by the

adequacy of the respective spatial or temporal sample rate used to render the imagery. Although the

mean squared error measure is dimensionless, over a sequence of images, it exhibits a characteristic

behavior which may be used to understand the relative spatial and temporal quality of the imagery.

At the time of a temporal refresh in a nonadaptive renderer, indicated by vertical grid lines in

Figure 7.8, the difference between the run and reference imagery due to temporal age or latency is

minimized. The MSE value at the temporal refresh location is dominated by differences in spatial

feature reconstruction; these locations indicate the level of spatial quality in the test run compared

to the reference image.

Between temporal refreshes, the MSE value consists of the combination of pixel differences due

to the age of the most recent test run image, and pixel differences attributed to the level of spatial

quality of that image. These two factors are illustrated in Figure 7.8. At points a and c, which occur

at temporal refreshes, the difference between the run and the reference images is due to the spatial

quality level of the test run. The rate of change between points a and b relative to the rate of change

between points a and c indicates the adequacy of the temporal refresh rate and the level of temporal

quality.

Figure 7.9 shows the MSE error of two input scenes to a nonadaptive renderer; the first scene

exhibits this characteristic behavior while the second scene does not. In the first example, shown in
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Figure 7.8. Characteristic behavior of image sequence MSE.

Figure 7.9(a), the spatial quality level decreases over time, but the temporal quality level, indicated

by the slope of the MSE measure between temporal refreshes (at vertical grid lines), remains the

same at the beginning of the sequence before increasing gradually towards the end. This example

was taken from a nonadaptive framed renderer of test input scene 3 which contains consistent

motion. The decreasing level of spatial quality is likely due to an increased amount of higher

frequency details in the imagery. Figure 7.9(b) shows an example from input scene 1 which does

not fit this characterization; here, the MSE is approximately the same at each temporal refresh;

however, the value does not increase monotonically between refreshes. Temporal change in input

scene 1 is predominantly periodic in nature because the camera leads the vehicle by a fixed amount

and the highest frequency changing features are spinning wheels. The local minimums between test

run refreshes are likely due to the wheels of the vehicle in the reference imagery, which is constantly

changing, reaching an orientation similar to the previous test run refresh.

7.2.5 Suitability Results
For each of the five test input scenes, certain parameter combinations exist within the cost model

bounds that produce imagery with a suitable quality ratio, i.e. where the MSE of adaptive TSAR

generated imagery is less than the MSE of the framed nonadaptive imagery, both compared to a

high resolution reference. Eighty test runs within the cost model constraints are shown together in

Figure 7.10; each of the five columns in the figure contains sixteen test runs, indicated by box plots,

for each test input scene using input parameters in the order of the rows listed in Table 7.2. Each

box plot represents the distribution of quality index ratio, given by equation 7.2, across a test run.

Due to the cost constraint, the total estimated computational cost of the TSAR approach in each test

run is not greater than the nonadaptive renderer at the same output resolution.

The figure shows distribution across each test run of the quality index ratio defined in Sec-

tion 7.2.3 as the relative MSE between the adaptive and nonadaptive output imagery, respectively,
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Figure 7.9. Mean squared error of nonadaptive runs. The vertical grid lines intersect the horizontal
axis at the temporal coordinates of frames in the test run image sequence. Figures (a) and (b)
show different indications of low temporal quality based on the behavior of the MSE value between
temporal refreshes.

and high spatial temporal resolution reference imagery. Individual results for each test input scene

are shown in more detail in subsequent figures. The parameters of each test run within an input

scene are listed in Table 7.2 in order from left to right, e.g. the first run on the left side of the figure

is of framelet batch size 32 and output pixel resolution 128 × 128; the last run in the first column,

the sixteenth box plot, is of framelet batch size 1024 and output pixel resolution 1024 × 1024.

Values occurring below 100 indicate that the adaptive TSAR approach is better than the nonadaptive

approach and that the test run is a suitable case. Values above 100 do not indicate suitability.

The relative suitability of the rendered imagery varies throughout the course of each test run

as the animation causes the spatial and temporal characteristics of the scene to change. Only test

input scene two produced imagery which met the suitability requirement across the entire test run

for each combination of parameters tested. Test scenes one and four produced imagery that overall

was suitable with the exception of some outlying instances, or certain ranges of parameters. Test

scenes zero and three produce imagery with a quality ratio, and suitability, varying across the test
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Figure 7.10. Overall quality comparison across all test runs within the cost constraint based on the
frame to frame ratio between the quality index of the adaptive TSAR test run and the nonadaptive
framed test run. Values in the bottom half of the figure are suitable and values in the top half
are unsuitable. Each box plot indicates the distribution of quality index ratios across a single
animation test run. The whiskers extend to the most extreme nonoutlier values. Outliers, described
in Section 7.2.5, are indicated by crosses. Test runs using different input scenes are delimited by
vertical grid lines.

runs.

Although only one scene produced suitable results for all parameter combinations, the majority

of test runs produced suitable imagery most of the time. Across all test runs combined, the TSAR

algorithm produces suitable results 66 percent of the time. The five right columns of Table 7.2

indicate the greatest percentile of each test run at a suitable quality ratio, i.e. in test run 11, input

scene zero, the 80th percentile is the greatest percentile with a value less than or equal to one,

therefore, 80 percent of the qualify ratio measurements in the test run produced suitable results. Of

the eighty parameter combinations tested within the cost model constraints, which correspond to

different output resolutions and ray trace sampling budgets, one third are suitable all of the time, 46

percent are suitable 90 percent of the time, and 67 percent of the runs are suitable half of the time.

The 75th percentile of each run’s quality ratio is selected to broadly distinguish suitable and

unsuitable test scenes. Figure 7.11 and Figure 7.12 show the quality ratio distributions of test run

scenes where the 75th percentile of each run is suitable, i.e. the quality ratio measures in the test

run are less than or equal to one at least 75 percent of the time. Likewise, Figure 7.13 shows cases

where the 75th percentile is greater than one. The twelfth test run in Figure 7.13(a) is an exception

where only outliers quality ratio values are unsuitable.

Test input scenes one and two indicate a sensitivity of the quality ratio to resolution more so
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Table 7.2. Suitability test runs in Figure 7.10 listed in order for each set of sixteen test runs per input
test scene. Parameter combinations not listed in the table are not within the cost model constraints
shown in Figure 7.6. Columns to the right indicate the greatest suitable percentile, i.e. with quality
ratio less than or equal to one, of each test run for all five test input scenes.

Parameters Suitable Percentile
Run Batch Size Output Resolution Scene 0 Scene 1 Scene 2 Scene 3 Scene 4
0 32 2562 16 100 100 20 11
1 32 5122 11 99 100 10 16
2 32 10242 6 86 100 8 6
3 64 2562 53 100 100 53 90
4 64 5122 38 100 100 21 87
5 64 10242 32 95 100 15 84
6 128 2562 70 100 100 55 91
7 128 5122 57 100 100 31 91
8 128 10242 45 99 100 20 88
9 256 5122 56 100 100 28 91
10 256 10242 44 99 100 20 88
11 512 5122 80 100 100 52 91
12 512 10242 45 100 100 19 88
13 768 5122 55 100 100 28 91
14 768 10242 45 100 100 19 88
15 1024 10242 45 100 100 19 88

than to framelet batch size, and test scene four contains many outlier values which must be specially

interpreted. In two of the five test scenes, certain outlier values, indicated by crosses in the figure,

occur well above the upper quartile and in many cases are unsuitable quality ratios. The source of

these outliers may be identified by comparing the behavior of the quality ratio and individual MSE

values with the spectral behavior of the test input animations over time. Consider the plot of MSE

values for test input scene zero shown in Figure 7.14. The MSE values of the nonadaptive framed

run are drawn with a thick line, and the MSE values for each of the adaptive framed runs are drawn

with thin lines. In this test scene, the camera is positioned at a fixed location looking down at the

vehicle as it moves through the camera frame. The animation continues for a short time after the

vehicle completely exits the frame and there is no more temporal change in the imagery. While

the adaptive run MSE values generally follow the same shape as the nonadaptive MSE, towards the

end of the sequence starting at the third to last refresh of the framed renderer (indicated by vertical

grid lines), the nonadaptive run decreases to almost zero, and the MSE of each adaptive run stops

changing substantially and is fixed at a certain error value. This behavior produces a number of

quality ratio values outside of the midspread of the distribution.

Figure 7.15 shows the quality ratio over time between the first test run of input scene zero and

the nonadaptive renderer. Frame refresh of the nonadaptive renderer is indicated by vertical dotted
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Figure 7.11. First two suitable cases.

lines. The upper and lower quartiles of the adaptive renderer quality ratio are indicated by dashed

horizontal lines; outliers occur above the solid horizontal line. The quality ratio function jumps to

an extreme value immediately following the third to last refresh. The MSE value of the adaptive

runs in this outlier region correspond to the maximum spatial quality the configuration of each run

is able to deliver in the absence of any temporal change.

The outlier behavior seen in test input cases zero and four suggests a limitation of the TSAR ap-

proach, and other adaptive approaches which attempt to find some predetermined balance between

spatial and temporal fidelity; in instances where the scene stops changing, the sensitivity of the

adaptive response mechanism must be adjusted to significantly bias the response to spatial features.

In these cases, the TSAR algorithm detects a combination of spatial and temporal sample rate error

for the majority of the animation sequence, and a balanced sensitivity to spatial and temporal signal

features is appropriate; however, at the end of the sequence, the spectral characteristics of the scene

change significantly but the sensitivity of the response algorithm does not follow suit. Test scene

input two, shown in Figure 7.11(b), produces the best quality ratio distributions for all parameter
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Figure 7.12. Third suitable case.

combinations and has the most consistent spectral characteristics throughout the animation. The

same spatial and temporal sample rate error sensitivity was used for all of the suitability experiment

test runs.

The quality ratio and pixel to pixel mean squared error measurement are more sensitive to output

resolution than to batch size, evident by the grouping of the ratio values by reconstruction output

resolution in Figures 7.16(a), 7.17(a), and 7.17(b) and in the behavior of quality ratio distributions

shown in Figure 7.11 where the more quickly changing output resolution parameter appears to

distinguish runs more so than the batch size parameter. In the case of test input scene four, the

batch size parameter seems to reach a plateau between sizes 32 and 64 after which it has minimal

influence on the quality distribution.

Sensitivity to output resolution is due in part to the comparison pipeline as well as the type

of artifacts produced by the TSAR approach. The quality comparison pipeline down samples the

high resolution reference image spatially to the test run resolution. The down sampling process

is a low pass filter and serves to smooth high frequency features in the reference image. In the

nonadaptive framed test run, these high frequency spatial features are likely aliased, even at the

10242 reconstruction resolution, compared to the super sampled reference. Reconstruction of the

adaptive test run imagery in the TSAR pipeline down samples regions with sample rates greater than

one sample per pixel and up samples other regions of the image, producing smooth low frequency

artifacts that are likely to be closer to the smoothed reference image than the aliased framed run.

7.3 Qualitative Evaluation
Qualitative evaluation of the imagery produced by the TSAR algorithm provides an alternative

to the objective analysis described in the first two sections of this chapter. The cost model described
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Figure 7.13. Unsuitable cases.

in Section 7.1.2 indicates the relative computational complexity of individual pipeline stages in

comparison with a nonadaptive renderer; it does not, however, provide any information about

the relative quality of imagery produced by algorithmic configurations with different costs. The

quantitative analysis described in the previous section compares the relative difference between

different configurations and a high resolution standard using a pixel to pixel mean squared error

measure, the limitations of which are described in Section 7.2.1.

This section qualitatively describes the result of varying algorithmic parameters within the

confines of the cost model and the suitability analysis. The behavior of the TSAR algorithm is

characterized by example images from specific instances in the animation, instead of by descriptive

statistics taken over the length of a test input scene animation.

7.3.1 Individual Scene Analysis
While the cost model and the quantitative quality measure allow an objective notion of suitability

to be formulated in terms of cost efficiency and relative improvement over a nonadaptive approach
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Figure 7.14. MSE corresponding to outlier behavior over time of scene input zero is shown. The
nonadaptive framed run in bold along with sixteen adaptive runs.

across a test input animation sequence, the analysis does little to describe the varying level of

imagery quality in perceptual or subjective terms. Limitations of the suitability analysis are due

to constraints of the MSE measure and the reduction of the behavior of the system across an entire

test sequence to a single distribution of error values. Unlike the suitability analysis, the principal

parameter addressed in this section is framelet batch size which did not produce substantial variation

in the suitability analysis of the previous section but is shown to have a substantial effect on the

quality of imagery, especially on the degree of spatial and temporal reconstruction artifacts.

The qualitative examples presented in this section for each test input scene are shown in Figures

7.18 through 7.21. Each contains seven subfigures, one large reference image at the specified

time stamp, followed by six smaller images from the framed nonadaptive renderer and different

configurations of the TSAR algorithm. Each image contains the displayed image of the respective

renderer at the time stamp specified, which is the frame output before the time stamp. The reference

image is one megapixel and the test runs are either one megapixel or one quarter megapixel. All of

the images are taken from test runs conducted for the suitability analysis described in the previous

section.

Figure 7.18 contains an example frame from the end of test input scene zero. The frame is

taken at time stamp 4554 after the vehicle has exited the frame and all temporal change in the

reference imagery has ceased. This temporal region of the animation produced the outlier MSE

values described in Section 7.2.5 due to inadequate response or spatial reconstruction. Figure

7.18(b) shows the output of the framed nonadaptive renderer in which the rear of the vehicle is
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Figure 7.15. Quality ratio outlier behavior over time of scene input zero. The quality ratio for batch
size 128 and resolution 10242 is shown. The dotted line indicates the median of the quality ratio
values, the dashed lines indicate the upper and lower quartiles, and the solid line indicates the first
nonoutlier value. The vertical axis of both plots is on a log scale.

still visible on the left side of the frame; this image is approximately ten milliseconds old, due

to the lower refresh rate of the framed renderer compared to the reference or TSAR test runs.

Likewise, significant temporal error is observed in Figure 7.18(c) which shows the output of the

TSAR algorithm with framelet rendering batch size 32. In this case, because the framelet batch

size is so small, i.e. 1/32 the number of samples per pipeline refresh compared to the nonadaptive

renderer, the algorithm is unable to keep up with fast motion in regions with fine detail.

This temporal artifact nearly vanishes when the batch size doubles, and does not occur when the

batch size quadruples; as seen in Figures 7.18(d) and 7.18(e), respectively. This temporal behavior

may explain the difference in magnitude between the batch size 32 and 64 test runs and the other

test runs with greater batch sizes seen in Figure 7.13(a).

The temporal reconstruction error due to the use of old framelets stored in cache is due to

both the design of the TSAR algorithm and constraints placed on the independent parameters for

the suitability experiments. The magnitude and speed of spatial and temporal adaptive response

are principally controlled by four parameters which adjust the overall magnitude and steepness

of the desired spatial and temporal power spectrums; this mechanism is described in Chapter 5.

These parameters control the response sensitivity to different sized features. Other parameters

such as the maximum spatial and temporal sample rates also effect the response behavior. Test

runs conducted for the suitability experiments limited the independent parameters to the output
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Figure 7.16. MSE values varying over time for scenes 1 and 2. The box plots shown in previous
figures describes the quality ratio between each of the sixteen test runs in each test input scene,
indicated by thin lines, and the thick line which is the nonadaptive framed run.

resolution and framelet batch size of the simplified cost model, which do not include the algorithmic

parameters related to response sensitivity; those parameters might improve temporal sampling and

reconstruction in this case.

The behavior is caused by an implicit bias towards spatial response in cases where the framelet

batch size cannot adequately cover the number of framelet tiles which, according to the adaptive

temporal response rate, must be refreshed across the image. The behavior may be addressed by

modifying the pipeline to add a bias to constrain spatial response in regions with significant temporal

change. The TSAR approach includes three mechanisms which may be used to add this type of

bias. Mostly simply, the depth of the framelet tiling, i.e. the maximum spatial sample rate, may

be constrained in situations with small framelet batch sizes. This constraint prevents the small

tiles from consuming a large portion of the framelet batch but also prevents reconstruction of fine

spatial details across the whole image. Second, the response sensitivity parameters which control

the magnitude of spatial and temporal sample rate error based on the size of features detected may

be adjusted in small batch size cases. This has the effect of reducing the framelet tile sizes in
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Figure 7.17. MSE values varying over time for scenes 3 and 4.

regions with fine spatial features; however, particularly large magnitude features may still induce

large magnitude error and increased spatial sampling rate. The third mechanism is to add an explicit

response bias in the last stage of the adaptive response control decision, i.e. define a certain portion

of the upper right corner of the sample density space (small tiles, faster refresh) in Figure 6.1 as

undesirable and modulate response decisions along iso-contours outside of that space.

Figure 7.22(c) contains another example of the implicit spatial bias and illustrates a side effect

that is not as apparent in the first test scene; because the batch size is so small it takes the renderer

a considerable amount of time to render framelets across the entire image and perform adaptive

response, the sample rate in the foreground of the batch size 32 example is much higher than in the

other adaptive test cases; it matches the nonadaptive renderer.

The low frequency spatial reconstruction artifacts visible in the lower right region of the TSAR

runs in Figure 7.18 vary due to the different time of detection and magnitude of sample rate error

based on the framelet batch size. In general, the batch size parameter does not alter the manner in

which the framelet tiling adapts to spatial and temporal features, except that in extreme cases, such

as Figure 7.18(c), where too small a batch size prevents the adaptive response mechanism from

sufficiently sampling the scene temporally and delay its response to changing features.
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(a) Reference
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Figure 7.18. Examples from test input scene 0 at time stamp 4554.

Figure 7.18(g) shows an example frame from the exceptional case in test input scene zero, the

twelfth test run, 512 5122 which produced suitable results and a small number of outlying error

values. At the time stamp shown, this test run differs from the nonadaptive run in two principal

ways. First, unlike the other test runs of input scene zero, the spatial sample rate, judged from the

level of detail of reconstructed features, is approximately the same as the framed render and in some

cases is higher. Also, due to the overall faster refresh rate of the TSAR pipeline, i.e. in this case

the ray tracer is rendering half the number of image pixel samples of the nonadaptive renderer, the

temporal error seen in Figure 7.18(b) is not present.

It is difficult to determine from the qualitative examples alone why the suitable behavior of the

twelfth test run 512 5122 does not occur for the four remaining test runs at resolution 10242. At a

higher reconstruction output resolution it is likely that the spatial reconstruction error induced by

framelet reconstruction was greater than the amount of temporal error caused by the visible bumper

in the older nonadaptive image. It is also possible in these cases that the framelet tiling did not

converge to the same spatial sample rate as the lower resolution case due to differences in the extent

and magnitude of the spatial features detected.

The second test input scene was second most successful for the TSAR algorithm based on the

suitability analysis; qualitative examples of varying the batch size parameter are shown in Figure

7.19. In this scene, because the motion of the vehicle is periodic and the orientation and location of

the camera relative to the vehicle are fixed, it is difficult to observe differences related to temporal

delay. The temporal delay between the reference image in Figure 7.19(a) and the nonadaptive

output in Figure 7.19(b) are most noticeable in the reflections at the top of the driver’s window on
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Figure 7.19. Examples from test input scene 1 at time stamp 4125.

the vehicle and the orientation of the wheels based on the rotation of the hub cap logo. In this case,

the nonadaptive image was displayed at the same time stamp, 4125, as the reference image, but

the scene animation was sampled earlier due to the pipeline latency of the framed renderer. The

principal difference between the nonadaptive image and the TSAR test runs is the reconstruction of

regions with fast motion and sharp spatial features and the spatial reconstruction of low frequency

regions at the bottom of the image.

This test case is characterized by consistent spectral behavior throughout the course the the

animation; differences between the test run are caused by the behavior of the TSAR reconstruction

stage as well as the framelet selection mechanism. The reconstruction stage attempts to reduce

artificial temporal edges between framelets of different ages in the framelet cache by increasing

the extent of motion blur in regions where the age of the newest framelet changes. This effect

is most noticeable between batch sizes 128 and 256, Figures 7.19(d) and 7.19(e), respectively.

Beyond this range, a sufficient number of framelets are available in cache to produce a well motion

blurred reconstruction. At batch size 1024 shown in Figure 7.19(g), the current orientation of the

wheel, matching the reference image, begins to emerge because a sufficient number of framelets

in the batch sample the wheel at the leading edge of time. In the low sample rate case of Figure

7.19(c), similar to the first test scene, the framelet mechanism biases spatial reconstruction within

framelets surrounding the wheels of the vehicle at the expense of temporal quality. Unlike the first

test scene, the artifact is less noticeable because the relative position of the wheels in the frame

remains unchanged and the result appears to be a noisy reconstruction of wheel spokes.
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Figure 7.20. Examples from test input scene 2 at time stamp 2828.

The third input test scene, shown in Figure 7.20, is similar to the second scene in that the spatial

and temporal spectral characteristics are generally consistent throughout the animation sequence;

however, individual spatial and temporal features change position, orientation, or move across the

image. Since the vehicle is moving past the camera, the extent of the projection of the vehicle on to

the image changes slightly, requiring the adaptive response mechanism to adjust the spatial sample

rate as the occluded region of the background changes. The changing orientation of the vehicle

is the best indication of the temporal delay between the reference image in Figure 7.20(a) and the

nonadaptive test run in Figure 7.20(b); more of the front end of the vehicle is visible in the latter.

Many of the reconstruction artifacts in the third test input example fall into the same categories

of the first two examples, as shown in Figure 7.20(c) and in the fast motion regions around the

wheels of the other images; the principal artifact shown in the third test case is the behavior of the

algorithm in newly occluded regions, such as the region above the vehicle which is slowly occluded

by the roof. This region is reconstructed poorly in instances with lower batch sizes such as Figure

7.20(d).

The third test scene is the second case deemed unsuitable for all parameters combinations within

cost model constraints; example frames from the scene are shown in Figure 7.21. Temporal delay

dominates the difference between the nonadaptive framed image, shown in Figure 7.21(b), and the

reference image in Figure 7.21(a). The temporal delay causes the projection of the vehicle on to the

image plane to be slightly smaller in the nonadaptive version which may be observed by considering

the location of the vehicle relative to features on the ground plane texture. Poor response to the static
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(a) Reference

(b) nonadaptive (c) Batch size 32 (d) Batch size 128

(e) Batch size 256 (f) Batch size 512 (g) Batch Size
1024

Figure 7.21. Examples from test input scene 3 at time stamp 3953.

spatial features in the scene dominates the difference measure between the adaptive test runs and

the reference image. In the smallest batch size, Figure 7.21(c), one region of the vehicle shadow

exhibits the spatial bias problem described for the previous scenes. The larger batch sizes do not

exhibit the spatial bias problem; instead, the spatial sample rate is too low in the foreground and

almost all high frequencies are lost. This problem may be addressed by increasing the spatial error

sensitivity.

Like the first test input scene, the fourth test scene consists of a fixed camera frame through

which the vehicle moves at a high rate of speed; unlike the first case the static regions of the

image have varying spatial spectral characteristics. The difference between the reference and the

nonadaptive run is considerable due to the temporal latency of the framed renderer, e.g. the amount

of the vehicle visible in Figures 7.22(a) and 7.22(b), respectively. The difference in the position

of the vehicle due to the fast motion between the reference and adaptive test runs is greater than

in the other test input scenes. Batch sizes 256 through 1024 best illustrate this in Figures 7.22(e)

through 7.22(g), respectively. The reconstruction stage of the TSAR algorithm compensates for the

quickly varying age of framelets with different spatial features by increasing the amount of motion

blur; in cases with fast motion, this results in several copies of spatial features from a range of time

all blended together. The smaller framelet batch sizes, such as Figure 7.22(c), exhibit the spatial

response bias almost to the same extent as Figure 7.18(c).
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(a) Reference

(b) nonadaptive (c) Batch size 32 (d) Batch size 64

(e) Batch size 256 (f) Batch size 512 (g) Batch Size
1024

Figure 7.22. Examples from test input scene 4 at time stamp 4290.

7.3.2 Response Sensitivity
Response sensitivity, or the degree to which the TSAR algorithm changes the spatial or temporal

sample rate when features are detected in the rendered signal, is the characteristic which best

describes the deficiency observed in many of the examples shown in Section 7.3.1. Although

several stages in the TSAR pipeline effect the response to changing signal features, interpretation

of rendered samples occurs in the error estimation stage. Here, the spatial and temporal power

spectrum of new framelets is approximated using a DWT approach and compared to a predeter-

mined threshold. The algorithmic parameters used to shape the power spectrum threshold function,

described in Section 5.3.3.2, control the magnitude of sample rate error produced by energy at

different octaves in the DWT, which in conjunction with the adaptive response control decision

stage determine the magnitude of response. This section describes a qualitative evaluation of the

result of varying these parameters, specifically, varying the shape or slope parameter of the power

spectrum threshold function.

Independent error sensitivity parameters are one aspect of the TSAR algorithm which distin-

guish it from other approaches. These parameters are avoided in systems such as AFR which use a

global data structure to determine the relative priority of sampling each region of the image. AFR

employs a hierarchical tiling over which individual samples are distributed and sample rate error is

approximated. Adaptive response in AFR and the mechanism analogous to sample density transport

in the TSAR algorithm is accomplished by building a priority queue of leaves in the tiling based on

the relative amount of sample variance in each tile. In the terminology of the TSAR algorithm, the
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priority queue has the effect of transporting sample density independent of the absolute magnitude

of error measurements which are only needed to determine relative global order of image tiles in the

queue. Sample rate error is defined as a dimensionless variance with an implicit zero point defined

by the median priority in the queue. Implicit definition of the zero point and of the sample rate error

range is the principal advantage of the priority queue mechanism. Without this mechanism in TSAR,

a mapping between the amount of energy in a certain octave of the DWT and a specific sample

rate error value must be supplied independently by the power spectrum threshold function. The

disadvantage of the queue approach is that the data structure is global and its maintenance requires

parallel communication and synchronization, steps that are avoided if the local error measurement

may be directly translated into a desired local adaptive response independent of the global state of

the system. Although the TSAR error sensitivity parameters are fixed for the suitability test runs

shown here, the parameter values are appropriate for a broad class of imagery, absent the need to

induce bias between spatial and temporal sampling.

The implicit spatial bias behavior observed in small framelet batch size test cases, e.g. Figures

7.18(c) and 7.22(c), is due in part to design limitations of the framelet-based adaptive sampling

mechanism used by the TSAR. The effect is not encountered in similar low sample rate circum-

stances with single sample-based techniques such as AFR. In test runs of small batch sizes, the

total number of samples available is highly constrained compared to the nonadaptive renderer, i.e.

1/32 of the framed renderer, since the number of samples contained within a framelet is fixed, each

framelet makes up a large percentage of the total number of samples which may be refreshed in a

single pipeline instance. Due to the fixed extent of framelets within the framelet tiling, the small

number of total image samples cannot be distributed as broadly about the image as it might be in

the single sample case. Instead of a distribution of individual samples covering the whole tiling,

the available samples must be distributed to individual framelets within the tiling. In the case that

the tiling contains a large number of small high spatial rate tiles, the small batch size might not

be sufficient to refresh all of the tiles necessary to adhere to the adaptive temporal refresh rate.

The problem is less likely to occur in situations with larger sample rate budgets and greater framelet

batch sizes, or in situations with less temporal change, because the number of framelet tiles requiring

temporal refresh is likely a smaller percent of the framelet batch size.

The DWT threshold function slope parameter effects the slope of the linear function defined in

a logarithmic space, which when transformed into the linear space of the power spectrum approx-

imation has exponential shape. The parameter is negatively valued such that the power spectrum

threshold decreases exponentially from coarse to fine scales; larger magnitude parameter values

cause the threshold function to decrease faster, resulting in the algorithm tolerating much less energy
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at finer scales in the wavelet transform. The high resolution reference image for one time stamp from

test input scene 4 is shown in Figure 7.23; in this example, the vehicle moves across a fixed camera

frame at a high rate of speed. Figure 7.24 shows the effect of varying the spatial and temporal

power spectrum threshold slope parameter on the reconstructed output at this time stamp. The most

sensitive case, with the steepest threshold function, is shown in the upper left corner of the figure.

The default parameter values, identified empirically and used in the suitability analysis, are shown

at the center of the figure indicated by asterisks.

The spatial and temporal sample rates of the imagery shown in Figure 7.24 is shown in Figure

7.25; the spatial sample rate is indicated by the extent of each framelet tile; each framelet contains

256 samples; the color of each tile indicates the temporal refresh rate; darker tiles refresh at a lower

rate than brighter tiles.

The effect of varying spatial sensitivity, shown decreasing in the horizontal direction in Fig-

ure 7.24, is apparent; the column of test runs with the steepest power spectrum threshold −8.6

exhibit spatial reconstruction of the highest frequency features. High spatial sample rates are less

pronounced in several cases in Figure 7.24 due to temporal smoothing during reconstruction, but

may be observed in Figure 7.25 which shows the sample rate employed at the time stamp for each

test run instead of the reconstructed imagery. The high spatial sensitivity results in a similar problem

to the implicit spatial bias exhibited previously for test runs with small batch sizes. In the test

runs shown in the left most column, the high spatial sensitivity results in a large number of small

framelet tiles with high spatial sampling rates; in cases with high temporal sensitivity, the number of

small high resolution tiles which must be refreshed at the leading edge of time exceeds the framelet

batch size, resulting in the reconstruction of many small high resolution framelet at varying time

stamps. The behavior is most apparent at the front end of the vehicle in the upper left corner

at −8.6, −9.6 where many copies of high frequency spatial features from different time stamps

are blended together during reconstruction. As the temporal sensitivity decreases, this behavior

becomes less pronounced.

Varying temporal sensitivity, the vertical parameter in Figure 7.24, effects the latency of features

in motion and the amount of temporal smoothing, or motion blur, applied to smooth differences in

the temporal age of available framelets. Like the spatial sensitivity parameter, the temporal power

spectrum threshold slope alters the degree to which energy is tolerated at finer temporal scales. In

the case of test input scene four, this results in a varying amount of propagation of high temporal

refresh rate framelets as occluding features of the vehicle move from right to left.



165

Figure 7.23. Reference image for error sensitivity parameters.
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Figure 7.24. Spatial and temporal error sensitivity. Representative frames from test input scene 4
at time stamp 3300. Each parameter determines the slope of the DWT power spectrum template
function, steeper slopes produce greater error response. The parameter combination used for the
suitability experiment is indicated by an asterisk.
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Figure 7.25. Error sensitivity effect on sample rate. Spatial and temporal sample rates for the
imagery shown in Figure 7.24. Tile extent indicated spatial sample rate, each tile contains 256
samples; color indicates temporal refresh rate, darker is less frequent.



CHAPTER 8

CONCLUSION

The experimental results presented in the previous chapter consisting of a cost-based suitability

analysis and the qualitative evaluation show the benefit of the TSAR algorithm in several animation

situations. The chief conclusion, and principal contribution of this dissertation, is that the tile-based

adaptive sampling scheme, used to divide the renderers computational capacity between spatial and

temporal detail, is able to identify and exploit sufficient redundancy to improve fidelity. When

compared to a nonadaptive framed renderer, the TSAR algorithm is capable of producing higher

fidelity imagery at the same computational cost in three out of the five test input scenes; in one scene,

the approach was better throughout the entire test animation, in the other two, the algorithm was

better for more than half of the animation. The other central contributions of this work are the fidelity

analysis framework, which motivates the response model, and the sampling and reconstruction

mechanisms in the rendering pipeline which manipulate framelet tiles.

The adaptive sampling algorithm is distinguished from other techniques in three principal areas,

the use of spatially and temporal coherent framelet containers for sampling, the signed estimate of

sample density error derived from wavelet analysis, and the adaptive response mechanism based on

image space statistical manipulation. These characteristics produce an adaptive rendering system

which is capable of detecting and responding separately along the spatial and temporal dimensions.

In the qualitative analysis, separable response allowed the renderer to sample and reconstruct fine

spatial details in slow changing regions of the image. For example, in input scene four, the back-

ground near the horizon contained a high frequency horizontal edge which moved more slowly

across the frame than the vehicle. Separable response allowed the renderer to sample this region of

the frame with small framelet tiles refreshed at a low rate.

The separable adaptive response is possible due to the fidelity analysis framework employed

by the TSAR approach. The framework provides control of the spatial and temporal sampling

rate across the image by approximating the difference between the power spectrum of current

generated imagery and expected or desired imagery. The framelet tiles provide the structured

samples necessary to approximate the spectral behavior of generated imagery.
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8.1 Interpretation
Chapter 7 provides both a quantitative and qualitative analysis of the system as a whole. The

result is that the TSAR approach is most suitable for graphics scenes with consistent or gradually

changing spatiotemporal spectral characteristics over the animation. This does not imply that motion

in the scene should be slow, or isolated to specific regions of the frame, only that the amount of

redundancy in various locations in the frame should be consistent. Test input scene two, the most

suitable of the input tested, exhibits this characteristic. Although the background and object are

constantly moving, and no two images in the animation sequence are the same, the position of

the object within the frame is consistent as is the horizon between the foreground and background

textures. The property of having consistent spatiotemporal spectral content is shared by a wide

variety of different animated scenes, including test input scenes one, two, and four which each test

a different type of animation.

There is a minimally sufficient framelet batch size, due to the spatial bias described in Sec-

tion 7.3.1. Beneath this batch size, the TSAR algorithm is not able to distribute framelets across

the image broadly enough to respond to widespread temporal change, while maintaining the spatial

sample rate necessary to adequately reconstruct spatial detail. The first three test runs in each input

scene with batch size parameter 32, or 8192 new samples per refresh, fall beneath this threshold in

all test scenes. These are the most unsuitable runs in each test input scene, although in scenes one

and two, the midspread occurs below a quality index ratio of one where the TSAR approach is better.

Suitability quickly improves with the batch size until the threshold at which point the improvement

plateaus. Therefore, if the TSAR approach was to be employed for arbitrary graphics scene input,

across all potential input, not just in cases with consistent spectral characteristics, a batch size no

greater than the minimum threshold need be used.

The overall quantitative results, which are presented in Figure 7.10 and Table 7.2, are that in

one third of the animation test cases, an improvement was obtained all of the time; in nearly half of

the cases, the TSAR approach was better 90 percent of the time; and in two thirds of the cases, the

algorithm was better half of the time. These results may be interpreted either as a likelihood that the

application of the TSAR approach to a certain graphics solution will yield an improvement, or as

an indication of the sensitivity of the algorithm to its input. Unlike fidelity independent techniques

described in Section 2.4.1, the TSAR algorithm does not at all times improve performance in all

cases, e.g. the situation described in Section 7.2.5 where the scene did not permit a spatiotemporal

trade off.

The criteria for determining successful application of the TSAR algorithm is different compared

to the application of other algorithms because the TSAR algorithm enables a dynamic fidelity
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trade off, but does not effect the intrinsic rendering capability of the system. For example, in

the test cases included in the previous chapter, the TSAR algorithm did not effect the shadow or

reflection algorithm used by the renderer, or the underlying ray tracing algorithm itself. It did

not substitute a more expensive rendering algorithm to obtain greater spatial quality throughout

the entire test sequence, or substitute a less expensive algorithm to obtain greater temporal quality

throughout. The control algorithm is sufficiently discoupled that in certain instances, the underlying

renderer may have even produced higher quality effects, such as reflections or shadows, which were

smoothed away or otherwise discarded by the TSAR algorithm. This decoupling of the TSAR

pipeline from the underlying rendering engine is also a strength of the approach; provided that

the lower level rendering engine is capable of placing rendered samples in framelets, the adaptive

sampling algorithm is independent of the image synthesis mechanism. It would be possible to

completely uncouple the TSAR pipeline from rendering engine in cases where it does not result in

an improvement, e.g. in the absence of sufficient spatial and temporal error in different regions of

the image to permit conservation during response. The results should be interpreted to indicate is

that in half of the cases tested, the adaptive approach should be turned on 90 percent of the time, or

in two thirds of the cases, it should be activated half of the time. The remainder of the time, better

results would be obtained using a nonadaptive sampling approach.

The analysis presented here does not attempt to compare artifacts caused by the TSAR algorithm

leading to fidelity degradation, with those caused by alternative techniques to increase spatial or

temporal quality. For example, considering the test scenes used in this dissertation, it is not known

how an explicit static trade off in spatial quality, such as removing reflections or shadows from the

imagery, to increase temporal refresh, would compare to artifacts introduced by TSAR in unsuitable

cases.

This interpretation of the quantitative results in terms of the amount of time in a graphics

application at which the TSAR algorithm should be activated or deactivated is not a substitute for

the design decision of whether or not to include the algorithm in a system, or which components

to extract of the prototype described in this dissertation. The decision to include a temporally

and spatially adaptive rendering algorithm in a graphics system should be made by classifying the

spectral characteristics of the intended workload. Ideally, the workload will fall as close as possible

to the test scenes in the first third of the test cases where the algorithm produces an improvement all

of the time.



170

8.2 Characteristics of Appropriate Workloads
The graphics test scenes used for evaluation in Chapter 7 are examples of imagery that would be

found in a certain type of entertainment or visual simulation application. Although the scenes are

different in appearance than imagery that would be produced by a visualization application or other

types of video games, the test input scenes contain several different types of spatial and temporal

situations, such as when the camera is fixed in one place, chasing and object, or tracking an object as

it moves past. These situations are found in a broader set of graphics workloads. The evaluation of

these five test input scenes may be used to describe characteristics of appropriate graphics workloads

for use with the TSAR algorithm.

The decision to employ the TSAR algorithm must be made both at the level of the application

use case, and at the lower level of the suitability of the rendered imagery. The test input scenes

used in Chapter 7 are examples of different types of scene input and output imagery; the evaluation

addresses the lower level question of whether for these examples, the TSAR algorithm produces

higher fidelity results. The question of suitability to specific applications, e.g. video games versus

visual simulation, is not addressed by the evaluation. At the application level, the use of graphics

must permit a trade off between spatial and temporal fidelity, and the type of artifacts introduced

by the approach must be acceptable. The application must benefit from a specific trade off between

spatial and temporal fidelity, i.e. there must be a fidelity objective which can be expressed in terms of

relative spatial and temporal response sensitivity parameters. Reconstruction artifacts, specifically

motion blur due to temporal smoothing, must be acceptable to the graphics application. At the

rendering level, the TSAR algorithm must produce higher fidelity imagery of the graphics scenes

than the nonadaptive approach. The imagery produced by the graphics application must contain

features of varying detail to which the algorithm may adapt.

The graphics application must have a specific objective regarding the relative importance of

spatial or temporal fidelity; while the TSAR algorithm is able to control both, it exposes only a

mutable trade off; it does not determine the best trade off to make or contain any inherent basis

for making the trade off. Within an application, the bias towards spatial or temporal fidelity might

depend on the use of the application and might even vary over time. For example, in a visual

simulation application, temporal fidelity might be more important when reaction time is critical,

but spatial fidelity more important when detailed information is needed to make a more considered

decision. The application may bias sampling in either direction by manipulating the spatial and

temporal error sensitivities of the response component of the pipeline.

The imagery must contain changing features to which the algorithm may adapt; response to

new features in the underlying image signal requires an overall balance of detail flux in underlying
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imagery. The fly-by camera in test input scene, which was the most suitable, contained sufficient

change in individual spatial and temporal features while maintaining consistent spatiotemporal

spectral characteristics across the frame. In order to enforce conservation of overall sample density,

the amount of temporal or spatial detail in input scenes must decrease in one region of the image if

it is to increase in another region over the course of an animation. Test input scene three, where the

amount of spatial detail only increased over time, was among the least successful. In situations such

as test input scenes zero and four, which exhibited the outlier example described in Section 7.2.5,

where the spectral characteristics of the underlying image stop changing, the adaptive response

mechanism will be unable to transport sample density across the image when a feature appears or

disappears.

The graphics scenario should allow a slight bias towards temporal fidelity at the expense of

high frequency spatial fidelity. This bias is introduced by the TSAR approach in regions bordering

different temporal refresh rates during reconstruction. Scenes which include intentional motion blur

effects from fast moving objects, or cases such as the spinning wheel in test input scene one where

motion blur is plausible, already implicitly accept this bias.

These characteristics imply that it is acceptable to make a trade off between spatial and temporal

fidelity in the graphics application domain. In entertainment graphics and in many types of scientific

visualization, the loss of one fidelity dimension inherent in the trade off is acceptable; however,

graphics applications which produce quantitative information or require high spatial or temporal

precision are not candidates for this type of fidelity trade off.

8.3 Algorithms
Considered beyond the scope of the prototype and test application, the adaptive sampling mech-

anism consisting of a spatiotemporal framelet tiling, the reconstruction approach, and the adaptive

response model, are well encapsulated and extractable pieces of the TSAR system. The first two

components of the approach are particularly extractable from the larger system described here and

may have practical application to other system. The third is a component for which significant

effort was expended, but may be implemented very differently if additional constraints were placed

on the overall system, such as a specific rendering application, or imagery with a specific spectral

characteristic. The final chapter in this dissertation is organized in a forward looking manner as a

review of the components which are most likely to be used in the implementation of a future system,

and the conclusions which support their reuse. Aspects of the design which are particularly related

to contemporary hardware considerations are also described, as is the potential space of alternative

designs.



172

8.3.1 Spatiotemporal Sampling with Framelets
In practical terms, the experiment posed by the TSAR prototype is whether the rendering work

performed to refresh a whole frame at a single instance in time may be divided into smaller pieces

and distributed across the image over an interval of time to sample and reconstruct the underlying

image signal with greater fidelity and efficiency. The sample rate error estimate, adaptive response

model, and reconstruction approaches are by-products of the framelet tile-based spatiotemporal

adaptivity experiment.

The use of framelet tiles for sample placement and as sample containers throughout the pipeline

is the novel contribution of this work. The design of the spatiotemporal sampling mechanism

of the TSAR algorithm avoids single sample control decisions or rendering operations, instead

grouping samples into spatially coherent framelets and temporally coherent batches of framelets.

The spatiotemporal sampling mechanism distinguishes the TSAR algorithm from other temporally

adaptive approaches such as Adaptive Frameless Rendering. The motivation for using a tile-based

approach rather than a single sample, or nonuniform sample placement mechanism, was to increase

amortization and computational efficiency during rendering. The coherency of the framelet tile in

image space matched coherent ray tracing methods such as ray packets; although in the Manta ray

tracing system, each framelet contains several primary ray packets.

The framelets, the tiling, and the scalar fields used to construct them, allow the computational

expense of rendering and of the adaptive response control decision to be amortized over large extents

of the output image. This design enables the cost of the extra components added to the graphics

pipeline to scale independently from the number of pixels in the output image. The spectral content

of the underlying image signal dictates the resolution of framelets in the tiling, and the number of

framelets needed to adequately sample the image signal and reconstruct output imagery. The cost

of the adaptive response control decision scales in the resolution of the scalar fields used for error

estimation which are a parameter of the algorithm which must be empirically selected based on the

anticipated graphics workload.

Framelets had a significant impact on the entire TSAR pipeline, as a container of structured

uniform samples, they serve as the basis for the error estimation model and are the fundamental

data type throughout most of the pipeline. In respect to error estimation, the framelet may be

seen as an extension of the cross hair sampling pattern employed by AFR to compute spatial and

temporal derivatives. Since the extent of a framelet and number of samples contained with in it

is much greater than the pattern used in AFR, more coherence may be exploited by the rendering

engine and higher order derivatives may be computed for error estimation.

The structured coherence inherent in the framelet allows the algorithm to avoid searching for
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neighboring samples or maintaining a spatial search structure. The framelet contains enough in-

formation to estimate sample rate error within its extent over a smaller number of octaves in the

underlying image signal; in cases where communication beyond the extent of a framelet is needed,

such as the adaptive response control decision or reconstruction of the final output image, framelets

are efficiently resampled to uniform resolution scalar fields.

The framelet tiling approach, including the mechanism to divide the image into tiles, group

samples within the tiles into renderer fragments, and obtain the rendered result, does not by itself

decrease the rendered sample throughput of the Manta renderer. In certain cases, the assignment of

rays to framelet samples in Morton order increases the sampling throughput compared to the default

block linear approach used by the renderer which was designed to avoid false sharing of cache lines

on multiprocessor systems.

The framelet tiling is a piecewise constant approximation of the continuously varying sample

density field, although the framelet may be able to adequately sample fine details at a resolution

higher than the tiling, the square shape of the piecewise constant tiles, and the coarse change in

spatial and temporal sample density between tiles of different sizes and refresh rates, constrain re-

sponse to small spatial or temporal features. Reconstruction, the pipeline stage which is responsible

for smoothing discontinuities, is much more successful at addressing spatial artifacts than temporal

artifacts, since in the spatial case, a framelet containing samples at the wrong resolution at least

contains current information about the underlying image signal; in the temporal case, discontinuities

or errors in the temporal sampling rate result in missing information or samples which are too old

to be of use. Since the response to a temporal discontinuity during reconstruction is to introduce

motion blur on the more recent side of the temporal edge, inadequate temporal sampling due to the

granularity of the framelet tiling will result in a smoothing of fine spatial details as well.

8.3.2 Reconstruction
Reconstruction received the least attention in this dissertation, which focused on the sampling

components in the front end of the pipeline, although the last pipeline stage is the most expensive

component of the TSAR algorithm because it operates on each pixel in the output image. While the

arrangement of samples into framelet tiles does not increase rendering overhead at the beginning

of the pipeline, expensive operations are required during reconstruction to address artifacts caused

by the framelet tiling. For example, sharp discontinuities in the spatial sample resolution might

occur when only neighboring framelets of different sizes are available in the cache. Temporal

discontinuities, which result in popping artifacts, occur between batches of framelets which are

rendered at the same time. The cost of reconstruction scales linearly with the number of output

pixels; expensive operations cannot be amortized across large extents of the output image, unlike
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other stages in the TSAR pipeline whose costs scale with the number of framelets.

One unexplored alternative to the reconstruction approach described in this work would be to

push the smoothing of discontinuities between framelets of different sample densities to a stage

earlier in the pipeline where the cost per framelet would still be amortized over a larger extent of the

output image. For example, in transition regions between framelets at different spatial resolutions,

smoothing might be performed on effected framelets during error estimation. The operation cannot

be moved too far forward in the pipeline since framelets on the higher resolution side of the

discontinuity provide information about signal behavior which would be lost by the smoothing

operation.

8.3.3 Adaptive Response Model
The adaptive response component of the TSAR algorithm consists of the set of algorithms which

transform a batch of rendered framelets into a manipulation of the spatial and temporal sample rate

used in subsequent sampling.

The adaptive response model follows from the observation that rendered imagery not only

exhibits temporal coherence, but also that in many circumstances, the localization and degree of

temporal coherence is consistent over an interval of time. That is, the rate of change, of the amount

of change in regions of the image is consistent over time. In many instances, this quantity, similar

perhaps to a second, or higher, derivative of temporal change, has a much smaller magnitude than

simply frame-to-frame difference. Consider the examples described in the evaluation section, even

in the tracking camera situations; even though the entire image changes between any two moments

in time, the rate of change in specific regions of the image remains largely the same. This allows

the adaptive response mechanism to progressively update the desired sample rate across the image.

This observation motivates the spectral definition of spatial and temporal sample rate error, and

the use of a wavelet transform, which explicitly computes the second and higher order temporal

differences, in its analysis. It also reduces the importance of reprojection, a mechanism which

relies on first order temporal difference to reuse image features over time. Reprojection was central

component of the AFR algorithm; however, it was not practical with the framelet mechanism of

the TSAR approach because a mechanism to transform sample coordinates while amortizing the

cost of expensive operations over framelets was not found; neither was an approach to amortize the

decision about which samples could be reused. Both problems are due to the greater number of

coherent samples contained within the framelet, versus a single sample or small number of samples

operated on at one time in the AFR approach. Instead of reprojection, the TSAR algorithm relies

on temporal smoothing, or motion blur, during reconstruction to exploit first order image difference

coherence.
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8.4 Future Work
Several components of the temporally and spatially adaptive rendering algorithm described and

evaluated in this dissertation present an opportunity for further research. The most extractable

components for further investigation are the framelet tile-based adaptive sampling mechanism, the

spatiotemporal reconstruction algorithm, and the algorithm used to implement the adaptive response

control decision.

The structured sample placement using framelet tiles is a central component of the TSAR

algorithm which ultimately proved successful, although constraints placed on the framelet tiling

contributed to reconstruction artifacts, especially in regions on the border between two spatial

sample densities. Future work might explore the use of framelet tilings which allow overlap,

or tilings which permit a more gradual change in spatial sample rate. The key challenge of this

direction would be to identify efficient data structures and algorithms to manipulate the tiling.

Adaptive sampling, not reconstruction, was the focus of this dissertation. Given the success of

the tile-based scheme, future work might examine how to improve the fidelity of rendered imagery

by decreasing the amount of spatial and temporal smoothing required during reconstruction. One

approach might be to use information collected about the image during error estimate to effect

reconstruction filters. Reconstruction is a difficult stage in the TSAR pipeline because it is the only

component whose computational complexity scales with the resolution of the output image instead

of the amount of spatial and temporal detail in the imagery.

The adaptive response control decisions stage of the TSAR algorithm is another potential area

for further investigation. During the design of this component, several attempts were made to model

the global constraint stage by modeling sample transport around the domain through the simulation

of a physical process. Behavior prediction based on an analogous physical system was thought to

be an advantage in some situations, e.g. if a high-frequency feature moves into the image, sample

density may be transported into the surrounding region and require a lower magnitude response as

the feature continues to move; however, in other cases, the physical system results in undesirable

response behavior such as the formation of waves in the sample density field. Modeling adaptive

response as a physical process was the original motivation for eliminating the hierarchical kd-tree

sampling structure from the AFR design. The intention was that many PDEs had well known

parallel solutions which are well suited to conventional graphics hardware and intrinsically more

parallelizable than updates to a large hierarchical structure. This gave way to modeling sample

rate error and sample density in both spatial and temporal dimensions as scalar fields suitable for

differential operators rather than other data structures.

Rather than an adaptive response model based on differential properties of a analogous physical
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system, the component described in Section 6.3 is a first order manipulation which is analogous

to statistical histogram manipulation. The mechanism to adjust the rate of change of the sample

density is shown in Figure 6.5 as if it was a cumulative histogram, or more specifically as a pair of

histograms containing the positive and negative values of the scalar field. The techniques described

to apply global constraints on adaptive response are implemented in terms of these functions which

are derived from the amount of sample density increase and decrease across the image.
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